DEGREE BOUND FOR THE DEFINING EQUATIONS OF
PROJECTIVE MONOMIAL CURVES

NGO VIET TRUNG

1. INTRODUCTION

Projective monomial curves often occur in Algebraic Geometry. They are
given parametrically by sets of monomials of some degree in two indeterminates.
One also calls them projections of one-dimensional Veronese varieties. For
example, the first imperfect prime ideal given by Macaulay is the defining prime
ideal of a monomial curve in P^3. To study such a curve one should know its
defining equations, i.e. a basis of its defining prime ideal. For example,
Störckrad and Vogel [5] could show that arithmetically Cohen-Macaulay monomial
curves in P^3 are set-theoretically complete intersections only after they knew
certain minimal bases of the defining prime ideals of these curves given in [2].
Usually, it is very difficult to compute a basis for the defining prime ideal of
a projective monomial curve, even in P^3, see [1].

The aim of this paper is to show that there is an effective way to determine
the defining equations of a large class of projective monomial curves. That is
based on a degree bound for the elements of all minimal bases of the defining
prime ideal of such curves.

2. MAIN RESULT

Throughout this paper, let V be a projective monomial curve given para-
metrically by a set M_v of monomials of some degree, say d, in two indetermin-
ates t and s such that

$$t^d, t^{d-1}s, t^{d-1}s^d \in M_v.$$

Let S denote the multiplicative monoid generated by the monomials of M_v.
Then it is easily seen that there exist positive integers \(n \) such that \(t^{nd-a} s^a \in \mathcal{S} \) for all \(a = 0, 1, \ldots, nd \). Let \(n_\mathcal{V} \) denote the minimum of all such integers \(n \). Then we have the following

Theorem 1. There is a basis for the defining prime ideal of \(\mathcal{V} \) consisting of binomials of degree \(\leq n_\mathcal{V} + 1 \).

By a binomial we understand a difference of two monomials of the same degree. Clearly, Theorem 1 yields an effective way to determine the defining equations of \(\mathcal{V} \) because one can easily establish an algorithm to compute \(n_\mathcal{V} \) and all binomials of degree \(\leq n_\mathcal{V} + 1 \) vanishing at \(M_\mathcal{V} \). These binomials will form a basis for the defining prime ideal of \(\mathcal{V} \). It should be noticed that a basis found by this way need not be a minimal basis and \(n_\mathcal{V} \) is not always the maximal degree appearing in every minimal basis of the defining prime ideal of \(\mathcal{V} \), see example 3 below.

Remark. The Hilbert polynomial of \(\mathcal{V} \) always has the following form:

\[
P(n) = nd + 1,
\]

and \(n_\mathcal{V} \) is the last integer \(n \) such that \(P(n) \) coincides with the Hilbert function of \(\mathcal{V} \) at \(n \).

Proof of Theorem 1. To each element \(t^{d-a} s^a \) of \(M_\mathcal{V} \) we assign an indeterminate \(X_a \). Let \(k[X] \) denote the polynomial ring over a field \(k \) in the indeterminates \(X_a \).

Let \(k[S] \) denote the subalgebra of the polynomial ring \(k[l, s] \) generated by the elements of \(M_\mathcal{V} \). Then there is a natural homomorphism \(\varphi \) from \(k[X] \) onto \(k[S] \) which sends \(X_a \) to \(t^{d-a} s^a \). Let \(P_\mathcal{V} \) denote the kernel of \(\varphi \). Then \(P_\mathcal{V} \) is the defining prime ideal of \(\mathcal{V} \) in \(k[X] \). Since \(P_\mathcal{V} \) has a basis consisting of binomials [3], to prove Theorem 1 we need only show that every binomial of \(P_\mathcal{V} \) of degree \(n \geq n_\mathcal{V} + 2 \) can be expressed as a linear combination of binomials of \(P_\mathcal{V} \) of degree \(n - 1 \).

Let \(F, G \) be two monomials of degree \(n \geq n_\mathcal{V} + 2 \) such that \(F - G \) belongs to \(P_\mathcal{V} \). Then we have

\[
\varphi(F) = \varphi(G) = t^{nd-m} s^m
\]

for some non-negative integer \(m \leq nd \). For convenience, we write

\[
F = X_a X_b X_c F_1,
\]

\[
G = X_e G_1,
\]

where \(F, G \) are monomials of degree \(n-3, n-1 \), respectively. Since \(m = a + b + c + \cdots = e + \cdots \), we may assume, without restriction, that \(a \geq b \geq e \).

Note that

\[
t^{(n-2)d-m+b+c} s^m-b-c = \varphi(X_a F_1),
\]

\[
t^{(n-2)d-m+a+c}s^m-a-c = \varphi(X_b F_1)
\]
are elements of S. Then, since $n-2 \geq n_v$ and

$$0 \leq m-a-c \leq m-e-c \leq m-b-c \leq (n-2)d,$$

we must have $t_{(n-2)d-m-e-c} s_{m-e-c} \in S$. Thus, we can find a monomial H of degree $n-2$ in $k[X]$ such that

$$t_{(n-2)d-m-e-c} s_{m-e-c} = \varphi(H).$$

Now, looking at the powers of t and s, we can easily verify that

$$\varphi(X_e H) = \varphi(X_a X_b F_1),$$

$$\varphi(X_c H) = \varphi(G_1).$$

From this it follows that $X_e H = X_a X_b F_1$ and $X_c H = G_1$ are binomials of P_v of degree $n-1$, and we have the expression

$$F - G = X_c (X_a X_b F_1 - X_e H) - X_e (X_c H - G_1),$$

as required. The proof of Theorem 1 is now complete.

3. APPLICATIONS

It is known [6] that V is an arithmetically Buchsbaum curve if and only if $n_v \leq 2$. Hence we have the following interesting consequence of Theorem 1:

COROLLARY 1. Let V be an arithmetically Buchsbaum curve. Then there is a basis for the defining prime ideal of V consisting of binomials of degree ≤ 3.

A famous example for this result is the prime ideal of Macaulay which defines the projective monomial curve given parametrically by the set $\{t^4, t^3s, t^2s^2, ts^3, t^4\}$. This is an arithmetically Buchsbaum curve and the prime ideal of Macaulay has the following basis

$$x_0 x_4 - x_1 x_3, x_0 x_3^2 - x_1^2 x_4, x_0^2 x_3 - x_1^2, x_1 x_4^2 - x_3^3.$$

There also exist projective monomial curves whose defining prime ideals are generated by binomials of degree ≤ 3 but they are not arithmetically Buchsbaum curves, see Example 3 below.

Now, we will apply Theorem 1 to determine minimal bases for the defining prime ideals of some projective monomial curves. We are interested in curves given parametrically by sets of monomials of the form

$$\{t^d, t^{d-1}s, \ldots, t^d-\alpha s^\alpha, t^{d-b} s^b, \ldots, ts^{d-1} s^d\}.$$

$a < b \leq d-1$ Without restriction, we may assume that $a + b \leq d$. Then we can compute n_v in terms of a and b.

COROLLARY 2. Let V be as above. Then the defining prime ideal of V has a basis consisting of binomials of degree $\leq \lfloor (b-2)/a \rfloor + 2$.

159
Proof. Let \(t^{nd - c}s^c \) be an arbitrary element of \(S \). Then \(t^{nd - c}s^c \) is a product of \(n-m \) monomials of the set

\[
M_1 = \{ t^d, t^{d-1}s, \ldots, t^{d-a}s^a \}
\]

with \(m \) monomials of the set

\[
M_2 = \{ t^{d-b}s^b, \ldots, ts^{d-1}, s^d \}
\]

for some \(m \leq n \). Clearly, we have \(mb \leq c \leq (n-m) a + md \). Conversely, for every integer \(c \) satisfying the above inequalities for some \(m \leq n \), the element \(t^{nd - c}s^c \) belongs to \(S \) and can be written as a product of \(n-m \) monomials of \(M_1 \) with \(m \) monomials of \(M_2 \). Thus, to compute \(n_V \), we need only check when the intervals \([mb, (n-m)a + md], m = 0, \ldots, n\) contain the integers 0, \ldots, \(nd \). That happens if and only if \(mb - 1 \) is contained in the interval \([(m-1)b, (n-m+1)a + (m-1)d]\), or, equivalently,

\[
mb - 1 \leq (n-m+1)a + (m-1)d
\]

for all \(m = 1, \ldots, n \). From this it follows that

\[
b + a - 2 < (n+1)a + (m-1)(d-a-b)
\]

for all \(m = 1, \ldots, n \). Since \(d-a-b > 0 \), the above condition is satisfied if and only if

\[
b + a - 2 < (n+1)a
\]

or, equivalently,

\[
[(b + a - 2)/a] < n + 1.
\]

Therefore, \(n_V = [(b - 2)/a] + 1 \), and the statement of Corollary 2 follows from Theorem 1.

Now, since the maximal degree of the elements of a minimal basis of a homogeneous ideal is an invariant of this ideal \(^4\text{, Satz } 2\text{, p. 37}\) and since every basis can be reduced to a minimal one, we need only determine the type of the binomials of a basis of the defining prime ideal of \(V \) because by restricting the degree of this type \(\leq [(b - 2)/a] + 2 \), we will find a minimal basis.

In the following examples, we shall use the notations of the proof of Theorem 1.

Example 1. Let \(V \) be a projective monomial curve given parametrically by the set

\[
\{ t^d, t^{d-1}s, ts^{d-1}, s^d \},
\]

\(d \geq 3 \). Then \(n_V = d - 2 \). It is easy to see that \(P_V \) has a basis consisting of the binomial

\[
X_0X_d - X_1X_{d-1}
\]

and binomials of the type

\[
X_0^{n-r}X_1^rX_d - X_0^{n-s}X_1^sX_d, n \geq r, s \geq 1.
\]
Now we will check which positive integers \(n, r, s \) satisfy the equation

\[
 r(d - 1) = n - s + sd.
\]

Since we may assume \(n \leq d - 1, \) \(0 \leq n - s \leq d - 1. \) Hence

\[
 s = [r(d - 1)/d] = r - 1.
\]

From this it follows that

\[
 r(d - 1) = n - r + 1 + (r - 1)d.
\]

Hence \(n = d - 1. \) Thus, \(P_V \) has the following basis:

\[
 X_0 X_d - X_1 X_{d-1},
\]

\[
 X^{d-r-1} X_r - X^{d-r} X_{d-r}, \quad r = 1, \ldots, d - 1.
\]

It is easily seen that this basis is a minimal one, of. [4, Beispiel 1, p. 182].

Example 2. Let \(V \) be a projective monomial curve given parametrically by the set

\[
 \{ t^d, t^{d-1} s, t^{d-2} s^2, t s^{d-1}, s^d \},
\]

\(d \geq 4. \) Then \(n_V = d - 3. \) It is easy to see that \(P_V \) has a basis consisting of the binomials

\[
 X_0 X_d - X_1^2,
\]

\[
 X_0 X_d - X_1 X_{d-1},
\]

\[
 X_1 X_d - X_2 X_{d-1},
\]

\[
 X_2 X^{d-3}_d - X^{d-2}_{d-1},
\]

and binomials of the following types

\[
 X^{n-r-1}_0 X_r X^r_{d-1} - X^n_2, \quad n > r > 1,
\]

\[
 X^{n-r}_0 X^{r}_{d-1} - X^{n-r-s}_2 X^s_d, \quad n > r, s > 1.
\]

For the first type, we have to solve the equation

\[
 1 + r(d - 1) = 2n.
\]

It has solutions if and only if \(d \) is even. In that case, we only get a binomial associated with the solution \(r = 1, n = d/2 \) because \(n \) should be chosen as small as possible.

For the second type, we have the equation

\[
 r(d - 1) = 2(n - s) + sd,
\]

or, equivalently,

\[
 (r - s)(d - 1) + s = 2n.
\]

Thus, since \(n > s > 1, \) \(n \) takes the minimum value if \(r = s + 1, \) i.e.

\[
 n = [(d + s - 1)/2].
\]

11 - 991
According to our analysis, P_V then has the following basis:

Case $d = 2t$:

\[
\begin{align*}
X_0 X_2 - X_1^2 \\
X_0 X_d - X_1 X_{d-1}, \\
X_1 X_d - X_2 X_{d-1}, \\
X_2 X_{d-3} - X_{d-1}, \\
X_0^{t-2} X_1 X_{d-1} - X_2^t, \\
X_0^{t-1} X_{2i} - X_2^{t-1} X_{d-1}, i = 1, \ldots, t - 1,
\end{align*}
\]

Case $d = 2t + 1$:

\[
\begin{align*}
X_0 X_2 - X_1^2 \\
X_0 X_d - X_1 X_{d-1}, \\
X_1 X_d - X_2 X_{d-1}, \\
X_2 X_{d-3} - X_{d-1}, \\
X_0^{t-1} X_{2i} - X_2^{t-1} X_{d-1}, i = 0, \ldots, t - 1.
\end{align*}
\]

It is easily seen that this basis is a minimal one.

Example 3. Let V be a projective monomial curve given parametrically by the set

\[
\{t^d, t^{d-1} s, t^{d-2} s^2, t^2 s^{d-2}, t s^{d-1}, s^d\},
\]

$d \geq 5$. Then $r_V = \lceil (d - 2) / 2 \rceil$. It is easy to see that P_V has a basis consisting of the quadrics

\[
\begin{align*}
X_0 X_2 - X_1^2, \\
X_0 X_{d-1} - X_1 X_{d-2}, \\
X_0 X_d - X_2 X_{d-2}, \\
X_0 X_d - X_1 X_{d-1}, \\
X_1 X_d - X_2 X_{d-1}, \\
X_{d-2} X_d - X_{d-1},
\end{align*}
\]

and binomials of the following types

\[
\begin{align*}
X_0^{n-r-1} X_1 X_{d-2} - X_2^{n-s} X_d, \\
X_0^{n-r} X_{d-2} - X_2^{n-s} X_d,
\end{align*}
\]

162
\[X^n_{0} - X^n_{r_{d-2}} X^r_{2} X^{n-s-1}_{d-1} X^s_{d}, \]
\[X^n_{0} - X^n_{r_{d-1}} X^r_{1} X^{n-1}_{2}, \]
\[X^n_{1} - X^n_{r_{d-2}} X^{n-1}_{d-1}. \]

Processing as in Example 2, we can easily verify that only the following binomials come into consideration:

Case \(d = 2t \):
\[X^{t-r-1}_{0} X^r_{d-2} - X^{t-r}_{2} X^{r-1}_{d}, \]
\(r = 1, \ldots, t-1 \).

Case \(d = 2t + 1 \):
\[X^{t-1}_{0} X^r_{d-1} - X^t_{1} X^{t-1}_{2}, \]
\[X^t_{1} X^{t-1}_{d-2} X^{d-1}_{d}, \]
\[X^{t-r}_{0} X^r_{d-2} - X^{t-r+1}_{2} X^{r-1}_{d}, \]
\(r = 1, \ldots, t-1 \).
\[X^{r-1}_{0} X^{t-r+1}_{d-2} X^{t-r}_{d-1} X^r_{d}, \]
\(r = 1, \ldots, t-1 \).

These binomials together with the above quadrics will form a minimal basis for \(P_V \).

In particular, if \(d = 2t \), the maximal degree of the elements of this basis is equal to \(n_V = t - 1 \). This shows that the bound \(n_V + 1 \) for this maximal degree is not always attained.

Moreover, if \(d = 8 \), we get an example of a projective monomial curve defined by binomials of degree \(\leq 3 \) but it is not an arithmetically Buchsbaum curve.

Received May 5, 1984

REFERENCES

[1] H. Bresinsky and B. Renschuch, Basisbestimmung Veronesescher Projectionsideale mit allgemeiner Nullstelle \((t^m_{0}, t^{m-r}_{0} t^r_{1} t^m_{0} t^s_{1} t^m_{1}) \), Math. Nachr. 96 (1980), 257 – 269.

INSTITUTE OF MATHEMATICS, P. O. BOX 631, BOHO, 10.000 HANOI, VIETNAM.