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1. INTRODUCTION

Despite their obvious practical importance, for along time nonlinear global
optimization problems have been receiving little attention from mathematiciana.
For one thing, these problems have an entirely different character from local
optimization probiems one is accustomed to consider in mathematical pro-
gramming. In fact, mathematicians like regularity. In the optimization problems
with which they have been concerned until recent years, a local criterion is usually
available by which any optimal solution can be recognized as such. Moreover,
when a given feasible solution fails to satisfy this Iocal criterion, then arule canbe
indicated for proceeding to a better solution. Under certain conditions which
are satisfied in many cases of interest, one can then devise _an iterative

procedure which is guaranteed to eventually lead to an exact optimal solution,
or at least to an approximate optimal solution with any desired accuracy.

‘By contrast, in global optimization problems there is, in general, no locat
criterion for deciding whethér a given feasible solution is actually a global
optimum. There can exist, in fact quite often, a large number of local optima,
and even i one has been lucky enough to find one of these local optima, one
- will. normally have no clue as how to proceed further. Because of these
unpleasant features, nonlinear global optimization problems haveé been regarded
' by most researchers as hopelessly difficult. '

There is, however, in the class of global optimization problems a subciass
which 18 more tractable than the others. Namely, this is the subclass conatituted
by the concave minimization problems  which can -be formulated in the
following general form: :

(P) « Minimize f (z), subject to xeD,



where f . R2—> R is a real-valued concave funclion defined throughout R®, and

Dris o closed convexr subsel of R,

(For the practlcal origin, the applications, and the theoretical mteresi of
this problem, the reader is referréd to [12] and [13}).

Accordmu to a basic property of concave [unctions, eilher the global
qminimum of f over D is achieved at some extreme point of D, or f is
unbounded below over some extreme ray of D (see e.g. [8]). Therefore, the
search for an optimal solution te () can be restricted to the set of extreme
points and- extreme rays of. . To a certain extent this is a nice property which
makes the problem easier, even though the set of extreme poinis and extreme
rays of D is, in general, infinite and may still be very hard to handle.

A first alfempt to solve Problem (P) was made in [12|, where a cone splitting
pmcedure of the type earlier developed in [11] was incorporated into a branch
and bound scheme. Under. certain general conditions, it was proved that this
branch and bound scheme converges fo an optimal solulion.

In the present paper we shall discuss alternative methods f{or solving (£,
which can be called ouler upproximation methods. Basically, these methods
consist in approximating the given constraint set D by s polyhedral convex set
containing it, whose vertices (including the vertices «at inlinily» which deter-
mine the unbounded edges) are known or can be computed practically. Then
the minimum of the objective function f over this polyhedral convex set (which
is attained at one of the vertices) is offered as an approximate optimal solution
to the original problem (P). If the accuracy of the solution attained is not yet
satisfactory, the approximation is refined further, and the whole process of
successive approximations can be arranged so that it will converge to an
optimal solution of {(P).

1t should be noted that the basic ideas of outer approximation methods in
nonlinear programming are not quite new, In fact, these ideas underlie the
cotting plane method of Kelley for solving convex programs [7]. Uuter appro-
ximation procedures have been combined with underestimation technique in the

“algorithm of Falk and Hoffman [3] for concave minimization over a polytope.
\Iore recently, they have been developed in the algorithm of Hoffman [5] and
that of Thien-Tam-Ban [9] for concave minimization over a compact convex
set, Our aim in the sequel is to provide a unifying scheme which would include
these previous algorithms as special cases and, more importantly, could be
applied to a wider class of problems, where the constraint set may be unbound-
ed or even nonconvex of a certain iype.

The paper is divided into 8 sections. After the Introduction, in Section 2
the general scheme of outer approximation is described and the convergence
theorem is proved for the case where the constraint set ) is compact. In Sec-
tion 3, some specific. procedures for generating the sequence of polyhedral
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‘conves sets approximating 1) are discussed. In Seclion 4, the scheme is extend-

ed to the case of an unbounded constraint sct. Section 5 is devoted to progce-
dares for solving the relaxed problems involved iri the steps' of the scheme,
Section 6 deals with Lhe specialization of the metlhod io the case. where Disa
polyhedral convex set. In Section 7 we extend thc method to problems with a
nonconvex conslraint set of the form /)= G\ G, where C is a closed convex
set, and G an open convex set. Finally, in Section 8 we show how the outer
approximalion approach can be combined with other methods to produce
more efficient algorilthms.

2. TEE GENERAL SCHEME OF OUTER APPROXIMATION METHODS

(case of a bounded constraint set),
Recall that the problem of concern is the following
(P) Minimize f(x), subject to x e D,
where f : R?* — R is a concave {unciion, defined throughout R® (hence

- conlinuous), and /) is a closed convexsubset of 1%, Sometimes we assume that
D isgiven by a system of inequalities of the form: )
9 ®) <O (i=1y.., m) ' 3

with g, : R" — R (i=1,..., m) being convex functions, defined throughout R™

In this section, we shall also assume that D is bounded, so that it can be
enclosed in a polytope S1 > D. The problem

()  Minimize f(x), s.t. v € S,
is then a relaxed form of (P), whose optimal value gives a lower bound for
the optimal value of (P). Since 81 is a polytope, (Ql) can be solved, for example
by a search through the vertices of .5'1 and taking the w.fe_‘,rt‘e!t:';tr1 that corresponds
to the smallest valuc of f (the latier problem is not bard, provided, 8, is chosen

properl};). If it happens that xeD (or, more generally, flzh ~ Y for
some y! € ‘D), then x! is obviously an- optimal solgtion to. Problem (P).

Otherwise, x! ¢ D, and using the convexity and closedness of D, we can alwavs

find a hyperplane H strictly separatmg z! from D. That ‘hyperplane gwes rise
t{o an inequality , ]

n@<o o

which is satisfied by all-x € D but is violated by x1. So, by adding (2) to the
sjstem of inequalities defining S, we «cut» away the point 2! and determine a



new polytope S which better approximates D than S, . The process can now

be repeated startmg with §, instead of S, and so on, untit an apprommat(,

solution xX is ohtalned which satisfies the constraints (1) to a sufficient degree

lf,(:c)z Glz | -
g{x)=0 &
x
9 () =0

Pi Azﬁf) = @

Fig.1

. Any method for solving Problem (P) that proceeds aloug this line will be
salled an ouler approximation method. We can formulale Lthe general scheme of
outer approximation methods in the following precise form:

ALGORITHM 1 (D bounded)
Start from a polytope S, D D. Set k=1
a) Solve the relaxed problem
Q) Minimize f(x), st. x&s§,
{for examp-lé by taking the minimum of f over the vertex set of S

Let z* be an optimal solution of (Q,).

: It ¥ ¢ D (er if f(x¥) = f(y)for some y ¢ D) terminate : x* (or y, resp.)
solves (P). Otherwise, go to b).
* b) Consiruct a hyperplane H, strictly separatmg x¥ from D, i.e. such that

it h (x) = 0isits equation, then
h};(a:‘[")>0, hk(:c)gt) YxebD (3)



Form the polytope ) ‘
S41 =8, nia hk(q:) < 0}
Set k <« k-1 and return to a). 1] '

To determine. this scheme completely one must speci'fy how to constiract
the hyperplane # . But before discussing this question, it is expedient to

indicate first the conditions ensuring the convergence of the process, i. e. the
conditions under which one is_assured that lhe sequence 1 X, }has at least

one cluster point @ such that
x €D, f(z)=min {f(x) :xeDh} ~ (4)
A byperplane H, = { z: hk(ﬁ;)z 0} where & (2) = { p¥, z)—!—nk is said
totend toa limit H = { 2 : A(x) =0 } as k — o, in symbols H . §
k=) il By =( p, x) + 1, with
Pt "k
—
[l ™7 o]

THEOREM 2 1. Suppose that the foliowing condition (+) holds.

.

k - - i
(+) Whenever a subsequence{x ¥ } tends to = ¢ D, and thehyperplane H X
. ’ . b4

{ends to H, then H striclly separates = from D. )
Then the above scheme either terminates after finitely many steps with an
optimal solution of (P)or generates an infinite decreasing sequence §{ S, } in the

latter case, the se@uenca { ak ¢ has at least one cluster pomt and ang cluster
point of this sequence is an optzmal solution {o (P),

Proof, Suppose that the process is infinite, and let % be any cluster pmnt

of {x"} e, g z= lim ok {That a cluster pomt exists follows from.

A ity 70
the boundedness of {'ck} Cj S ) Let H T {1: : h (a,) t‘)} with
Il (@) = (p*, x>+“; We may of course assume | L | (Jﬂc),
By hypothesm - .
, | 0 < B @Ky =(pF, )+
“hence S - . _ |
- ' _ﬂkﬁ.— (p¥, xk)t ' L - (3)

Further,

Fe@ = (pF, @) 4, < 0 (¥z & D),

.
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hence for any point z° € D: _

n}é"ﬁ.“{Pks'xo)' (6)
From (5) and (6) it follows that the sequence { n, } is bounded. Therefvre,
by-taking a subsequence if necessary, we may assume that

. p’\y_bp,-"’qu-‘—*ﬁ |
ze "H “tends to H = - { R(x) =0} with h(a:) (P.x) 4 m-

. We contend that x e D. Indeed, if it were not so, we would have in view of
condition (v}, .

-

@ =0 - - (D)
But since for all [ > k,, =le sf C Sk, it follows that b, (x!)<C0.Hen-
ce tixing v and letting I = k!-l » M= oo, we get hy (a:) 0. This in turn
implies, by letting v — oo, . :

- R (:r:)
contradlctmg (7). Therefore, = & D, and we have -

f @ > min { @ :xeD}
But since S, © D, f(a: ) mm { f(=): veD } and hence,

f(:c )—-»f(a:) :mm{ f(x): xe D}, as was to be proved. [J

Remark 2.1, Let D be gwen by a system (1) and let
o S g{x) = max g, (@)
: 1_1’ -
Since ever3 9 () is continuous (as a convex funclion which is finite throughout

R™My, the functmn g(z) is contmuons Cleally
D={z:g)<0)}

When Lk\ — T we have, by contlnmty, g(x' ") L g( T But as proxed above.

reD,ie. g(x) < 0. Hence, given any ¢ > 0, we "shall have for large enough v
&y
: g ) <
ke . . : : : o
A point - satisfying this condition can be considered as an approximaté optimal

ky
solution, since it is nearly feaalble, and f(:c )< min {f(x):ze D}

If we want to have an approxxmate optunal solution which is feasxble, then
ky k.
we can find the point y of D that is the nearest to = Y. Since the sel D is

convex, this amounts to solving the convex program

ky,
Mlm:mze hy—=x |, suh]ect to yeh.



Remark 2.2. Close scrutiny of the proof of Theorem 2.1 shows that we have in
fact established a more general fact, namely the following « cutting plane con-
vergence principle » : '

Let D be an arbitrary (not necessarily convex) subset of R%, Let {a:"' Y R™
be a bounded sequence and for every k let h, (x) be an affme function such t{hat’

h(z) <O MeeD, h(ak)>0; ’ (8)
;ﬁj(:ck)<a (] = 1yey k —1). (9)
Assume furthermore, that

kb, — - o _. -
(") Whenever & — & ¢ D and (V) k, (2) - k(x), one must have ki (Z)> 0.
¥ -

Then every cluster point of {x* } belongs to D. _
In the above proposition one can even replace (8), (9) by a weaker condition:
h, (=% < 0 for some z¢ D, hk(x“) >0
‘hj(a:"‘) S 0 for all j <k such that hyx') > 0 for at least N
indices { <7 j, where N is a given natural number. ‘

The proof of the proposition under this weaker condition is almost the
~‘same as before, with only some minor changes. On the basis of this generalized
éutting plane convergence principle, one could, in forming the current relaxed
problem (Q, , /), drop all the earlier cuts hJ. () < 0 (j <'k) which satisfy
hj(n:i) > 0 for less than N indices / < J(i. e. all the cuts that had eliminated

less than N earlier generated points at, i < j). This constraint dropping strategy
is advisable when the number of constraints of the relaxed problems quickly
increases as the algonthm proceeds

3. GENERATING THE ENCLOSING POLYTOPES

We turn to the question of how to construct, for any given pomt xk ¢ D,
a hyperplane H, strictly separating a* from D, such that condition (*) bolds."

METHOD I. (Hoffman [5]). This method requires the prior knowledge of an
interior point z° of D .
2% € ini D,



(so g% < 0) Since ¥ ei D, the line segment |2°, %] cuts the boundary 2 D

of D at a unique point zh o2 gk | thch is determined by solving the equation
in A: 7

gl & (1 — ) @) =0.
Now select any p¥ € 3g(z¥) for this it saifices to take any pF & 39, (z%,

where { =i (k) is an index such thal g, (zF) = max g, (z%)). Let
h (x) = ( Pr,x — ::""_) .
_<'pic ‘)-—(pk .,k>
(so my, = — ( o, zF ) ). Observe thatl by the definition of a subgradlent

gix) - g=F)y > ¢ phoa — 2K ) (v T (10)

In particular, _
g(@®) — giefy > ( pF,2° — ),
hence, noting that g(zF) = 0,g(x®) < 0:
0> g@a’) = ( pk, 2° — &y,

This implies p* = 0. Further, since af — zF = — a (@’ — 2Ky for some > 0,
it follows that . o
hk(x].‘): < P]‘-’:ck__zfc > —_— — ( Pks :L‘O-—Zk >> 0. |

* On the other hand, from (10) we obtain for all x D, i, e. for all x satisfying
gix) <L 0 '
‘ h(e) = ¢ phia— )< g@) — ") <O

-
Thus, the hyperplane H, ={x: k() = 0 } strictly separates x* from D.
Let us verify now the condition("). Suppose that

'/\,.. _ — A -
2 > Te Dy Hy ~H | (1)

: — = ky :
with h(x) = ( p, © » + 1, Sincez " =1, :c°+(1—xk )xk",
. _ ¥ N

R 4 i ) k
0< hkv< i, we may assume ?&kvf relo,t], i é0 2 vz =i 20 (1 =N .

and since =¥ € 3D and the set 8 D is closed, we must have z € 8D. So z ‘is

the point where the line segment [”, @ ] meets 3D, Passing to the limit as”
v —» oo, the inequality h (r) (M2 g D) yields

R@L0MreDd) (12)
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Similarly, the relations fi,(zK)y= 0, &, (v%} > 0, give in “the limit A(z) = 0,
R(T) > 0. But if h(z) = 0, this together with A(z) = 0 would imply A(x°)==0, and
- hience, in view of (12) and the fact 2¢¢ inf ), we would have h(x) =0 (¥a ¢ 1),
i.e. D — H, which is impossible since inf [) <=-(. Therefore Alx) > 0 and this,

' - along with (12), shows that H strictly separates  from D,

Remark 3.1. The previous proof does not need in any way the continuous
differentiability ol g, ({ == 1.0, m) as vequired by Holfman in {5]. 1t is enough‘
* .lo assume that g, are defined on D and subdifferentiable on, ihe boundary
points of D, )

METHOD II (Thi¢u-Tam-Ban {9]). This method was first used by Kelley |7] in
the context of convex minimization. It does not require the prior knowledge of
an interior feasible point, bui, instead, assumes the functions g; {=1.... mto

be continuous throughout 2%, or at least on some open neighbourhcod of D.
. .

Since a* ¢ D, we have g(zk) > 0. Lel p* e ag(x¥), and
hy (@) = (p*, & — Wh) + glak)
(s0 m, = —(p*, xk) g(x*)). Clearly h, (J, = g(x*j > 0, and since )
gy — g(zky -~ (pF, & —ak),
we have for all x e D (i. e. satislying g(x) < ¢
By(@) = (b, x — k) glak) < gla) < 0.
Thus H, = {v:h, () == 0} strictly separates ¥ from D.

. To verify the éondition ), assume that (11), (12) hold. In view of the
continuity of g we have [rom (11).: g (:r“-") — g(x) > 0. Further, since
{xk} S and 8g(5,) is bounded (8], Th. 24.7), by taking a subsequence if
necessaiy, we may suppose piv — p € 9g(%). Therefore, I(x) =(p, & — T)-h
+ g(x) and, as previously, it is easlly seen that h (z) > 0, ‘while ) < 0
for all x € D; i.e. H strictly separates r from D.[]

Remark 3.2, 1) The continuity assumptlon about the functions 9; (z = 1yeees M)
can be weakened as follows:

The functions g;+ R®— (— o, +oo] are convex, continuous relative to a
polytope §,D D and such that for every x € S, one can select for the [unction
g(x) = max g, () a vector p(x} € 3g(r) so that the set {p(), v €8, } is bounded.

i



. :
It can easily be verilied thai the previous convergence proof remains

valid under these assumptions, provided one takes p¥== ple*) in each ‘iteration
k of the ‘Algorithm,

2) in certain problems it may.happen that some of the functions g, are
given in such a form that for the solution of these problems Method 11 is much
more convenient to apply than Method I. For example, let us consider the
problem i

‘ Minimize f, (x) + f,(y), s-L.

- Aa:+By+(:s;;0,!
xiz 0,y >0,

where f 1’ 1. R is concave, f? R' g_, F is convex and A, B are mafirices of
appr0pr1ate orders. Setting
TN ={r>0:3y>04x + By + ¢< 0},
_(a:) = inl {f () Aw + By - ¢ < 0,y 7> 0},

we convert the problem into the following one:

Minimize fl (x) + f, stogx) —t <0,z X,

where the function g is convex, It can be shown that at every & where

g(x) > — oo the subdifferential dg(z) consists precisely of vectors A7¢q, where
q is a Kuhn-Tucker vector of the convex program defining g(x). Therefore,
the application ot ‘Method II to the above problem is relatively easy, whereas
Method 1 would involve solving in each iteration an equation of the form

g(ax? -+ (1 — k) = A 0+ (1 — Mtk — which may be very hard in view
of the form in which the function g is defined.

Remark 3.3. In some apphcahons we may encounter the Problem (P), where
only certain tfunctionsg, (i € I = {1,., m}) are convex, while the other

L (e {1,..., m} ) are concave. That is, only the constraints with indices
i ‘e I in (1) aré convex, the other are reperse convex. Then to apply the scheme
described in Section 2, we can modify the construetion of H as follows.

Letz¥ ¢ D, so that there is iy = 0 (k) e {1,.. m} such that -

gi(wk):>0-
0

COIf i e I (the funetion g; is convex),we proceed as in Method 1 or Method
0

H above.

12



K i, ¢I(the function g, is concave) we construct a cutting plane H, of
o :

the type originally used by Tuy in [11] (and later called « convexity cuts» by
Glover). Namely, assume zX is a nondegenerate vertex of S, (since z¥ is- an
optimal solution of (Q, ), it can be assumed to be a vertex of Sk;aéli'ght pertur-

~ bation, if necessary, will makg this vertex nondegenerate). On each of the n
edges of §, emanating from x* we take a point, say y"’j (/ = 1,..., n) such
]

that %, (y"’j)' = 0. Then /I, is taken to be the hyperplane through y®t,. . .,

13



y®n, Clearly H, strictly separales #® from D, If z* is a degenerate vertex of
S,» we can also use as H, acut of the type proposed by Carvajal — Moreno [2],

However, it is an open guestion whether this ‘method satisfies the conver-

gence condilion (*) or not.

4. CASE OF AN UNBOUNDED CONSTRAINT SET

To extend the previous method to the case wheré the constraint set D is un-
bounded, we must construct a decreasing sequence of generalized polytopes

(unbounded potyhedral convex sets) S, enclosing D

Sl:)SiJ D...DSI{:)...DD

such that the relaxzed problems _
Q) Minimize f(x), s . t. €S,

approximate the original Problem (£) more and more closer, in the sense that
! _ . .
inf {f(x):2xeS } —int {f(z): xe D}

Furthermore, the scheme described in Section 2 must be modified, because

now certain relaxed problems (QL_) may have no finite optimal solution, In
fact, in solving (Q,) we-may discovér an extréme ray of S, ovér which f is
. unbounded below (for thé sake of convénience, wé shall call the diréction of
such a ray an « Opti;nal diréction »). ‘

ALGORITHM 2 (D possibly unbounded)

Select g} interior point i:o of D, and a géneralizéd polytope S‘I o D,
Set k=1, - A

a) Solve the relaxed problem (Qk)' If an optimal diréction w* is obtaineéd
go-to b). If am optimal solution x

. is oblained go to c).

b) Let I, be the haltline emanating from x° in the direction u” (because
of the concavity of f, f is also unbounded helow over I ;seeeg. [8], Th. 8.6).

If Fk — D, terminate : the function f is unbounded below over [). Otherwise,

14



let =% be the -fmint where I, meels 3/). the boundary of D. Construct a support-
ing: hyperpléme ff, to D at =¥ and go to d),

- o) If ¥ e I or f(a¥) = f(x®), terminate : ¥ (or 29, resp.) is an optimal
solution to (P). Otherwise, construct a hyperplane H, sirictly separatiny
z* from 1) and go to d).

d) Let iy, (&) = 0 be the equation of Hk (such that h,l. (:c_o) < 0), Form
the gene:;alized polytope | 7

Sppq =S, N {ah ) <0} : ' (13)

Set k — &k + 1 and return to ak [

-Remark 4.1. Obviously, i ¢) occurs in some iteration it will oceur in all subse-
quent iterations. -

THEOREM 4.1, Assume that for.some o < f(x0) the set {x: a=1[(x)} is
bounded, and that the condition (*) in Theorem 2, 1 holds. Then the above scheme

either terminales after finitely many steps witha finile oplimal solution or a

halftine in D over which f is unbounded below, or it is infinite. In the luiler
case, the scheme generates cither a bounded sequence {x"" bs those every cluster

point x is an opiimal solution fo (P), or «a sequenc'é {uk} whose every cluster
point u is the direction of a halflinein D over which f is unbounded below,

=

The proof of this Theorem resuits from three following lemmas,

LEMMA 4.1. Assume that for some o < £(x0) the set {x:a = f(2)} is bounded.
if {uk} is a sequehce such that f is unbounded below over each halfline

r, = {20 + Mk i >0} and if uf — u (k — o), then f is also unbounded
below on the_halfh’ne F={zx" 4+ Au:d > 0 b

Proof, Take on each r, a pomt y ¥ such that [ gty = . By hypothesis the

hequence {g¥}is bounded 'I‘herefore by taking a subsequence il necessary,
we may assume that the qequence {y* }— converges to some Y. Because of the

continuity of f we then have f(y) = « < f(2°). Since y € I, it lfollows from
the concavity of f, that [ is unbounded below on .[" (see e.g. [8], Corollary

32.3.4)
15



LEMMA 4.2. Under the hypothesis of Theorem 4.1, if the scheme generates an
infinite sequence {:v:'llf }, then this sequénce is bounded and any clusler point of il
is an optimal selution to {P). '

Proof. Suppose that the sequence { ¥ }'is unhounded. Then there is a subase-

quence {w‘r"‘?} such thal | x*v§> v. LetT be a cluster point of the sequence

& , o .
* Y . Since f (xkv)< f(z°), the concavity of [ implies that f is unbounded

£y
v
ky
below on the hallline from x° through x» ~ . Hence, by the previous Lemma, f
is unbounded below on the halfline from x* through /:!?, and we can find on
this balfline a point y such that f(y) < f(x! ). Let U be a ball around y, such
that f(x) < f(z') for all x ¢ U. Then for all large enough v, the haifline from

by

' ‘ , ky
x® through = ~ meets U at some point " such that f(¥ ) < f(z! ) < f (= Y.

‘ k
Because of the concavity of f, this implies that x ¥ lies in the line segment

-

: k
[ze , 45" ]. Consequently, all x ¥ with large enough v lie in the convex hull of

ky,
«° and U. This conilicts with [z * i > v. Therefore, the sequence {- :vk_} is
" bounded. But then the same argument as that used in the proof of Theorem 2.1

shows that any cluster point of {x¥ } is an optimal solution to (P).

LEMMA 4.3, Under the hypotheses of Theorem 4.1, if the scheme generates an
infinite sequence {uk}, then every cluster point u of this sequence is an optimal
direction for (P) (i.e. a direction of recession of D over which [ is unbounded
below ),

Proof. Denote by f‘k (I') the halfline emanating from z° in the direction uk
{(u, resp.). Suppose that I" is not entirely contained in D, and let z be the point

where it meets aD. . Let u = lim > At is easily seen that zX v —» z. Indeed de-
V—roo . .

noting by ¢ the gauge of the convex set D — a° , we have, by the continuity

of g: -

16



2

stnee (o = afemg{ s - ) == 1L Row let by () "\p , == he the wifine 1ndion

defining the supporting hyperp!l.ne H, to D-at X, Here p¥ ;2 0 and sinee p

s normal fo D we mdy assime p¥ e ag(2*) (see e.g. [8], Cerollary 23. 7.1).

Therefore g(x) — g(zF) = (p*, = — 28y for all 2, and hence, by taking 2 = 20
an noting that g{z%) = 0: _
(p*, a°— ¥y < g(x°) <0 (14)

But the sequence {zv} being bounded (because convergent), so must be the

e

ky, : : .
sequence {p '} (see e.g. [8], Theorem 24.7). Thus by taking a subsequence if

k
pecessary, we may assume p ' p € 0g(2).

Let W == [wi .» W' be an (ﬂ—j)—simple‘: with barycentre at z and lying
in the hyperplane H = {a: (p, r — z)=0}. Since {p,z° -——z) <g(J:°) —g(2)< 0,

1

we can choose w” ,...,i2" s0 close to z that

- (pa® —w') <0 (i = 1,000,1)s

y;
Noting that p " p, we shall have for large enough v

o Ky i .
(Ve —wy<o (i =1,s D).
From this an the inequality (.4) it iollows that for eachi = 1' .» It there exists
A = A{) > 0 such that '
- 1;
(p oy +?\.(w—m)—z (p ,;L—zv)+l(p ,w-—.»)—-O
le.h, (%4 A (w'— x%) = 0. That is, the hyperplane H, culs all the n halt-
) : vy

lines from z° through w!,..., w?, resp. But, since u*} — u, for all large en-

ough H. Tk lies in the cone K spanned by the n halflines from a® through

wi, wy w1, Hence r, Ky cuts H .and isnot contamed in the halfspace {x: hy (:c)
feyy

(0} On the other hand for 4 ~ v we have I’ p.CS ucsk C =
v+ -

h, (m)r\<,, 0}. This contradiction shows that the hypothesis that I is not con-
v - A

tained in D is untenable.

Therefore I' < D. Since f is unhounded below on each I‘k, it follows from
Lemma 4,1 that f is also unbounded below on I'. [J
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Remark 4.2. If the constrainls are linear (e D is a polybedral convex set),
it is not necessarv for slarting the algorithm tc¢ know an interior point of ).
‘This question will be discussed later, when we specialize the algorithm fo the
case of linear constraints (se¢ Section 6),

-

5. SOLVING THE RELAXEDN PROBLEMS -

The relaxed problem in step &k + 1, QA+1), dltiers from that in step k,
(@), only by an addltlonal constraint, Therefore, any reasonably efficient
method should exploit this fact by using the information obtained in solving
(Q,.) for the solution of (Q,, ,).

Since a problem (Q,) is the minimization of the concave tunction f over a
(generalized) polytope S, one way to solve it is to take the minimum of f over.
the finite set V consisting of all vertices and all unbounded edges of §,.. For
k =1, the polytope §, -s chosen to be simple enough, so that V, can be

considered as known or easily computable (usually D < R% , so one can take

SI'= R i D is unbounded, or S1 ={ze R{{__:ij‘ < ¢} where ¢ is
sufficiently large, otherwise). Thus, the question is now reduced to finding a

more or less efficient procedure to derive V, , from V.

Let us first consider the case where D is bounded,

The following properly is basic for both methods to be presented.
LEMMA 5.1, Let S be a polylope with vertex set V. Let h(x ) < 0 be a new linear
consiraint, and let V' be the vertev sef of the polytope

S=8n{zx:hz) <0} :

Then any vertex v € V' \ V must be the infersection of the hyperplane h(xz) = 0
- with an edge {u, w] of S, such that h(u) < 0, h(w) > 0.
Proof. Since v & V', there are among the econstraints defining S n linearly
independent constraints binding for v. Further, since v ¢ V, one of these n
binding constraints must be h(v) = 0. Let L (v) = 0, i e I, (| I|==n — 1) be
the remaining n — 1 binding constraints. Then

‘Ez{sz:II.(:v)F—_:O,ieI}

is'a face of S, containing v. We cannot have F = {1}, for then v would be a
vertex of §, i.e. v € V, Therefore, dim F =1, and F is an edge [u, w] of §, such
that v e [u, w], but v » u, v == w. The latter implies h(u) = U, A(w) == 0. Since
h(v) = 0, we must have (). fi(w) < ¢, as"was to be proved. []
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On the basis of this Lemma, two allernative methods can be used for
deriving V',  IromV ., ,
METHOD 1 (Falk-Hoffman [3], [5]).

From Lemma 5.1, it follows that if we denote

Sprr =S N {RE) > 04

then for any point v § V, wehave v eV,  if and only if h (v) =0 and v is

a vertex of §k~l—1 neighbouring to some vertex w ¢ Vk such that &, (w) > 0.

(Indeed, by the previous Lemma v lies on some edge [u, w] of Sk’ such
that w € V, A (w) > 0). '

Based on this remark, Falk and Hoffman proposed the f'ollowing procedure
for. deriving V,_l.+1 from Vk' ‘

Take any vertex w € Vk with hk(q)) > 0. Considering w as a vertex of
Sk+1=SE n {hr(z) >0}, |

generate all the vertices v of 5, , that are neighbouring to w and satisty
hk(v) = 0 (this is done by performing pivots on the simplex tablean correspond-

ing to the verfex w of §k+1)° Perform this procedure for all vertices w ¢ v,
with &, (w) > 0. Then the set of all different points » that can be obtained in
that way are the new elements of .Vk+ 4 (the old elemenis being all those ele-
ments of V, that satisfy i (x) < 0).

This method requires [orming the simplex tableaux corresponding to all
the vertices w € V, with h!‘_(w) > 0. This may be computationnally expensive,

since the simplex tableanx will increase in size as the élgorithm progresses,
~ METHOD II (Thiéu-Tam-Ban) [9]).

An alternative method utilizes the observation that, by Lemma 5.1,
v€V, ., \V, il and only if v is the intersection of the hyperplane h()=10
with an edge {u, w] of §, such that h () <0, hy (w) = 0. Theretore, to find
all the elements of Vk+1 \Vk one c¢an consider all pairs u, w € vV, with
h,(u) < 0, b, (w) > 0, such that [u, w] is an edge of §,(i. e.such that n— 1 line-

arly independent constraints are simultanecusly binding at u and »), Then for each
of these pairs, we take the point v on the line segment [u, w] such that b, (») =0,

19
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Since the verification that [u, w}]is an edge ol S, (or, equivalently, that v
is a vertexof S, /) may be time-consuming, one can simply consider all pairs
1w €V, with £ () < 0, i (w) > 0, such that n — 1 constraints are simul-
taneously binding at u and », no matier whether these cofdstraints are linear -
independent or not. Then we may have in general a larger set thanV ., which
will require a bit more computations to perform when finding the minimum
ol f over S, .

checking the linear independence of certain systems ol constraints.

but -the cost to be paid for this may sometimes be less than

Turning to the geperal case where D may be unbounded, we observe that
any unbounded cdge of a polyhedral convex set may be viewed as an edge join-
ing an ordinary vertex lo a vertex at infinily. With this observ_ation‘in mind,
the above method can be extended to the unbounded case inthe following way.

Without loss of generality we agsume S, < RY. To each point x € S, let

n+1

us associate the point w(x) e RTH where the ray from 0 € R through

x, 1) e R’l+1meets the n-simplex.
+ P ,

'z, = fene R e, + oo +t=1}

To each direction of recession u of § let us -associate the point n(z) & Rﬂ:ﬂ

L
where the ray from 0 ¢ R"™! in the direction (u, 0) meets 'Z.O . In this way there

"is a 1 — 1 correspondence between the points and directions of recession of
§, with the points of the polylope =(S,) C Z,.

A“vértex (x, t) of =(§,) corresponds to an (ordinary) vertex ft- of §_ if

t = 0, or to a vertex at infinity (an extreme direction x) of Sk if t = .0. Further-
more, if .S, is defined by the inequalities

xeSl,hi(x)=(pf,w>+nig0 (i=1, e, k — 1}

tHen (S 1) 1s defined by the inegualities

@t enS) Fi@h = (plhayfut<0 (@=L, k1)

Denote by W, the vertex set of n(S, ). Since the polytope (S ) obtains from

k1
n_(Sk) just by adding a new constraint, Wk_.l_bcan be derived {from H-”I_ by the

method presented ahove_. Therefpre, 14 the set of vertices and extreme di-

k+1?
reclions ol Sk+1' can be computed when VP and the new constraint are known.

T20 ’
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6. CASE OF LINEAR CONSTRAINTS

An inferesting feature of the general appréachrdeveloped above is that .
when specialized to the case where the constraints are linear, i. ¢. the set D s
a polyhedral convex set, it yields a finite. algorithm. In this seclion we shall
discuss this specialized algorithm, which is due to T. V. Thiéu (for thc case
where D is bounded this algorithm was first developed in [9]).

Consider Problem (P) in which the set D is a polyhedral convex set given
by the syslem:

gl@y =(d, &) ~a, <0 (=1, oy m) - (13)

Let us apply Algorithm 2 to this problem, using, {or example, Method 11

for the conslruction of Hk‘in each iteration k. Because ol the linearity of the

constraints, we can avoid the usc of an interior point % of D by 1n6(1ifying
step b) as follows.

Suppose that ufis an optimal direction of the relaged probiem (Q,). Since

the recession cone of D is merely the cone :

(a, 0y <0 (@ =1,.., m), - (16)

in order to test whether u® belongs to this cone it will suffice to ook at the
inequality : : 7
“max {(al, u®): {=1,., m} <O 1

If this inequality holds, u* belongs to ilLe recession cone of I, and hence the

algorithm terminates : uk is a direction of recession of /) over which f is

unbounded below. Otherwise,

aik, uk) =max (ai, uk) > 0, : {18)
( ) =

and so by taking |
i
| h, (x)={(a k) —'“i‘,,’
the inequality h]_ (x) € 0 will exclude u* from the Tecession cone of the genera-
lized polytgpe Sk—f—l te be formed in step d).

Further, in step ¢) if x, & D) then

g, @)=max g (zF)>0 - (19) .
& i
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and the affine function defining the hyperplane /f, Lo be constructed is
h @) =", © =) —g; &),
ek ky : . vo alfine. ok — ok o .
with p* & agz.k(x ). But since the functions g, are al['n‘lc, pY = a", and henece,
hy (@)= y, (.1) : (20)

* Thus, every function hy genelated during the algorithm coincides with one
of the functions g, that define D'(see (15)). But, as will be seen later, all these
_funciions hk (k = 1, 2,,,,) are distinct. Therefore, the algorithm will involve at

most m iterations, and no interior point ¢ of D is needed (in the case where

g; are convex x0- was needed to ensure ‘the convergence of the algorithm
when step b) occurs infinitely often).

We are léd "to the followmcf specialized algorithm for the case of linear
constraints,

ALGORITHM 3 (linear constraints)
Select a generalized polytope S enclosmg D.

Find the set Vi of vertices and the set V;] of extreme directions of Sl-‘ Set
k=1
a) For every direction u € Vz check whether f(x) is unbounded below over

the halfline emanating from x! in the direction u (where 2! is anarbitrary point

of § ). If such an extreme direction, uk | exists, go to b), Otherwise, go to c).
byIf (af ,uky<C 0 (i = 1,.., m), términate: the problem has no finite

optimal solution and u* is a direction of récession of D over which f(x) is
unbounded below,
Othérwise, compule i, = arg min (al, uk).
- i
Go to d).
¢} Find '
= arg min {f(x) 1 x e V}c}

It (a , T ) —a L 0 forallig {z terminate: =¥ is an optimal so-

FANY
lution of the problem. Otherwise, fmd

, ik
i, =argmax {{(a, x ) — «}

g™
fite



Go to d).
d} Form the new generalized polvtope

S =5, niz(db ay— %, < 0},
Find the set ViH' of vertices and the set \-’z+1 of extremé directions of Sk_}‘i.
Set k «— &k 4 1 and return to a).
THEOREM 6. 1. The above algorithm lerminales after at most m iferations,
Proof. We have .
Sk:{x:giv(:r.)(\(}} (=1 k-1
But the functions gl.l, e gr.v. «. are all different, because if (Q,)hasan optimal

solution &* then
(al"», v —a, > 0, (a‘l'*, 'y — ay < 0 (v = H),

while if (Q) has an optimal d_irecfion u, then

(a.“', u’y > 0, (alu, 'y 0 .E(v > M),

(the latter inequality simply expresses the fact that u¥ is an exireme direction
of S,, hence a Tecession direc?tion of Sii for v > M). Therefore, we must
terminate after at most m iterations. []

Remark 6. 1. The above Algorithm 3is quite‘ different from the recent algorithmn
of V.T. Ban {1]. It aiso differs from an earlier algorithm of Falkand Hoffman
[3], who treated only the case where the constraint set is a polytope, The
difference is in at least two points: 1) the method for deriving Vk+1 from Vk;
2) the subproblem to be solved al the iteration k.

In Algorithm 3, this subproblem is min {f{z): v ¢ Sk }, while in Falk-Hoff-
man’s algorithm it is min {Fi: {x}: @ & D}, with F' (x) being the convex envelope
of f over §,. Since min {Fk‘(:r). xes, b z."min fx): x e S, {, we have
min ifx): v e Sk} < min {FL_ @):x e D} < min {f(x): x & D}. Thus, the
subproblem in Falk-Hoffman’s algorithm is in general a finer approximation
to (F) than the subproblem in Algorithm 3, bul the latter is much easier to
solve. '

7. CASE OF ONE ADDITIONAL REVERSE CONVEX COXSTRAINT

It turns out ‘that the above method can be extended to certain problems with
nonconvex constraint sets. In this section, we proceed to show how the method
can be modified to soilve Problem (P) when the consiraint set [J is of the form

' D = C\G 21)
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waere C is a closed convex set given by

={rig (2)<O0} (i=1,.,m) (22)
and G is an open convex sel: - :
G={x: I g <0 b (23)

g;: " — R (i = 1,..., m -+ 1) being given convex functions.

Note that problems of this kind have been considered earlier, e.g. in [4], [13].

For the sake of simplicity, we shall assume that G is bounded. From this
assumplion it follows that any hallline " C has an unbounded part in D,

Since the _convergence of convexity cuts of the type described in Section 3
is not assu_red, the idea is to use jusp the surface Ims1 (3:") = 0 to separale
any point r € G from the feasible sel D.

The algmxthm then looks like the following,.
ALGORITHHM 4 (one additional reverse convex constlamt)

Take a point a? g int D and'a generalized smaplex 6 oG Set k —1

a) Solve the relaxed p1oblem
@) ~ Minimize f(x), s.t. @ 68, \ G.

It an optimal direction u* is obtained go to b). If an optimal solution =¥ is
obtained go to ¢). '

b) Let F be the halfline emanating from 20 in the direction u”. If F CC
terminate: the fanclion f is unbounded below over D (i ndeed F hasan unbouudw

ed part in D). Otherwise, let z% be the point where '), meets aC, the boun-
dary 01 C. Construct a supportma hyperplane H to C at =z and go to d).

c) It ¥ e € or, f(zF) = f(a?), terminate : 2% (or =¥, resp.) is an optimal
solution-to (). Otherwise construct a hyperplane # strictly separating z*
Irom € and .go to d). - |

«l) Let ;hk(x) = 0 be the equation of H,, such that hk(mﬂ) < 0. Form (he
géneralized polytope . :

Sepr =50 foth, (%) < 0}
Set I — k41 and return to a). [J '
Obviously this Algorithm reduces to Algorithm 2 when G = % (s0 'hat C= D).

By exactly the same argument as that used in Seclion 4, one can ecasily
prove for this Algorithm a convergence. theo.ent identi:ai to Theorem 1.1.
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The implementation of this Algoritlin requires obviously the availability of
& finite method for solving the subproblems (Q,)- Therefore, we now cxamine
how these sufaprohlems can be solved,

First note the [ollowing property which is an immediate corollary of
Proposition 2 in [13].

LEMMA.7.1. T he sef co (S, \ G) is a polyhedral convex sei‘ whose extreme direc-
tions are extreme directions of S, and whose vertices are endpoinis of sels of
the ]‘orm co (E '\ G), where E is any edge of S, .

B

Thus, the extreme directions of co (Sk N G) are the same as those. of
SA_, while the vertices of co (Sk \ G) lie on the edges of Sk . Furthermore, &
being bounded, any unhoqnded edge of Sk has an unbounded part in S_‘R \ G.
From these results and Corollary 1in [13], we see that every subproblem (Qk )is
equivalent to the following \

() Minimize f(x), s.t. v € §)

with & — ¢o (S, "\ G). Hence to solve (Q}) it suffices to investigate the set
W), of generalized vertices of , i.e. the set W, of all vectors (x, 1) or (u, 0)
where a is a vertex of S’k ,» u an exireme direction of S",_. If for some (ak, 0)

e W, , the function f is unbounded below in the direction u® then u* is an
optimal direction of Si;’ hence an optimal direction of S]__\ (r. Otherwise, lat

2% be the vertex of S’k with smallest value of f:then x%is an optimal solatien

of ().

—

In this way the question is now reduced to deriving WAH from W,

From Lemma 7.1 we can derive

LEMMA 7.2. A poinl @ € Sk is a vertex of S}, if and only if it safzsftes either of
the f ol!owmg conditions ;

(i) v is a verlex of S and x ¢ G;

(i) x is the infersection point of G mu‘h an edge of Sy having one endpom
(or an unhounded prty in G,

Proof. By the previous Lemma, a point x ¢ S, is a vertex of S, if and onlyif x is
an endpoint of a set of the form Co(EN G)w nele Eis an edﬂe of &, . But, because
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of convexity, the only case where co (E\ ) does not coincide with E is that

~

in whith F has one endpoint (or an unbounded part) in G, and'in that case the
point where E meets 8 G is just an eundpoint of co (£ G). The Lemma then
follow; immediately from this observalion. []

Denote by V, , V}c the vertex set of § , S}‘_'resp.

On the basis ol this result, one can propose the following procedure for
deriving V;.c+1 from V;{ and _V}_, assuming that Sl' is bounded (the case of an
unbounded $, can be treated using the method indicated at the end of
Section d).

a) Derive the set V from V, using Method II of Section 3.

E+1
b) For every pair u, w such that e V', Vie,weV, . and
I (0 Fpiq () < 0, compute the point v of the line segment fu, w] where
g!n~%1 (U) = 0.
¢) Add to Vi rall v € Vk+1 / V3, such thatg . 4 (v) >0, and all v th‘ét
are obtained from b). [
Remark 7.1. If the functions g, (z) (i =1, .. m) are affine (i,e. Cis a polyhe-
dral convex set) Algorithm 4 is finite, because each function /i, (x) coincides
'"just with one of the functions g, (x), ..., gm(;c). In this.case one can also use

the following variant of Algorithm 4:

ALGORITHM 5.

Stage 1: Apply Algorithm 3 to the problem without the additional reverse
convex consiraint, i. e. the problem _

Minimize f(x), s. & g; ()L 0(=1,..m) @4
(here g, are alfine) ' :

It an optimal direction is obtained for this problem, termxnate this is also
an optimal direction for (P). _

Otherwise, go to Stage 2. )

Stage 2: Let S, be the generahzed polytOpe oblained at the completion of
btage 1.

a) Solve the relaxed problem

Q) Minimize f(z), 8.t. x&§, \ G

oblaining an optimal solution ¥ . If g, (%) L 0(i= l,ms, m) lerminate: z~ i

an optimal solution of (F). Otherwise go to b).
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b) Compute j, = arg max {g, (2% ): i= 1., m}. Let

S._; =8, n{r: q (1)4((}j

Set k«— k-1 and re[urn to a).

8. COMBINING THE OUTER APPROXIMATION APPROACH WITH OTHER METHODS

An apparent disadvantage of the ouier approximation approach is that the
number of vertices of the enclosing polyhedral convex set S}; quickly increases

with k&, On the other hand, other available methods for solvinz ()} also have
their own difficulties. It seems that a combined approach would enable us to
partially circumvent the difficulties inherent fo each method when used
- separately.

Aside from the above ouler approximation approach, there are tw> other
approaches to solving (P): the «¢cone splitting and cutting» method, and the
¢ cone splitting and bounding » method.

In this section we shall examine how these methods can-be improved hy
combining them with outer approximation algorfithms.

1. CONE SPLITTING AND GUTTING APPROACH

This approach relies upon the lollowmu notion of cut, already mentioned
at the end of Section 3.

Let M be a cone in R" with vertex at x” and with exactly n edges; let y be

a real number such that f(z") > v. Then, by definition, the cut H(y, M) is the
hyperplanne passing fthrough the n points where the edges of M meet the’
surface f{x) = y; H~(y, M) is the open halispace determined by H(y, M) that

contain x° (by convexity, f(x) > v for all @ ¢ M ~ H=(Y, M)).
Now the «cone splitting and cutting» method for solving (/) can be
described as follows,

ALGORITHM 6.

Select an interior point x° of D and n + 1 rays emanating from %, such
that any n of these rays generale a solid cone in R, (by (ranslating if necessary
. one can assume x° = (). Let @1 hé Lhe collection of n -}-1 cones constructed '
this way, For each of the n 4 1 rays constructed find the poin! where it meets
3 D, the boundary of [}. Let 2! be the best among all these points, let % =f(x).
Set Ik = 0.

a) I R, = (&, stop: x¥ is an optimal solution to (£). Otherwise, go\to b).

b) Take any -¥ € 72, and constract the eut H («,, ¥), then find the point
of D n M that stands the farthest beyond the cut // {u. » M) (this amounts to
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mazimizing a lincar funclinn over 1hc convex sct ) A M), If no such point
exists, sel 22, <« 24, N1/} and rvetura to a). Otherwise, let y be the point *¥ound,
Go to ¢).
¢) Let vi,..., v he the direclions of the n edues of M, Theny = Z ?\ v,
) e’
with I < {1, .., nf, k>0 el) Foreach i ¢l consider the cone M,

whose set of edges obtains Ifrom thal of M by replacing the edge of direction of
with the ray of direction y. Let R . = R \{M}p v iM icl}, o

k+1
in {f (y), @ b &t = argmin {f(z ), fys). Set k — k + 1 “and return to a). []-

Fig. 3

If I is a polyhedral convex set, then in the above algorithm one can start

from a nondegenerate vertex 9 of D (pietcrably, a local minimum of f over

D). Then ‘R, consists of a single cone, which is the cone vertexed at %, with

exactly n edges passing through the n vertices of D neighbouring to x” In that -
case, Algorithm 6 has been proved to be convergent {6]. It is conjectured that
in lhe general casc we are considering, the convergence is still ensured. Anyway,
the cardinalily of ®,, i. e. the number of cones to be cxplored, may quickly
increase. To circumvent this difficulty, we can -modify the algorithm as follows.
Siage L. Apply Algorithm 6, with a) modilied in the folloWing way ‘

a) It R, = (7, stop: af is an optimal solution to (P). 110 < | R. | = N

(where N is a prescribed integer), go to L), 1f' ] .]_ I = N, co to Stage ,g
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Slage 3, —

ba) Take any M ¢ R, Apply “ng;'ithm 2 to the sabproblem

Minimize f(x)p st v e A M N H (2, V) - : (25)
If' the optimal value of this subproblem is ~= Ypr 80 to b). Otherwise, let @ x be
an optimal solution of the subproblem. Let &% 1 =4,y = fexb+1y, Set
k< k-1 and go lo b). : -

b) If R, \AM} =, stop: 2% is an optimal solution to (/). Otherwise, set
R, < f;QL_ N\ {M} and return to a). '

('\Ioté- o the process of solving the subproblem (25) by Algorithm 2, as
goon as an approximate solution is obtained which corresponds to a value of
f at least equal to v, then stop solving the subproblem and go to b)).

H. « CONE SPLITLING AND BOUNDING » APPROACH

In this approach (see [12]) two basic operations are used:

1) Cone sph[lmq Given a cone M veltewced at 2% and having exactly n edges
passing throuuh vl, .., vwe select a longest edge [0, v/] of the simplex
(o1, ..., o" |, Let u be the midpoint of this e'(ige, and’denote by Moy (M(j), Tesp.)
the cone whose set of cdges obtains from - that of M by veplacing the edge
through o (through v/, resp.) with the ray from 20 fhrough u. Then 7 is split
into M(i), M(J.).

2) Bounding. Given a cone M vertexed at 2% ¢ I, and having exactly n
edges, such that any ol these edges intersects D in a nondegenerate line
segment, we associate with M a number’ M(M} < min {f(r) xeDn M} which’
is defined as foltlows. i

() If for every edge of ¥ we have f(lr) ;> f(x%) for all x on this edge,
then set : -

WMy = f@a°) o ' ‘ (26)

(iiy Otherwise, there is al least one edge of M such that f is unbounded
nelow on this edge. If this edge lies entirely in D, the algorithm stops., Assu-
ming this is not the casé, let [x, 2] be the interseciion of 1) with thig edge.
Then there is a constraint g, such that

g;(@%) <0, g, () =0.

— P

(*Y We assume that all ¥' lie in a hyperplane which is kept fixed throughout the
Algorilhm, '
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Select any f g9 Y, ( 7) and consider any polyhédral convex sel S suca Lhat
DnMIST{weM:{t, z—5) < 0}
Then set
(M) = min {f(x): > & Sk
(Note: if M has been obtained by splitting some cone M (for which U(M") has
been computed), and if (M) > min {f(x): x & S} then we let (M) = W(M").
The «cone splitting and bounding » algorithm can now be described.
. i

ALGORITHM 7

Start with a colleetion ,/?{1 of cones vertexed a! ¥ such that:

1) Each cone ¥ < M, has exactly r edges, any of which intersects D in a

nondegenerate line segment.

2) Any lwo of the cones of Al intersect in a joint face.
3) The union of all these cones covers /7.

For cach edge of ihe cones, find its intersection point with 8 D. Let a! be
the best among all these points, Let y1ﬂ=_ f(z1).

Compute M(M) for each M e _/]tl, Set k= 1.
a) Delete all M & M, with (M) > y,. Let @, be the collection of all
remaining cones

if R, =, stop: x* is an Optfmai solution. Otherwise, go to b),

b) Let 3, = arg min { (M) : M € R, |- Split M into two subcones and
compute (M) for cach of these subcones. These splitting and bounding opera-
tions generate some new rays contained in M . {for example, the new edge of
the new subcones is such a ray). For each of these newly generated rays tind
- its intersection point 1: with, 8D, If for a certain ray this point does not exist
i, e. the ray lies entirely in D) and f(x) < f(2°) tor some z on this ray, stop:
the objective function is unbounded below over this ray. Otherwise, Jot 251 be
the best among a* and all the points fv\that correspond to all the newly gener-
ated rays. Lety, , , = f(aFt1), Myrq = @R, N AM Dy {MA M ,h Set
’f <« k 4 1 and return to a)

THEOREM 8.1. Assume thal for some « < f(x®) the set {x:f(x) = o} is.
bounacrf Then the above Algorithn either lerminates after fzmte[y many steps,
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with un optimul solution or « kdilin: i 1 over which | is unbounded below, or
it generates an infinite sequence { ¥} such that
fa!y \Jnln {fay:x e DI
Note that this Theorem improves upon a similar result in [12], where we

assumed a stronger hypothesis, namely that the set {x: fi2) > f(z%) } was
bounded (see Lemma 4 of {12]).

- For the proof of this Theorem, we need the following Lemmas which have
been established in [12] and [10}. '

LEMMA 8.1. The splitting operation is exhauslive, in the sense that for any mfz-

nite decreasing sequence of cones { M, } (i. e. any sequence such that MA_ is a
q g+1
descendant of M, * M, L C M, ), the inlersection of al M , isaray
q g1 q q
LEMMA 8.2. The bounding operation is consistent, in the sense thal for any infi-
nite de:reasing sequence of conces { M, } whose intersection is a ray not entirely
. q
contained in' ) we have y, — RCM, )~ 0 as g — eo.
q . q

LEMMA 8.3. Suppose T* = lim T > — o If the algorithm generaltes an infi-

k—>oo

nite decreasing sequence of cones M & whose intersection is a ray I’ D, then the
q - .

minimum of [ over I' is achieved al the origin x° of TI.

LEMMA 8.4. Assume thal /';Jr some « < f(x®) the set {x:f(x) = «} is bounded,

(= =]
Then for every cone M &€ U N R, we have
p=1k=p
inf {f(x):xeD'n M} >y = lim vy,

. fe—rce

Proof. Since inf {f(x) : xe D n M | 2> (M), it suffices to show thatif y* > —oo

then W(}) > y* Observe that the process being infinite, at least one member,

of R, has infinitely many descendants. Let it be M, Tor some k; (i. e. letit
1

be-split at some step k ). Then at least one of the two subcones of M, has
‘ 1

infinitely many descendants; let it be M, for some ky >k, . And so on.
2
Thus, there exists an infinite decreasing sequence { M, L. By Lemma 8. 1, the
‘1

intersection of this sequence of cones is a ray /. Suppose for a moment that
I D. We claim that there is one g, such that

f@) o fa ” @)
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for any x on any edge ol 'Ui' . [ndeed, if this were not so, then for cvery ¢
Yo -

the fanclion f would be unbounded below on some edge .of M, . Then for
: . 9

every q, we could find on some edge of M, a point y9such that Fy?)=u
. 4 o
Since by hypothesis the set {y¢} is bounded, it has a cluster point y*. Obviously,
g* < T, and since, by the continuity of f, f(y*)== « < f (x9), it follows that f
would be unbounded below on I, contradicting Lemma 8.3, Therefore, it I Z” D
then (27) must hold for all x on every edge of some ¥

e This implies

. q[] )
HM & Ye= f @0) = v K (sge (26)), and hence M & § R, . Since this contradicts
: Yo - do . 40 Zo
the definition of M/, , we conclude that /" is not contained in D. But then, by

U]

Lemma 82. y, —W (M, )—0,-ie u(, ) =»+4*. On the other hand, by the
q q q ]

definition of M, , we have W (M, )< W (M),. since M &R, . Therefore,
'q : q q

W(M) > y*, as was to be proved, []]

Proof of Theorem 8.1. Lemma 8.4 shows that, under ihe -conditions of -
Theorem 8.1, the candidate selection (i.e. the selection of the cone to be split in
each step)is tdltimately complete in the sense of [12]. Since the splitting operation
isexhaustive by Lemma 8.1,and the bounding operation consistent by Lemma 8.2,
the conclusion follows from the convergence theorem established in [12]. [

As shown in [12], a weakness of Algorithm 7 is that the maximal number
of cones to be stored (the maximal cardin'ality of Qk) may quickly increase
with n, the dimension of the space, ‘and that to speed the convergenece it is
 important that the bounds H(M) be sufficiently tight. In particular one should
try to avoid having L (M )= — oo whenever possible. All this can be
done by applying the outer approximation method to the subproblem
min {f (x): ®eD ~ M} and by taking as I (M) a reasonably good approximate
solution to this subproblem. Since D n A is a relatively small piece of D, it is
expected that solving the corresponding subproblem will not be hard ; further-
more, since it is not necessary to attain a high accuracy, only a reasonable
number of iterations will suffice.

e

To prevent an excessive growth of 2, one can also modify step a)in -
Algorithm 7 as follows,
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a) Delete all M e #, with & (M) v

remaining cones.

p- Let &, be the colleclion of all
If R, = @, stop: x*is an optimal solution, -

If 0<| R, i< N, go to b),

If | R (>N, go to'c).

c) Let M, =arg max M (My: M e R, }» Apply Algorithm 2 to the problem
Minimize f (x), s.t. xe D N M. (28) -

-

 If at some iteration, an optimal solution to the curren{ relaxed problem is
obtained with the corresponding funciion®value > Y,» then delete M, . Set

k
R, \A{ M}, }<—- R, and return to a).

0therw1se an optimal solution a*Tl to (28) is obtained such that
f(mk+1)<yl 1hen let A, =R\ {3} 'Y;+1—T(~L"+‘) Set k« k41
~and return to a), :

(Note that here and else where in this section, the « teasibility » of apoint
is understood within a given error tolerance).
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