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DEGREE BOUND _FOR. THE DEFINING EQUATIONS OF
PROJECTIVE MONOMIAL CURVES
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1. INTRODUCTION

Projective monomial curves olten occur in Algebraic Geometry. They are
given parametrically by sets of monomials of some degree intwo indeterminates.
One also calls them projections of one-dimensional Veronese varieties. For
example, the first imperfect prime ideal given by Macaulay is the defining prime
ideal of a monomial curve in P3. To study such a curve one should know its
‘defining equations, i.. abasis of its defining prime ideal. For example,
Stiickrad and Vogel[5] could show that arithmetically Cohen—Macaulay monomial
curves in P? are set-theoretically complete intersections only after they knew
certain minimal bases of the defining prime ideals of these curves given in [2].
Usually, it is very difficult to compute a basis for the defining prime ideal of

a pro;ectwe monomial curve, even in P3, see [1]..

“The aim of this paper is to show that there is an effective way to determine
the defining equations of a large class of projective monomial curves. That is -
based on a degree bound for the elements of all minimal bases of the defining
prime ideal of such curves.

2. MAIN RESULT

‘Throughout this paper, let V be a projective monomial curve given para-
metrically by a set M, of monomials of some degree, say d, in two indetermin-

ates t and s such that
14, id‘"'Is, isd—f, sdeMV.

Let S denote the mualtiplicative monoid generated by the monomials of MV
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Then it is easily seen that there exist posilive integers n such that $rd—450 ¢ §
for all ¢ = 0,1,..., nd, Let n, denote the minimum of all such integers n. Then

we have the following

THEOREM 1. There is a basis for the defining prime ideal of V consisting of
binomials of degree < ny+ 1. N

By a binomial we understand a difference of two monomials of the same
‘degree. Clearly, Theorem 1 yields an effective way to determine the defining
equations of V because one can easily establish an algorithm to compute n,, and

all binomials of degree << ny, + 1 yanishing at M 7 These binomials will form

a basis for the defining prime ideal! of V. It should be noticed that a basis
fouad by this way need not be a minimal basis and n, is not always the maximal

degree appearing in every minimal basis of the defining prime ideal of V, see
example 3 below.

Remark. The Hilbert polynomial of V always has the following form:
P(n)= nd -1,
and ny is the last integer n such that P(n) coincides with the Hilbert function

of Vatn T

Proof of Theorem 1, To each element (™ % s% of M, we assign an indeterminate
X . Let k [X] denote the polynomialring over a field k in the indeterminates X .
Let k [S] denote the subalgebra of the polynomial ring k[t, s} generated by the
elements of M, Then there is a natural homomorphism ¢ from k[X] onto XS]
which sends X {0 \td'““ s? . Let P, denote the kernel of ¢. Then P isthe defining
prime ideal of V in k[X]. Since Py has a basis consisting of binomials [3], to
prove Theorem 1 we need 9nly show that every binomial of P, of degree
n> n, + 2 can be expressed as a linear combination of binomials of P, of

degree 'n — 1.
Let £, G be two monomials of degreen >> n,, 42 such that F — G belongs to

Py. Then we have
o(F) = ¢(G) = tnd=msm
for some non—negative integer m <{ nd. For convenience, we write
F=X X X F,,
e b e 1
G = Xe GI ,
where F, G are monomials of degree n—3, n—1, respectively. Since m = a -}

4 b4 ¢+ . = e+ .., we may assume, without restriction, that a 5> e > b.
Note that

i(n—Z)d—mfb-i—c gim—b=¢ (p(Xa FI )

¢ (n=2)d—mtate gm—a—c = (X, F,)
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are elements of S. Then, since n—2 > ny, and
0 < m—a—c < m—e—c < m—b—c < (n—2d,
we must bave fn=2)d—m—~e—c gm—e-c ¢ g Thus, we can find a monomial H
of degree n—2 in k{X] such that '
t(n—Z)d—m TeTe gm-e—C = o(H),
f.  Now, looking at the powers of f and s, we can easily verify that
' (P(XGH)tcp(XaXij)!
o(X H) = 9 (G,).
From this it follows that XeH - Xa XbF1 and XCH — G1 are binomials aoi’
P, of degree n—1, and we have the expression
' FetG=X (X X F/ — X H)-- XX H=G,),

as required. The proof of Theorem 1 is now complete.

3. APPLICATIONS

-1t is known [6] that V is an arithmetically Buchshaum curve if and only
if n, < 2. Hence we have the following interesting consequence of Theorem 1: -

k. COROLLARY 1. Let V be .an arithmetically Buchsbaum curve. Then there is
. basis for the defining prime ideal of V consisting of binomials of degree
' "~<., 3. ' - . ’

"' A famous example for this result is the prime ideal of Macaulay which
lefinés the projective monomial curve given parametrically by thé set {¢#, 13,
3 » t“}. This is an arithmetically Buchsbaum curve and the prime ideal of
ulay has the following basis

. 2 o2 2 3 9 L3
X, X, — X, X, X, X -x3x, , X2x, — X, X, X—X..

:"Th_eré also exist projective monomial curves whosé deéfining prime ideals
generated by binomials of degree < 3 but they are not arithmetically

sbanm curves, see Example 3 below. :

Now, we will apply Theorem 1 to détermine minimal bases for the defi-

prime ideals of some projective monomial curves. We are interéstéd in

€38 given paramétrically by sets of monomials of the form

{ id, id“l’s’ L., L dma g , fd—b Sb, e fsdmI,Sd }.

a < b  d—1 Without resiriction, we may assume that a + » <Cd.Then

an compute nry, in terms of a and b.
OLLARY 2, Let V be as above. Then the defining prime ideal of V has a
onsisting of binomials of degree < [ (b—2)/d] + 2.
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Proof, Let jrd=c s& be an arbitrary element of §. Then fad—c s€ i a product
of n‘m monomials of the set
M, o= {i%, 1975, 197057}
with m monomials of the set
My = d-bsb, .., tsd"I', 9}
for some m < n. Clearly, we have mb < ¢ < (n—m) a + md, Conversely,
jor every integer ¢ satisfying the above inequalities for some m < n, the
element £74 7 ¢ s¢ belongs to § and can be written as a product of n—m
monomials of M I-with m monomials of Mz . Thus, to compute ay, ‘we need
only check when the intervals [mb, (n — m)a -+ md], m = 0,..., n, contain the
integers 0,..f, nd. That happens if and only if mb — 1 is contained in the
interval [(m — 1)b, (n-m+-1)a 4 (m — 1) ], or, equivalently,
mb—1<(n—m-+ a4+ (m—-1d
for all m = 1,..., n. From this it follows that
b+a——2<(n 1)a+(m—1)(d——a-—-b)
forall m=1,..., n, Since d —a — b >» 0, the above condition ia satisfied if
and only if
b+a—-—2 <@+ Da
or, equivalenily,
: [(b 4+ a—2ya] <nil
Therefore, n, = {(b -2/ a] + 1, and the statement of Corollary 2 follows
from Theorem 1.
Now, since the maximal degree of the elements of a minimal basis of a
homogeneous ideal is an invariant of this ideal [4, Satz 2, p. 37] and since every
basis can be reduced to a minimal one, we need only determine the type of

the binomials of a basis 01? the defining prime ideal of V beeause by restricting
the degree of this type < [(b — 2)/d] + 2, we will find a minimal basis,

In the following -examples, we shall use the notations of the proof of
' Theorem 1.

Example %. Let V be a projective monomial curve given parametrically
by the set

{14, 1d-15 sd—1 sd,
d > 3. Then n), =d —2. It is easy to see that P, has a basis consmtmg of the
binomial . :
X X, - XX, 4
and binomials of the type

n—-r T >3
XDTORE - XIOK n> s> L
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Now we will check which positive integers n, r, s satisty the equation
' r{d—-1=n—s + sd.
Since we may assume n <. d — 1, 0 { n — s <{ d — 1. Henee
§=[r{d—1jd]=r —1.
Erom thls it follows that
rd—N=n—r+14+(r-1)4d
Hence n = d — 1, Thus, PV has the following basis:

X, X, —X, X, g

R A B R

It is easily séen that this basis is a minimal one, of. [4, Beispiel 1, p. 182].

Example 2. Let V be a projective monomial curve given parametrically
by the set

{id td—l's td—232 tsd—i d}
d > 4. Then n, = d~— 3. It is easy to see that P, has a basis consisting of the

binomials
2
X, X2 — X1
Xo Xd - X1 Xd—i'
X, Xd —_ X2 _de_i,
, d—3 -2
32 }‘d - Xd 1
and binomials of the Tollowing types
a—r—1 r R ;
X XXd-i X2, n=>r>l,
n—ryr . Xn—sYs : ~> I .
XG Xdi X2 Xd’ nz=rns>1

For the first type, we have to solve the equation
14 r(d—1) = 2n

It has solutions if and only if d is even. In that case, we only get a binomial
associated with the solunonr—— 1, n = d/2 because n should be chosen as

small as possible. ey
For the second type, we .have the equation ﬁ'ﬁf bl ',;f xgur::,\_ .
rd—1) = 2(n — 5) + sd, e

or, equivalenfly, ey g3
! ’ ' [z

(r—s) (d=—1) + s = 2n, .

Thus, since n > s >»> 1, n takes the minimum valus lf!.' s 41, i.'e.

n={(d+ s - 1)2). i

.

a—o9 | , | | = 61



According tz our analysis, 7, then has the following basis:
Case d = 2t ¥Xx —x?
. 0 2 1

Xo Xy — X Xq—p
XX, — XX, p»

X Xd—3 — xd—2
d—1

[—2 . -t
A )Li.&d e }12,
t-i—1 v2i —iy2i—1 ; __
R T R e
Case d = 2t + 1: XOX2—X2

Xo Xda — Xy Xd—I,

X, X, — X, X,_,,

» yd—3 d—2
x, x4 — x47%,

f~i—1 2i—1 t—i 20 ,
XX - Xy N = O 1,

It is easily seen that this basis is 2 minimal one.

Example 3. Let V be a prolecuve monomial curve given parametrically by
the set

{fd, id'—'is = 2 82 {2 gd— 2 13— 1, Sd} )

d>>5. Then ny, = [(d—2) / 2]. It is easy to see that P has a basm c0nsxst1ng
of the quadrlcs

.2
. Xy Xy ~ 31’
‘ | Xo X, 1— X Xd_2,
Xo a — XX
X, Xy— X, X5 1
' l1 Xd Xﬁ? Xd i
Xd—z'Xd Xd 1»
and binomials of the following types
n—r—1 -r n—s 8 _
X ‘\1 \d —e Xy Ay
T r r n—=s v
IR IR
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h—r yr n—s—1T 5
XU X — X X Xd'

d—2 2 d—1
n—r vyr n—1
XO Xd—l_' X1X2 .
M= F yr n—1
‘Xi Xd —_ Xd—sz—i'

Processing as in Example 2, we can easily verify that only the following
binomials come into consideration:

Case d = 2t S . LD CRL B BRI )
Cased=2+1: XI™'x  —x xi~1,
X = X T
X:J—r-—-l X, ‘\'2—2 — Xt2-r+I Xi‘i—i, r=1.,t—1,
X;—I Xif__'j_l — X; Xd-—lxtfi_r_i’ r=1,.,1—-1,

These binomials together with the above quadrics will form a minimal
basis for P.

In particular, if d = 2¢, the maximal degree of the elements of this basis
is equal to n, = t— 1. This shows that the bound nV-I—,I for this maxzimal

degree is not always a'lained. .

Moreover, it d = 8, we get an example of a projective monomial curve
defined by binomials of dejree <{ 3 but it is not an arithmetically Buchs-
baum curve. '
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