# **DEGREE** BOUND FOR THE DEFINING EQUATIONS OF PROJECTIVE MONOMIAL CURVES

## NGO VIET TRUNG

#### 1. INTRODUCTION

Projective monomial curves often occur in Algebraic Geometry. They are given parametrically by sets of monomials of some degree in two indeterminates. One also calls them projections of one-dimensional Veronese varieties. For example, the first imperfect prime ideal given by Macaulay is the defining prime ideal of a monomial curve in  $P^3$ . To study such a curve one should know its defining equations, i.e. a basis of its defining prime ideal. For example, Stückrad and Vogel [5] could show that arithmetically Cohen—Macaulay monomial curves in  $P^3$  are set-theoretically complete intersections only after they knew certain minimal bases of the defining prime ideals of these curves given in [2]. Usually, it is very difficult to compute a basis for the defining prime ideal of a projective monomial curve, even in  $P^3$ , see [1].

The aim of this paper is to show that there is an effective way to determine the defining equations of a large class of projective monomial curves. That is based on a degree bound for the elements of all minimal bases of the defining prime ideal of such curves.

#### 2. MAIN RESULT

Throughout this paper, let V be a projective monomial curve given parametrically by a set  $M_V$  of monomials of some degree, say d, in two indeterminates t and s such that

$$t^{d}$$
,  $t^{d-1}s$ ,  $ts^{d-1}$ ,  $s^{d} \in M_{V}$ .

Let S denote the multiplicative monoid generated by the monomials of  $\boldsymbol{M_{\overline{V}}}$  .

Then it is easily seen that there exist positive integers n such that  $t^{n\dot{d}-a}s^a\in \dot{S}$  for all a=0,1,...,nd, Let  $n_V$  denote the minimum of all such integers n. Then we have the following

THEOREM 1. There is a basis for the defining prime ideal of V consisting of binomials of degree  $\leq n_V + 1$ .

By a binomial we understand a difference of two monomials of the same degree. Clearly, Theorem 1 yields an effective way to determine the defining equations of V because one can easily establish an algorithm to compute  $n_V$  and all binomials of degree  $\leqslant n_V + 1$  vanishing at  $M_V$ . These binomials will form a basis for the defining prime ideal of V. It should be noticed that a basis found by this way need not be a minimal basis and  $n_V$  is not always the maximal degree appearing in every minimal basis of the defining prime ideal of V, see example 3 below.

Remark. The Hilbert polynomial of V always has the following form: P(n) = nd + 1,

and  $n_V$  is the last integer n such that P(n) coincides with the Hilbert function of V at n.

Proof of Theorem 1. To each element  $t^{d-a}s^a$  of  $M_V$  we assign an indeterminate  $X_a$ . Let k[X] denote the polynomial ring over a field k in the indeterminates  $X_a$ . Let k[S] denote the subalgebra of the polynomial ring k[t,s] generated by the elements of  $M_V$ . Then there is a natural homomorphism  $\varphi$  from k[X] onto k[S].

which sends  $X_a$  to  $t^{d-a}s^a$ . Let  $P_V$  denote the kernel of  $\varphi$ . Then  $P_V$  is the defining prime ideal of V in k[X]. Since  $P_V$  has a basis consisting of binomials [3], to prove Theorem 1 we need only show that every binomial of  $P_V$  of degree  $n > n_V + 2$  can be expressed as a linear combination of binomials of  $P_V$  of degree n-1.

Let F, G be two monomials of degree  $n \geqslant n_V + 2$  such that F - G belongs to  $P_W$ . Then we have

$$\varphi(F) = \varphi(G) = t^{nd-m} s^m$$

for some non-negative integer  $m \leqslant nd$ . For convenience, we write

$$F = X_a X_b X_c F_1,$$

$$G = X_e G_1,$$

where F, G are monomials of degree n-3, n-1, respectively. Since m=a+b+c+...=e+..., we may assume, without restriction, that  $a \ge e \ge b$ . Note that

$$t^{(n-2)d-m+b+c} s^{m-b-c} = \phi(X_a F_1),$$
  
$$t^{(n-2)d-m+a+c} s^{m-a-c} = \phi(X_b F_1)$$

are elements of  $\hat{S}$ . Then, since  $n-2 > n_{_V}$  and

$$0 \leqslant m-a-c \leqslant m-e-c \leqslant m-b-c \leqslant (n-2)d$$
,

we must have  $t^{(n-2)d-m-e-c}$   $s^{m-e-c} \in S$ . Thus, we can find a monomial H of degree n-2 in k[X] such that

$$t^{(n-2)d-m-e-c} s^{m-e-c} = \varphi(H).$$

Now, looking at the powers of t and s, we can easily verify that

$$\begin{split} & \varphi(X_e H) = \varphi(X_a X_b F_1), \\ & \varphi(X_c H) = \varphi(G_1). \end{split}$$

From this it follows that  $X_eH - X_aX_bF_1$  and  $X_cH - G_1$  are binomials of  $P_n$  of degree n-1, and we have the expression

$$F - G = X_c (X_a X_b F_1 - X_e H) - X_e (X_c H - G_1),$$

as required. The proof of Theorem 1 is now complete.

### 3. APPLICATIONS

It is known [6] that V is an arithmetically Buchsbaum curve if and only if  $n_V \leq 2$ . Hence we have the following interesting consequence of Theorem 1:

COROLLARY 1. Let V be an arithmetically Buchsbaum curve. Then there is a basis for the defining prime ideal of V consisting of binomials of degree  $\leq 3$ .

A famous example for this result is the prime ideal of Macaulay which defines the projective monomial curve given parametrically by the set  $\{t^4, t^3s, t^3\}$ . This is an arithmetically Buchsbaum curve and the prime ideal of Macaulay has the following basis

$$X_0 X_4 - X_1 X_3$$
,  $X_0 X_3^2 - X_1^2 X_4$ ,  $X_0^2 X_3 - X_1^3$ ,  $X_1 X_4^2 - X_3^3$ .

There also exist projective monomial curves whose defining prime ideals regenerated by binomials of degree  $\leq 3$  but they are not arithmetically inches below.

Now, we will apply Theorem 1 to determine minimal bases for the defiing prime ideals of some projective monomial curves. We are interested in drives given parametrically by sets of monomials of the form

$$\{t^d, t^{d-1}s, \ldots t^{d-a}s^a, t^{d-b}s^b, \ldots, ts^{d-1}, s^d\}.$$

10

 $a < b \leqslant d-1$  Without restriction, we may assume that  $a + b \leqslant d$ . Then can compute  $n_v$  in terms of a and b.

**POLLARY 2.** Let V be as above. Then the defining prime ideal of V has a **consisti**ng of binomials of degree  $\leq [(b-2)/a] + 2$ .

Proof. Let  $t^{nd-c}$  so be an arbitrary element of S. Then  $t^{nd-c}$  so is a product of n-m monomials of the set

$$M_1 = \{t^d, t^{d-1}s, ..., t^{d-a}s^a\}$$

with m monomials of the set

$$M_2 = \{ t^{d-b}s^b, ..., ts^{d-1}, s^d \}$$

for some  $m \le n$ . Clearly, we have  $mb \le c \le (n-m)$  a+md. Conversely, for every integer c satisfying the above inequalities for some  $m \le n$ , the element  $t^{nd-c} s^c$  belongs to S and can be written as a product of n-m monomials of  $M_1$  with m monomials of  $M_2$ . Thus, to compute  $n_v$ , we need only check when the intervals [mb, (n-m)a+md], m=0,...,n, contain the integers  $0,\ldots,nd$ . That happens if and only if mb-1 is contained in the interval [(m-1)b, (n-m+1)a+(m-1)d], or, equivalently,

$$mb-1 \le (n-m+1)a + (m-1)d$$

for all m = 1, ..., n. From this it follows that

$$b+a-2 < (n+1)a+(m-1)(d-a-b)$$

for all m = 1, ..., n. Since  $d - a - b \geqslant 0$ , the above condition is satisfied if and only if

$$b + a - 2 < (n + 1)a$$

or, equivalently,

$$[(b+a-2)/a] < n+1.$$

Therefore,  $n_V = [(b-2)/a] + 1$ , and the statement of Corollary 2 follows from Theorem 1.

Now, since the maximal degree of the elements of a minimal basis of a homogeneous ideal is an invariant of this ideal [4, Satz 2, p. 37] and since every basis can be reduced to a minimal one, we need only determine the type of the binomials of a basis of the defining prime ideal of V because by restricting the degree of this type  $\leq [(b-2)/a] + 2$ , we will find a minimal basis.

In the following examples, we shall use the notations of the proof of Theorem 1.

Example 1. Let V be a projective monomial curve given parametrically by the set

$$\{t^d, t^{d-1}s, ts^{d-1}, s^d\},\$$

 $d \geqslant 3$ . Then  $n_V = d - 2$ . It is easy to see that  $P_V$  has a basis consisting of the binomial

$$X_o X_d - X_1 X_{d-1}$$

and binomials of the type

$$X_0^{n-r}X_{d-1}^r - X_1^{n-s}X_d^s, n \geqslant r, s \geqslant 1.$$

Now we will check which positive integers n, r, s satisfy the equation

$$r (d-1) = n - s + sd.$$

Since we may assume  $n \leqslant d-1$ ,  $0 \leqslant n-s \leqslant d-1$ . Hence

$$s = [r(d-1)/d] = r - 1.$$

From this it follows that

$$r(d-1) = n - r + 1 + (r-1) d.$$

Hence n = d - 1. Thus,  $P_v$  has the following basis:

$$X_{o} X_{d} - X_{1} X_{d-1},$$

$$X_{0}^{d-r-1} X_{d-1}^{r} - X_{1}^{d-r} X_{d}^{r-1}, r = 1, ..., d-1.$$

It is easily seen that this basis is a minimal one, of. [4, Beispiel 1, p. 182].

Example 2. Let V be a projective monomial curve given parametrically by the set

$$\{t^d, t^{d-1}s, t^{d-2}s^2, ts^{d-1}, s^d\},$$

 $d \geqslant 4$ . Then  $n_v = d - 3$ . It is easy to see that  $P_v$  has a basis consisting of the binomials

$$X_{o} X_{2} - X_{1}^{2}$$

$$X_{o} X_{d} - X_{1} X_{d-1}$$

$$X_{1} X_{d} - X_{2} X_{d-1}$$

$$X_{2} X_{d}^{d-3} - X_{d-1}^{d-2}$$

and binomials of the following types

$$X_0^{n-r-1} X_1 X_{d-1}^r - X_2^n, \quad n > r \geqslant 1,$$
 $X_0^{n-r} X_{d-1}^r - X_2^{n-s} X_d^s, \quad n \geqslant r, s \geqslant 1.$ 

For the first type, we have to solve the equation

$$1+r(d-1)=2n.$$

It has solutions if and only if d is even. In that case, we only get a binomial associated with the solution r=1, n=d/2 because n should be chosen as small as possible. TZ 121

For the second type, we have the equation

$$r(d-1)=2(n-s)+sd,$$

or, equivalently,

$$(r-s)(d-1)+s=2n.$$

Thus, since  $n \gg s \gg 1$ , n takes the minimum value if r = s + 1, i.e. n = [(d + s - 1)/2].

According to our analysis, Pv then has the following basis:

Case 
$$d=2t$$
: 
$$X_{0}X_{2}-X_{1}^{2}$$

$$X_{0}X_{d}-X_{1}X_{d-1},$$

$$X_{1}X_{d}-X_{2}X_{d-1},$$

$$X_{2}X_{d}^{d-3}-X_{d-1}^{d-2},$$

$$X_{0}^{t-2}X_{1}X_{d-1}-X_{2}^{t},$$

$$X_{0}^{t-i-1}X_{d-1}^{2i}-X_{2}^{t-i}X_{d}^{2i-1}, i=1,..., t-1.$$

$$X_{0}X_{2}-X_{1}^{2}$$

$$X_{0}X_{d}-X_{1}X_{d-1},$$

$$X_{1}X_{d}-X_{2}X_{d-1},$$

$$X_{2}X_{d}^{d-3}-X_{d-1}^{d-2},$$

$$X_{2}X_{d-1}^{d-1}-X_{2}^{t-i}X_{d-1}^{2i}, i=0,..., t-1.$$

It is easily seen that this basis is a minimal one.

Example 3. Let V be a projective monomial curve given parametrically by the set

$$\{t^d, t^{d-1}s, t^{d-2}s^2, t^2s^{d-2}, ts^{d-1}, s^d\}$$

 $d \geqslant 5$ . Then  $n_V = [(d-2) \ / \ 2]$ . It is easy to see that  $P_V$  has a basis consisting of the quadrics

$$X_0 X_2 - X_1^2,$$
 $X_0 X_{d-1} - X_1 X_{d-2},$ 
 $X_0 X_d - X_2 X_{d-2},$ 
 $X_0 X_d - X_1 X_{d-1},$ 
 $X_1 X_d - X_2 X_{d-1},$ 
 $X_{d-2} X_d - X_{d-1}^2,$ 

and binomials of the following types

$$X_0^{n-r-1}X_1X_{d-2}^r - X_2^{n-s}X_d^s;$$
  
 $X_0^{n-r}X_{d-2}^r - X_2^{n-s}X_d^s,$ 

$$\begin{split} X_0^{n-r} & X_{d-2}^r - X_2^{n-s-1} X_{d-1} X_d^s, \\ & X_0^{n-r} & X_{d-1}^r - X_1 X_2^{n-1}, \\ & X_1^{n-r} & X_d^r - X_{d-2}^{n-1} X_{d-1}. \end{split}$$

Processing as in Example 2, we can easily verify that only the following binomials come into consideration:

Case 
$$d = 2t$$
:  $X_0^{t-r-1} X_{d-2}^r - X_2^{t-r} X_d^{r-1}$ ,  $r = 1,..., t-1$ .

Case  $d = 2t + 1$ :  $X_0^{t-1} X_{d-1} - X_1 X_2^{t-1}$ ,  $X_1 X_d^{t-1} - X_d^{t-1} X_d^{t-1}$ ,  $X_1 X_d^{t-1} - X_d^{t-1} X_d^{t-1}$ ,  $X_1 X_d^{t-r-1} X_1 X_d^{t-r} - X_2^{t-r+1} X_d^{t-r-1}$ ,  $r = 1,..., t-1$ ,  $X_0^{t-r-1} X_{d-2}^{t-r+1} - X_2^r X_{d-1}^t X_d^{t-r-1}$ ,  $r = 1,..., t-1$ .

These binomials together with the above quadrics will form a minimal basis for  $\boldsymbol{P}_{\boldsymbol{V}}$ .

In particular, if d=2t, the maximal degree of the elements of this basis is equal to  $n_V=t-1$ . This shows that the bound  $n_V+1$  for this maximal degree is not always a lained.

Moreover, if d=8, we get an example of a projective monomial curve defined by binomials of degree  $\leqslant 3$  but it is not an arithmetically Buchsbaum curve.

Received May 5, 1984

#### REFERENCES

- [1] H. Bresinsky and B. Renschuch, Basisbestimmung Veronesescher Projectionsideale mit allgemeiner Nullstelle  $(t_0^m, t_0^{m-r}, t_1^r, t_0^{m-s}, t_1^s, t_1^m)$ , Math. Nachr. 96 (1980), -257 269.
- [2] H. Bresinsky, P. Schenzel and W. Vogel, On liaison, arithmetical Buchsbaum curves and monomial curves in P<sup>3</sup>, Preprint Series No ·6 (1980/1981), Aarhus Univ., Dept. Math.

[3] J. Herzog, Generators and relations of abeli n semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175 - 193

[4] B. Renschuch, Elementare und praktische Idealtheorie, VEB Deutscher Verlag der Wissenschaften, Berlin 1976.

[5] J. Stückrad and W. Vogel, On the number of equations defining an algebraic set of zeros in n-space, Seminar D. Eisebud/ B. Singh/ W. Vogel Vol. 2, Teubner-Verlag, Leipzig 1982.

[7] N.V. Trung, Projections of one-dimensional Veronese Varieties, Math. Nachr., to appear.

INSTITUTE OF MATHEMATICS, P. O. BOX 631, BOHO, 19-000 HANOI, VIETNAM.