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ON MODIFIED CHAIN CONDITIONS
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DINH YAN HUYNH

1. INTRODUCTION

Throughout the paper we consider associative rings, Let M be a right
A-module, where A is a ring. M is said to satisfy the weakly minimal condition
for submodules if for every infinite descending chain N 1 2N2 3...of submodules

N; of M there exist positive integers m, p such that Nm AP C Ni for alli or,equi-

valently, there is a positive integer q such that N qA‘i’ = N, for all i. Such aright
A-moduleis called almost artinian (cf. [1], [4], [5]). 4 ring A is called almost right
artinian if the right A-module A is almost artinian. Following [7], a ring is call-
ed a MHR-ring if it satisfies the minimal condition for principal right ideals.
Now, a ring 4 is called an almost MHR-ring il A satisfies the weakly minimal
condition for principal right ideals.

One of the most importani basic results of almost right artinian (resp.
almost MHR-) rings is the following: For any almost right artinian (resp.

" almost MHR-) ring A the Jacobson radical J(4) of 4 is nilpotent (resp. nil) and

the factor ring 4/J{A) is right artinian (resp. a MHR-ring) ([1, Theorem 1],
[2, Theorem 3], resp.). In this connection it would be interesting to consider
the situation in modules. That is the purpose of Section 2, where we prove
that the same statement holds also for modules safisfying the weakly minimal
condition for cyclic submodules (Theorem 2), and therefore for almost artini-
an modules. Furthermore, we give some module theoretic characterizations for
right semisimple rings (Theorem 5, Cordllary 6).

In Section 3 we describe the structure of two special classes of almost
right artinian rings and related rings (Theorems 7, 8).
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2. MODULES WITE WEAKLY MINIMAL CONDITION FOR CYCLIC SUBMODULLS

Let M be a right A-module. By ®(M) we denote the Frattini submodule of
A, i. e. (M) is the intersection of all maximal submodules of M. If M contains
no maximal sumodules, wé sét ©(M) = 3. Then the subset

KE(M)={zlzecMzxd S OM)}

is a well-determined submodule of M which is called the Kertész radical of M
(3], [6]). The following statements are immediate consequences of the
above definition. ’
| LEMMA 1. Let M'be a right A-module, - .

(a) If K(M) = M, then K(M) is the inlersection of all mazimal submodules
M, of M such that MA & i

(b} If M =N @ H, then K(M) = K(N) @ K(H).

(¢) K(M/K(M)) = (0).

Now we can prove the following _
THEOREM 2. For a right A-module M the following conditions are equivalent: »

() K(M) = (0) and M satisfies the weakly .minimal condition for cyclic
submodules. - :

(fl) M is adirect sum of irreducible right A-modules.

In particular, if M satisfies. the weakly minimal .condition for cyelic. submo-
dules, then M{K(M) satzsfles the minimal condition for cyclzc submodules ‘

Proof. Arighl A-module N is called irreducible if N is simple and NA#(O)

. NA =N,

(i) > (ii). By Lemma 1, the intersection of all smch maximal submodules
M, of M with M4 & M, is zero. First we prove that any no n-zero ‘submodule
N of M contains a minimal submodule N;. Let 0 <~x¢ N. By (xr) we denote

the cyclic submodule of M generated by x. Since K(M) = (0), HA = (0) for
every non-zero submodule H of M. If (x)A is not minimal, we¢ can find an

0 + z; & (@)4 with ()4 D (z,). If (:ci)A:" is not minimal, we find an 0 -£

z, € (z4) 47 with (:ci)Az D (z,)- Successively we get a strictly descending

chain ‘
)] @D @) DD () D

with (z; )AHi D(x;). By assumption there is a positive integer g such that

(z, JAT S (x,) for alf i Hence ;) A% A S ()A S (z;) for all i, Thus, (1)
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must break off at ¢, and N, : = (xq) LA PN minimal submodule of M ia

(x) S N.

‘Now, since K(}) = (0), by Lemma 1 there is a maximal submodule M, of
M such that N, &€ My, i.e. Nyn My = (0). Hence M = N, § M. Again by
Lemma 1, K(M) = K(N,} @ K(Mlﬂ ), therefore K(}M ;) = (0). Since N; S (x),
(x) = N; @ (x) n M, Itis clear that (z) N M, is also a cyclic sﬁbmodule of
My There is an z, € () N M, such that (a:z) = (x) N Mi; (x,) contains a
minimal submodule N, if (2,) = (0). Since K(M i) =1(00), M, =N, BM,.Then
(:r:z' yNM,isa cyclic submodule of M, . In this way we get finally a strictly des-
cending chain )
@ - @) DE) DD @)D (x,: = z)
with (z, YA¥ ¢ () for any k = 1,2,... and i < j. From this (2) must be finite,
i.e. there is a positive integer m such that (x ) is a minimal submodule of M
in (x). Hence () = Ny @... & N & (x ) Thus

M=y (@=2%y,
xeM .

where eacht M, is an irreducible right A-module,

(ii) = (i) is straightforward.

The last statement is clear because K(M/K(M)) = (0) by Lemma 1.

By }’{r fA) "(Kl (A]) we 'denote the right (resp. left) K_ertés{radiqalbf a ring
A considered as a right {resp. lelt) A-module, CIearly_Kr (4) and K, (4) are
ideals-of ‘4 which are contaired in the Jacobson radical J(A) of A.

COROLLARY 3. For a ring A the following conditions are equivalent;

(i) 4 is an almost MHR-ring with K _(4) = (0).

(i) A is @ direct sum of minimal right ideals R, with R; A = R,

In parti’cular, if A is an almost MHR-ring, then AfK_ (4) is a MHR-ring.

Remarks. Let A be a MHR-ring with J (4) = (0). Then the matrix ring

A :'[A Ol
40

is a MHR-ring' ‘with K (4%) = (0), K[(4% = J (4% =[(Z1 g] . The ring
A* is right semisimple but not left semisimple (see definitions below, after the

" proot of Propositign 4).
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Let A be an almost MHR-ring. Since K (4) S J (4), A/J(4) is a MHR-ring,
too. The statement that J(4) is a:nil ideal (cf, {2]) can be proved as follows:
For we J(A) we consider the descending chain (z), 2 (a:g)r 2. (:c) .0f prin-
cipal right ideals (.ri)r of A, By assumption, there is a positive integer m such
that (™) A™ G (z%), for all i. Since (™) AM= zTAM 4 2M 4 . AT = gmA™,
y:= x’™ g ™A™, Hence 2MmA™ = (z7™) == (a:zm"’i)r:- «.. Then there is an in-
tegerbhand anae A with y = x’m, xh + M, gqa =y (vh + za) = ys where
§: = xh + zae J(A4). As is well-known, for s as an element of the Jacobson
radical ring J(4) there exists an {&J(4) with s — st 4 ¢ = 0. Thus M = y =
=y —yg(s—st41) = y—ys) — y—ys) t = 0.

For any ring 4, K _(4) + K, (4) € J(4). But it is unknown whether J(4) =
=K (A)+ K, (4) holds for every ring A. Using Corollary 3 we can prove the

following
PROPOSITION 4. For any almost MHR-ring A, J(A) = K 4 + K (A)

Proof. By Lemma 1 we have
3y  JAHAC K (4).

If K (A) = A, the slatement is clear. Suppose A = K_(4). By Corollary 3,
4: = AJK_(4) = B @ J(A), where J(4) is the Jacobson radical of A, It holds

J(A)A= J(4) by Corollary 3, consequently J(A)A K, (4) = J(A) Hence
J(4)= E,(4) + K _(4)by @)

A right A-module M is called semisimple if M is a direct sum of irre-
ducible right A-modules. Hence by Theorem 2, a right A-module M is semi-
simple if and only if K(M) = (0) and M satisfies the weakly minimal con-
dition for cyclic submodules. A ring A is called right semisimple if the rlght
A-module A is semisimple. Following Tominaga [8], a right A-module ¥ is
called s-unital if € x4 for any « € M. Hence every semisimple module is
s-unital. A ring 4 is. called right s-unital if the right A-module 4 is s-unital.
A s-unital right A-module I is defined to be s-injective if for s-unital right

A-modules M, N with a monomorphism «: N — M and a homomorphism
B: N -—» I there exists a homomorphism p': M — I such that § = p’«. Dually,
one can define s-projective right 4-modules.

THEOREM 5. For a right s-unital ring A the following coﬂditiom are
equivalent: _

(a) A is right semisimple.

(b) Every s-unital right A-module is semisimple,
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the diagramm

(¢) Every s-unilal right A-module is s-injective.
(d) Every s-unital right A-module is s-projective.
(e) Every s-unital simple right A-module is s-projective.

Proof. (a) = (b). Let’ M be a (non-zero) s-unital right A-module and
0 - x € M, Then x4 =, A/Ann(x), where Ann(zx) == {a| ae A, xza = 0}. Hence
by (a), A is a direct sum of s-unital simple right d-modules. Thus M is a direct
sum of s-unital simle right A-modules, too. '

- (b) = (a) is clear,

(b) = (¢) = (d) are clear by using (a) < (b).

(e) is a special case of (d).

(e) = (a). Let S be the socle of the s-unital right A-module A. We want to
show that S = 4, i. e. (a) holds. Suppose the contrary, that S <= 4. Then there
exists an ¢ € A with a ¢ S. By Zorn’s Lemma there is a submodule M of the
right A-module H: = aA + S which is maximal with respect to the conditions

that a ¢ M and M D 8. Obviously, M is a maximal submodule of H. Hence HfM
is s-projective by (e). Then there exists a homomorphism B ; H/M — H such that

H/M
B |
A ilH/M

H ——H/M
is commutative, i. e. af = IH,’M’ where « is the natural homomorphism of

H onto H/M. From this § = 0 and H = Im () @ M, a coniradiction. Thué'

A=S. .

A right and left s-unital ring is called s-unital. Fora ring A one can easily see
that J(A) = (0) if and only if Kr (4) = Kl (A)=1(0). A ring A is called semisim-
ple if A is right and left semisimple. It is not difficult to verify that for any
ring 4, if K _(4) = (0) then K, (4) = J(4) (it K;(4)=(0), K, (4) = J(A)). From
this the following conditions about a ring A are equivalent:

(a) A is semisimple.

(b) A is right semisimple and K, (4} = (0).

(c) A is left semisimple and K _(4) = (0).

. COROLLARY 6. For an 's-ar;ital ring A the féllawing conditions are

equivalent ;

(8) 4 is semisimple. - ,

(b) Every s-unital right A-module and every s-unilal left A-module is
semisimple.
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(c) Every s-unital right A-module and every s-unital left A-module is
s-injeclive. «

(d) Every s-umtal right A-module and every s-unifal feft A-module is
s~pro;ectwe

(e) Every s-unital simple rlqht .A-module and every s-unital simple left
A-module is s-projective.

In [9, Theorem-3] Tominaga has-given 9 ring theoretic conditions each of
which is equwalent to the condmon that A is semlslmple in the above sense.
Corollary 6 is well-known for rings with identity.

8. ALMOST ARTINIAN RINGS AND RELATED RINGS

From Theorem 2 and Corollary 3 we obtain that for any right A-module M
the following conditions are equivalent: '

(i) M is almost artinian and K(M) = (0)‘.
(ii) ¥ is a direct sum of finitely many irreducible right A-modules.

For any almost artinian right A-module M, M/K(M) is artinian. In particular,
if A is an alraost right artinian ring, then 4/K (4) is a right artinian ring

containing a right identity.

Let A be an almost right artinian ring. In [2, Theorem 1] it was proved that
A is almost right artinian it and only if A contains an idempotent e such that Ae
isa right artinian ring and the left annihilator I(e) of e in 4 is nilpotent. From
this it is easy to see that every ideal of a right artinianring is almost right arli-
nian. Ience a question naturally arises: Let R be an almost right artinian ring.
Is there a suitable right artinian ring 4 containing a (right) ideal B with B =< R?
To this question H. Komatsu recently gave a negative answer by way of the
following counter example which. Protessor H. Tominaga communicated to me in

a letter dated December 25,1983, Let R be a zero ring (i. e. R? = (0)) and R*
is an infinite ¢yclic group. Then R is almost artinian but certainly not artinian.
Suppose that R is a (right) ideal of a right artinian ring 4. Then by using the
additive structure of A we must have RA = (0). This forces R to be an artinian
ring, a contradiction. '

Now we give an another example suggested by Komatsu’s, Let B be an
arbitrary right-artinian ring and M be any left B-module. Then the malrix ring

B M
A= ‘
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is an aimost right artinian ring. Then, as we can easily see, for every special

choice of M we have an a[mostnght artinianring 4 which cannot be isomorphic

to a (right) ideal of a right artinian ring, for example if we take M =2 @ C(p™),
infin.

where .C(p*) is a quasicyclic p-group.

Furthermore thése examples show that it is impossible to «lift » properties
of' AJJ(A) to A in general. Hence, in order to get some more information about
almost artinian rings we must impose some suitable additional conditions upon
them. For example one can proie the following

THEOREM 7. Let A be an almost right artinian ring such thai every homomorphic
image A’ 4= A of A is right artinian. Then A is contained in one of the following
classes :

(I) Alis right artinian.

(II) A? = (0), A+ is zs‘omorphzc to the additive group of all rational numbers
of the form

m
M.
R’
where pg.., p, are finitely many fizxed prime numbers, m, By ,..., I, dreinlegers.
aiy [ SO0...0 |
$O0...0
S . Ll »
m - - a
4= SO ...O0mxml)
L 0 o

whereS_ is the fotal m X m-matriz ring over an infinite skew field S.
Conversely, any ring A of (I), (I or (III) is almost right artinian and A/I
ig right artinian for any ideal I 4= (0) of A

Proof. Let 4 be an almost right artinianring such thatfor any nonzero ideal ]
of A, A/I is right artinian. If A ¢ (I), i.e.if A is not right artinian, then 4 is a

non-prime ring with J(4) + (0). By [10, Satz 3], J(4)? =(0). If A =J(4), then
A € () by [10, Satz 5 (I)]. Suppose now that A == J(4). Then J(A) is a right and
left A-module, where 4: = 4J(4) is a semisimple arlinian ring baving an
identity ¢ whick is lifted to an idempotent ¢ &= 0 in A. Hence ™

)= v Oy o m,
where each Mi_is a unital simple right A-mcdule and HA = (0). Since

A =eAe+ J(4), one can easily verify that i/ : = :® M, and H are ideals
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of A. From thia either H - (0) or M = (0). Since M, 4 == M, we can easily see
that if M = (0), then M is an artinian right A-module with the right artinian
factor ring 4/M, in contradiction with the assumption that A is not a right
artinian ring. Hence M = (0), J(4) = H, i.e. J(4)A =(0), therefore
4 A=ede @ J(A), J(AA = (0).

Regarding J(A) as a left .i-module, we get, by the same argument, that
either J(A) is a direct sum of unital left A-modules or AJ(4) = (0). By (4) we
must obvionsly have AJ(A) = (0). It is therefore clear that J(A) musi be a unital

simple left A-module, hence ede is a simple artinian ring. From this fact we
conclude A e(III).

The converse is clear.
~ Let A be an almost right artinian ring with a left identity e. Then

4 o [ef:;e 12;3)‘}_ '

As we have already seen (before Theorem 7), 4 isin general not right artinian.
In this last part of the paper we study rings 4 with a left identity such that
for each non-zero ideal I of A, A/l is almost right artinian, but A is still not
almost right artinian. We call such a ring an RA-ring.

THEOREM 8, Let A be a non-prime RA-ring. Then A is contained in either of
. the following classes: : o

(I} A has an identity, J(A)? = (0) and A[J(A) is a simple right artinian ring.
If N is a non-zero ideal of A in J(A), then N is a direct sum of infinitely many
minimal right ideals of A and J(A) = N@ N’, where N’ is a direct sum of finitely
many minimal right ideals of A. ‘

(I'h A S, M’

» [
whereS and K are fotal matriz rings over skew fields S and K (m, n are
positive integers), respectively, M is a unital left Sm—and unifal right K_ -bimodule,

If N is a non-zero bisubmodule of M, then N is a direct sum of infinitely many
simple right K_-modules and M = N @ N', where N* is a direct sum of finitely

many simple right Kn ~modules.
Conversely, every ring in (I) and (If ) is a non-prime RA-ring.
Before proving Theorem 8, we state the next-
 LEMMA 9. The prime radical of any RA-ring is a zero ring. .

Poorf.Let Abe a RA-ring and N be the prime radical of A.By[1, Proposition?
(see also [5, Proposition 2] for a shorter proof) a module M with a submodule

N is almost artinian if and only if both M/N and N are almost artinian, From
this we have ' ’
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(5) FFor any non-zero ideals B, € of .4, B n C = (0.

Suppose N = (0). Then A is pon-prime, i.e. there are non-zero ideals B, C of
A with BC = (0). Hence by (3), D:=BnC =) but D?=(0), therefore
D S J(A). Hence N ==J(4) and J(A)* & (0), J(A)* "1 =(0) for some positive
integer k. Arguing by centradiction, assume that k> 2. Let e be a left
identity of A. Then

(6) A=cAe @ eA(l —¢)
and with J: = J(4) , )
Q) JE = eJke @ eJ*(1 = e).

Since eA(l —¢) S J we get by (6) and (7) that eJke and eJ¥(1 — e) are ideals
of A. Since eJ¥(1 — e) A = (0), eJ¥(1 — €) is an almost right A-module, therefore
eJk(1 — e) = (0). Hence

(8) C Ok = ek,

Considering the factor rings A/J2 and A/Jk, .we have

'C) J=z/d4 ..+, A4+ H+ J? (@gsr ®, €T)
and

(1) JTl=yAr. 4y A+EK TR (gg0m-e g e J5 1),
where HAC J2, KA S Jk Since J = J . Jk~1, (8), (9) and (10) yield
=X (v, 4) (y;,4) + 2 H(y,A)

isJ
SinceH(yjA) = H(ey.A) = (He) (y;A) S J2. JE=1 = gk+1 — (),
(11) CTE=2 (5 4) (5,4) |

i J

Now, for z = z; a. bi(a beA)wehave:c——a: qwlthg = ay; beﬂf—f-*

By (10), y = ysa; + .. +y,q, + z + s (a,€ 4, ze K, s¢ Jk).Hence,
x=mfy#-=3‘ yea; + .. -Q}—a:l. by, a .‘hecause T, E=T;7.6 =x,.%¢¢€ J. _Jk=(0)
and =5 € J.J% = (0). Comparing this with (11} we get that J¥, as a right

A-modale, is finitely generated. On the other hand, J* (=eJ*¢)is a unital right
AjJ-module, therefore JX = X & R where each R_is a unital simple right ~

AJJ-module. Since J¥ is finitely generated, J* =R, @ ... ® R_. This implies

that A is an almost right artinian ring, a contradiction. Thus J? = (0).

Proof of Theorem 8. Let A be anon-prime RA-ring. Then 4 = J 4 (0)and by
Lemma 9, J? = (0). Since A/J is almest right artinian, it is right artinian by

132



Corollary 3. Let e be a left identity of 4. Then A = ede @ eA(l-e) with ed(i-e¢)
C J. It is clear that eJe and eA(l-e) are ideals of A. Since eA(l-r)Ad = (0), edA(l-e)
must be zero. We have J = efe, in particular, A has an identity e. Now, by the
same argumentas that used for proving {10, Satz 5] we get either 4 e (/) or e (I1).

i The converse is clear.

Remark. Thering A in Theorem 8 is not almost right artinian, but A/f is right
artinian for each non-zero ideal [ of A. ‘
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