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1. INTRODUCTION

Since the appearance of Tuy’s first paper [6] on concave programming,
optimization problems involving the global minimization of a concave or,
more generally, a quasi-concave function, have received a more and more
intensive development. This paper is devoted to the study of am important
problem of this class. More specifically, we shall be concerned with the
global minimization ol a quasi-concave function f (z) over a compact convex
set D. To our knowledge, R.Horst [3] was the first to give an algorithm for
solving this problem. Later, other algorithms for this problem have been
developed by Tuy and Thai {7] and by K.Hoffman [2].

Horst’s algorithm is a branch and bound procedure based on compact
partitions of the constraint set. It requires solving an auxiliary convex
programming problem at each step. Tuy amd Thai's algorithm — which is a
further development of some basic ideas in Thoai and Tuy’s earlier algorithm
[5] for concave minimization over a poljftOpe——uses, too, a branch and bound
technique but incorporates it into a cone splitting scheme. Boundings in this
algorithm are based on solving relaxed subproblems obtained by cutting tiae
corresponding subcones by meanhs of snitable supporting hyperplanes to the
constraint set. '
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This idea of reIaXmg the constraint set by using suitable supporting
hyperplanes plays also a erucial role in the recent paper of Hoffman [2].
But in constrast with the two above mentioned algorithms, Hoffman’s algm ithm
does not follow 'the branch and bound approach Instead, it is an outer approxi-
mation method which generates a decreasing sequence of polytopes, S 2

Sy D §, DwD D, all enclosing the given constraint set and approximating

this set more and more closely. At each step k, the vertex xk achieving the
minimum of the objective function over the current polytope Sk is computed.

If =X happens . to be feasible, it yields an optimal solatien to the problem;
otherwise a sunitable supporting ‘hyperpiane to D is generated that cuts offxk
from S, and produces a new polytope S, o1 giving a better approximation
of D than Sk. :

©

In the sequel we shall develop an algorithm which bears some similarities
to Hoffman’s algorithm, inasmuch as it proceeds according to the same outer
approximation scheme. However, the proposed algorithm differs from Hoff-
man’s in several essential points: 1) unlike Hoffman’s algorithm, it does not
require for its intialization the prior knowledge- of any interior point of the
constraint set; 2) it does not require solving any auxiliary problem in each sfep;
instead, the deiermination of the hyperplané for cutting off x* and producing
S kel is quite easy; 3) the procedure for deriving the vertex set Vk ) of gk+?
from V seems to be simpler than in Hoffman’s algorithm ; 4) when special-
ized to the linear constraints case, our algorithm yieldsa finite algorithm differ-
‘ent from that of Falk-Hoffman [1].

This paper is organized as follows. Section 2 is devoted to a detailed
description of the algorithm. In section 3 the convergence of the algorithm is

prbved. In section 4 several computational aspects of the algorithm are dis-
cussed : finding an initial enclosing polytope S; and the set V, of its vertices;

computing V Jwﬂ- from Vk (k > 1), determining redundant constraints to Sk' Iy
+

In section 5 the algorithm is specialized to the case where D is a polytope and
in the last section two illustrative examples are given.

2, DESCRIPTION OF THE ALGORITHM

We first atate a basic property of quasi-concave function, which will play
a key role in our algorithm. Recall that a function f: R® — R is said to be
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quasi-concave il for any two points y, z € R" and for any scalar h: 0 < A < 1,
we have

fory+ =02 >min{f@)foh

i, e. the min'mun of f over any line segment is achieved at one endpoint of
this segment. :

As an immediate consequence of this definition we get the following
proposition,

PROPOSITION 1. The minimum of a quasi-concave and lower semi-confinuous fanc-

tion f (x) over a compact convex sel D C R® is always attained in at least one exire-
me point of the sef D.

Preof. Let  be any point acﬁieving the minimum of f over D (such a p'o_int
exists becanse of the lower semi-conti-nuity of f and the compactness of ).
Let F_be the smallest face of D containing z . If dim £z = 0, i- e. Fy= {x},
then x is an esireme point of D. Otherwise,  is a relative interior point of
F—, so there is in F_a line segment I' containing x in its relative interior., Let

y and z be the two points where the line containing I' meets the boundary of
D. Suppose, for example, that f(y) > f (2). Then from the above definition
we have - '

f@) > min {f(y), f(2)} = f(2),

which implies that z is also a minimum point of f over D. Further, if
F_denotes the smallest face of D containg z, then dim F_ < dim F; . Thus,

" if dim F— > 0 then we can replace z by another minimum point z with
dim Fz < dim F; . Continuing this 'reasoning as long as needed, we shall

arrive finally at a minimum point which is also an extreme point'of D.

1t follows from this Proposition that the minimum of f over a polytope is
always achieved at one vertex. -

We now formulate the algorithm,

THE ALGORITHM.

Recall that the problem we are concerned with is the following

Minimize f(z), s.t. z& D, - (P



where f is areal-valued, quasi-concéve funption on R%, D a compact convex
subset of R" We shall assume that the function f is continuous and that D is
defined by a system of the form
o ‘ g, @ <0 (=1..,m),
where 'gi are real-valued functions, defined and convex throught
R™ (hence continuous). _
For the sake of conveﬁience, any polytope S > D will be called an
« enclosing i)olytope:. y . . '
Initialization. Start with an cenclosing polytope » S, whose vertex

set V1 is known. ' .

Step k = 1, 2, ... At this step we already have an euclosing polytope S, ,
whose vertex set Vk is known, Let

o ok = arg min {f(r): = ¢ S, } (1
or, which amounts to the same by Proposition 1,
xF = arg min {f(): v eV, } .

a)Ifg (#¥Y< 0 for all i=1,.., m, ie zFe D, stop:

ok is an optimal solution of Problem (P). .

b) Otherwise, let

Ik=?i:gi(.rk)= masx gjr(:::"'),izl’,...,mz.
: 15, js&sm

 Select iy e I, and 4 (=" ) €3, (x¥), the subdifferential of %,

at zF (so a, (zF) is a subgradient of g, at z¥; the existence of such a
k i 7 : k

subgradient is gnaranteed by the continuity of every g; throughout R? ). Set

S -

k+1=8k"r\ a:=<al-k(w"’),w-—x">+giig @) <o), (@)

Compute the vertexset V,,  of § .,  and go to step k -4 1(the question
of how to compute ¥V, will be discussed later).

Rem#rk 1. When solving the problem on a com-puter, it is more convenient
to replace the stopping rule a) by the following one:

Stop, if g, (&%) < ¢ ({ = Lo, m) : )

where ¢ > 0is a given tolerance nhmber.
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From the convergence Theorem to be established in the next section, it
will follow that under this stopping rule the algorithm necessarily terminates
after finitely many steps. .

A point ¥ satisfying (*) is ‘an approximate feasible point and in view
of (1) it can be accepted as an approximate optimal solution. Of course, having
obtained ¥, ome could also compule the projection yk of ¥ on the convex

set D, i. e. the feasible point that lies the nearest to ¥, This would require
solving the convex program .

min {fly—o* I: g, (1) <0 ( = 1,..., m}
" Then
f(a*) < min {f (z) : ze D} < f (g%).

8. CONVERGENCE THEOREM

From (2) we have
Si DS23 L3 DSkDSk+1 D-n
ard
S, =8 n{z:<q (@ hr—ri>o4yg (2/)<0, j=1,.., k—1}.(3)
i b

Observe that S, D D for all k=1, 2, Indeed, let x € D, i. e. g, () << 0

for all {=1,...,mm.Then, xS 1 (see Initialization) and siace a; (x-f ) is a subgra-
J

dient of g, -at z
J

( a; (), xr — 2/ Y+ g; (a:f)gg!. () < 0 for all j = 1,..,, k— 1,hence
i J ’ J
reS, . |
Furthermore, we always have =¥ € §, \' S, ;. Indeed, z¥ ¢ S, by (1). On the

other hand, from the definition of I r it follows that
g, @)= max g, @)>0
k' Lism :
and hence,
K aik(m"‘), xk — gk y 4 % (zky = gik(xk)>0.

This implies in view of (2): ¥ § Spyqe
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Thus, the inequality ) .
R @= (o @), &= ) +yg @)<0

exciudesz* from S PRy but does not exclude any feasible point.

With these observations in mind we now prove our basic convergence
Theorem.

THEOREM. The above algorithm eilher terminates afier finitely many steps,

yielding an optimal solulion, or generates a sequence {xk }, whose every limit point
is an oplimal solution of Problem (P).

Proof. Let 1 = min {f (z):2<D}.Suppose thatat some step k£ we have zk e D.
Then, f (¥ ) > 1. Since, on the other hand, S, D D it follows from (1) that

f (z* ) < K. Therefore, f (x* ) =W, 'and so z¥ is an optimal solution of (P).

Suppose now that tiie algorithm generates an infinite sequence { xk }. We
then have for all &
max g (zF) > 0.
< J

IS jS m
Since {a:k} s S;r and Si is a compact set, we can select a subsequence

{xk }.k €0 and a natural number r such that

ke

xk'— xask —» o and i/, &= r for all k & Q.

0 k

Tleti,seQ and { >s. Then z! .« S_ and consequently, by virtue of {3):
{ a, (°), ol —a° ) + g (=) <O 4

But the function g_ being convex and continuous throughout R*® and the poly-
~ tope SI being a compact convex set, it follows froma known result on convex

analys:ss (see e. g. [4], Theorem 24.7) that there exists a constant K satisfying

fa, I <K forallze S, . Therefore, as s- oo, the first term in (4) tends
‘ o g
‘to zero and we get from (4) & (x) < 0. Furthermore, the continnity of the

function max g, () implies; as ok >z (k - =) ,
1<ism . : Q

max g, (%)< 0.
1IiKm



Thus z € D, and, consequently, f (z) > K. But, from (1) and the fact D¢ Sy

we have f{z®)<C U for all k, hence by setting k& — o, f(z) { L. This shows that
' o Q ®
f(x) = K, and, therefore, x is an optimal solution of (P), as was to be

proved.

Remark 2, The algorithm is still covergent if instead of (2) we set

§k+1=Sk‘f\;x: ( a, (fy,z —ak ) + max g; (%) < 0
Iiz\m

with a, (F)= T2 & q (zf), %, > 0, T= &, =7andaq; (zF)
i€ Ik .

being a subgradient of g, at ¥ | In fact this amounts to treating the system of

constraints g, (¢) < ¢ (i ==1,., m) as a single constraint g(x) << 0 with

g(z) = maz g, (@)

Remark 3. The proof of the Theorem makes use of the continuity
of the functions f and g, on Si only. Therefore, the Theorem still holds,

provided the function f is quasi-concave and continuouson §; , while the func-

tions g, are convex and continuous on § 4

4. IMPLEMENTATION OF THE ALGORITHM

In order to implement the above algorithm, several questions must be
examined : a) how to construct the initial polytope §, containing D; b) how to

find at each step the vertex set Vk of Sk 3 C) how_to identify the redundant
constraints among those defining S, (these redundant consiraints could be
deleted). )

a) Finding S, and V,. To construct the initial enclosing polytope we

compute (by solving at most n + 1 convex programming problems):

uj.=r_nin {o:j txe D} j=1,., 0 (59
. .

M = max{ X mj::ceD (5™

. j=1 .

Then we set

. R
SI=§x:——:ch—l—mjgO,j:I,..-,n; b :rj—MQO . (6}

, j=1
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It is easily seen ihal Sj is a simplex containing D and having exactly .

n -+ 1 vertices
v = (,,1 yeres "‘n)’
UJ:_"(oe.I, SIS BJ-, i g un), =1 ., n

with 8, = M - 2, . Thus, the vertex set of S, is
i=j
V‘I = {Uo, UI, ver g U”}.

If I is contained in the orthant R; (e. g. if the constraints include the ine-
gualities x; > 0,j=1,..., n), it suffices to compute 3 (by solving (5’")) only,

Then

' n
SI‘= :c:xj‘>0,J=1,-.-,H;j§1xj<M )

and the vertices are : 0¥ = 0, v/= Me/, j=1,..,n(efis the j-th unit vector
in RM),

b) Computing V1-+1 from V x+ Suppose ‘we already know the constraints
defining the polytope Sk along with the vertex set Vk of this polyfope. Let Sk+1 .
be constructed as indicated in Section 2, i. e. let Sk+1 be obtained by adding

to the constraints defining S, the following one

R (@)= < a,.k(xk); r — k> ¢ g'fk(m"‘), < 0. 8)
In view of (3), (6), (8), S Kl consists of all x satisfying a_system of linear
inequalities of the form . .
Pi@) <O, j=1., n+k+1, - ®)
where :
%xﬁ:—%+%or~%fmmuzdwqm

Ppi @ =2, +..+z, —M,
pn+1+j(x) =hj (.’L‘) = < aij (:17-’), T ."" x/ ) +gfj(x1)

forallj=1,.., k.
S, [ {z: h(z) > 0}
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and consequently,

'Sk_H—_S Nz h (@) < 0}
=‘Sk f\{a::hk(x) = 0} = S N Hk .

This shows that S

P is a face of Sk . Therefore, every vertex of SJ{+1
is also a vertex of S, and they all lie on H, .
Thus ‘

Visg =V N Hy =V, N\ Vo

Case 2: V; # ¢. For each pair (4, v) with ue V-, ve Vi, we define the

point w = Au+ (1 — A)p with A=k, (v)/ (R (v) — Ry (u)). Then 0<CA <1 and
h{wy="21 hy (u_) + (I — MDA (v) = 0.

So w is nothing but the intersection of the hyperplane-H with the line

segment joining u € V7 and v € V+ Now consider those constraints defining

S+t
pendent binding constraint at w is equal to n, then w is a vertex of 5, , , i.e.

that are binding at w. Clearly if the maximal number of hnearly inde-

weV Otherwise, w ¢ Vk+1.

k+1
i
Denote by ¥V, , the set of all the vertices of S, 4+ ¢ that are generated in
that way. We have:

PROPOSITION 3. If Vi +¢,thenV =V, \ VD v W, .

Falk and Hoffman [1] bave suggested \a rule for finding the vertex set of
S, 11 by performing dual pivots on simplex tableanx. We present here a diffe-

rent rule for generating the new vertices of Sk_H which seems to be simpler
. i

than that of Falk — Hoffman. Our rule involves very simple operations and re-
quires no simplex tableau. Let '

- = {H.E V, : b (0) <0}, V;m {veV, :h(v)> 0}.
Recall that ¥ violates the additional constraint, i.e,

hk(xk)= gik(a:k) >0.

Therefore V}: is not empty. Now it is easy to see that every v e Vk \V;: still

belongs to Sk+1 , hence still is a vertex of Sk+1 . So we have

VANVE =V, N V... _ (10)



Bul, of course, besides the vertices that Sk-l~1 shares with SJ,, , S],+ ma;

have some other new vertices lying on the hyperplane
He={z:h @=0}.

1

“To defe_rmine all these new vertices let us distinguish two cases:

Case 1: Vi =¢,

PROPOSITION 2. If V= ¢, then V'k+1 consists of all vertices of S, lying. on
the hyperplane H, i.e.

Ve ={veV, :th @ =01=V \Vi.
Proof. Since V = ¢, i.e. i, (v) > 0 for all v eV, we have.

Proof. In view ol (10), it suffices to show that every new vertex of Sk+1' ie.
every w € Vk+1 \ V. lies on some edge of S, connecling a veriex u e V
with a vertex v e V;’. Indeed, since w &V P there are among the constraints
defining §, +1 (see () n linearly independent constraints binding for w.Further
since w ¢V, one of these n binding consiraints must be the one that has just -
been added:

il

Ppiits @& =R () <0

Denote by R, the set of indices of n — 7 remaining binding constraints,
Of course, R, C {1,..., n + k}. Let

Z = {x 1p (@) =0, J& Ry .pj(.r)\(,‘ 0, j.'e l1 n - k; \Rk]

Then Z is a face of Sk and w ¢ Z, Certainly, Z = {w}, for
otherwise w would be a vertex of §, . Furthermore, since the cons-
traints P (x) = 0, j € R, are linearly independent, and lel = n — 1 it fol-
lows that dim Z = 1, Therefore, Z is an edge of Sk. If 'z, v denote the two
end points of Z, then they both belong to V.. But, since w ¢ V
fromu, v. Sow=~Au-4 (I —A)wforseme 2: 0 < A < 1.

PR is distinct -

Finally, from the relation

R (@) =%k (2) + (1 = X) b () = 0

it follows that k() . B, () < O, as was to be proved.
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Remark 4. Instead of computing the maximal number of independent
constraints binding for w, an alternative way to check whether w e Wi+l is the
following.

Denote by Nk () the index slet of the constraints of the from (9) that defi-

ne § B and are binding tor both u and v {consequently, for w), i. e,
N, (w)= {j tp(w) =p, () =0, j=1,n+ k}
= {j Pp,@)=0, j ==1,.,.,n+k}

Then, as can easily be verified,

Z(w) = {:c i p, (@) =0,is N (w), Pi(@) <0, je{l, nt k} N N(w)}isthe
smallest face.of S, containing u and », Therefore, if IN (w) I < n — 1 orif
]N (w)l >n—1 and there ex1sts a vertex z ¢ V N {4, v} satistying P, (z) =
=0 forallje N (W) (1 €.z e Lwy NV ) then dim Z(w) > 1 and hence,

by Proposmon 3, w cannot be a vertex of § iy TWEW k1 Otherwise, dim

Zw)=1and wis a ver,tex of Sk-{-l s Wwoe Wk—i—!-

c) Ideniifying the redundant constraints of S As previously indicated,
8 1 is defined by constraints of the form 9. A constramt P, (x) < 0 is said
to be redundant (for Sk 1) if the removal of it does not change set S, kot ® €

o1 =1z P <0, j=1u, n + k + 1} |
={x:pj(x)<o, J=ZLiwn+ k41 and j+j},

A constraint non redundant for § kit is called essential for S . Denote by
Jk ; the index set of the essential constraints to S . Of course, all the cons-

traints defining S, are essential (see (6), (7)) : I, = {1, s» R + 1} Next, the

constraints p kit (x)y=nrh @) < 0 is always essentlal for Sk 4 (because S +1

=8, N {=: h ;(#) <O} and €S\ S hson+k+1el, . Further,
a constraint redundant for Sp will be redundant also for S » if q > P, i e
j¢ J implies j ¢ J for all g>p.

Recall that ¥V, 1 (the vertex set of § 1 )congists generally of three kinds of
vertices : the vertices belonging to v, and satisf'ying h, () < 0, the vertices
beolonging to V fa I » and the newly generated v‘ertlces (which all lieon H )
We have
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PROPOSITION 4, Assume V_ &= ¢ and j, € J, . The constrainl p, ()< 0
. p']o

is redundan! for S ; if and only if p (u) O for allu e V

Proof. To prove the «if» part, suppose p; (u) < OforallueV; . We
’ . o]

first observe that p.jo () < 0 for all = ¢ Sk+1 N H,. Indeed, every point

x¢ Sk;,,.i \ H,, can be expressed in the form

r= 2 A ou A+ z Hoo
uEV; uEVk+1 N Hy -

with h >0, [J- > (0 and E?L + Z U» = 1; moreover, there must be at least
vome & > 0. Flom the hypotheses and the fact that p ()< 0 for all
veV, Kt ‘
P @ =2, p; W+ uupjo(v) <.
This shows that
€S, , and 73 (x) = 0 imply b (x)=0. '¢11)
Now let
S’ =_{:c:p. (x) <0, je T, \{j 3 B (@) <0}
We shall show that p () < 0 forall x¢ S . Indeed, suppose the contrary
that there is z € Sk+1 su;:h that pjo (z) > 0. Take any vertex u € V7. From the

hypotheses, p; (z) < 0. Let
) .
y=1nu-+ (1 —Nerwithh =p; ) /(p; ) —p;
o ! o . o
It is easily seen that 0 <h<1 and
P, =4p; W+ —Np, @)=0
1] ] 4]
P, @ <0 foralljeJ, N\ {j}andh (<0

This means that y e Sk+1 and p; () = 0. Hence, by virtue of (11,
o

L

B (y)=1d, (0)+ (1 —2) h (2) =0,
coniflicting with ‘hk (¥) < 0, hk (2) £ 0. Therefore,

P}o("r) < 0 for all .'x: & S,Ié-;,i



This implies .S; ;= SA . and so the constraint p; (x) < 0 is redundant
g et o+
for S ; . ‘ ™

To prove the «only if» part it suffices to show that if pj (1) = 0 for some

ueV, ", then the constraint PJO (x) < 0 is essential for Sk'+1 . Indeed, since
ueV " (i. e hk (u)‘> 0), there exists a ball U around u such that

h, (x) < 0 for all z g U.
Since iy € J.» Le. the comstraint b (:c) < 0is essentiai for §, , there exists a

point z satisfying p; (z) > 0 and p. (2) <O for all jeJ, \ {i }.

Lety —¢ Z o (1 — &) &, where ¢ is some positive number so small- that
Y =U. Then

Py @ﬂﬁﬂ M-i-ti—e)p, @=cp; @)>0,
Py @ =sp; @+ ~p,w< Otorallje /. \ i}
h @>e

This shows that the constraint p, (x) < 0 is also essential for S. .. The proof
Pj [ 3%

is complete.

Remark 5. The assumption Jo € 4, is required only in the «only if » part,

Thus, Proposition 4 gives a sufflclent condition to identify- a redundant con-
-straint forS in the case Ve # ¢

The next Proposmon can be used when V;‘-: ¢ (Then by Proposition 2,

Vk+1 2Vk N VI‘:).

PROPOSITION 5. If p, (v) < 0 for all ve V‘r ;0 then the constmmtp (a:)

is redundant for S

Proof. For every x & S]c+1 we have

&= = Auuwithlv>0,21 =1,
b

hence
pj (x) =X ?\.Upjo(v) <0.

This means that Pj (%) < 0.is redundant for Sk E
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Remark 6. The following examplé shows that the
condition stated in Proposition 5 may not he neces-
_ sary (eveg"if J, €4.) LetS, be the polytope obtain-
ed when cutting a 3-dimensional cube by the plane
DEG (see I'g. 1). SA- has seven faces corresponding to
seven constraints. It is easily séen that all these
constraints are essential for S . Suppose Sk‘{‘I is the

base ABCD. Then, V 1 consmts of four vertices
A, B, C, D and lhe constraint corresponding to the Fig. 1
section-DEG is redundant for SA--[—I although it does
not {ulfil-the condition stated in Proposition 5 (because it is binding at D),
The above resulis justify the following procedure for identifying the
redundant constraints of Sk+1‘
.Procedure T. Consider the set V. (if it is not empty) or the' set V,y, =
—-V AN V+ (otherwise). Let this set consist of elcments al, T (in arbitrary
order) Mark the constraints detining S, that have not heen deleted up to

step k and that are binding for ul, Then, mark the ones bmdmg for u? that

have not yet been marked. And so on, uhti_l the last vertex ul has been re-
ached or alithe constraints have been marked, The constraints that remnin un-
marked af ter this procedure will be redundant for S ot 1 and hence can be deleted.

Therefore, Sk-|—1‘is defined by the system of all constraints thal have been
marked, plus the constraint i1, (x) < 0

Remark 7. Since in the case V7~ ==¢ we have only a sufficient condition for

identilying redundant constraints, the above procedure is not able to delete all
the redundant constraints for .SkJri But if Vi~ +¢ for all A=1,..,, k, then

the procedure actually deletes all the redundant constraints for Sk—]—i For in-
stance, if D has a nonempty interior (i. e. dun D—n) then V.. is nonempty
for all & (for otherwise, as seen above, S 1= Sk A Hk is'a iace of _Sk and
hence, dim Sk+1’ < p, conflicting with Sk+1 O D). Therefore, in that case for
every k, the above procedure deletes all the redundant constraints for Sk+1

5. SPECIALIZATION TO THE GASE OF LINEAR CONSTRAINTS-

In this section we specmhze the above described algonthm to the case
where D is a polytope, i.e. to the followmg problem:
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Minimize f (x), subjeci fo
Az + bf Z0,i=1, ..., m,- {12y

SCJ- >0,'j:1, ceny I,

where 'Ai= (aii, am) are n-dimensional row vectors, bt. are real numbers,
such that the polyhedral set

D=[zeRi:4;o+b,<0, i=1, ... m ]
is non-empty and bounded.

Since gik (x) is now affine, we have

h (x) = gik (x) = Ai}c x+ bik .

Finite algorithm for solving Problem (12).

1. Solve the linear problem

n

M = max ':a:j :Aim—l—bi sg0,i=1, o 3 X >0 j=1, ...,-nl.

=1

n
SI'=33:: ) T, <M, x>0, j=1,...,n$.
=1

Let JI ={m+1, .. m—{—n'—;—i} be the index set of the constraints
defining §, (the index m 4- j corresponds to the constraint x; >0, the index
+ n 4 1 to the consfraint X z; < M),
Let

Vi ={00 v, s om}
th o0 = g, »/ = Me/, j=1, ..., n, (¢ is the j—th unitvector in RP).
| ' Set k == 1. '

2. Select x, =arg min {fv): ve V,} (if there are several candidales,

any one of them). Compute

— k-
¥, = max {4.z% 4+ b,
k Igi:{hm{ i i }
Ay If T, < 0,1 e A k4 b, < Oforalli=1,.., m stop: 2 is an opli-
Solution of Problem (12).



b) Otherwise, select
ik :a}'gmax{Aixk + bl [ i:1’-u s m}

_and set

S

kad =8 N {z: Aik.r+bik <0}

=

Jk+1 =J, v :{ik}"

Let _
V= {uer:Aiku—l— bik <0} Vy={veV,s

Al.kv + bik > 0}.

- ot
3. a) If Vk = (7}, set Vk = Vk\Vk' Go to 4.

+1
b) Otherwise, for each pair (u, v) e V;x V: compute
A, v —b, .
A= k k_ —
(Aik” "bik)"(Aik." . bik)

Let w= Au 4 (1 — A, Define
= 'Aiw+bi.=0ifi=1,...,m ‘

T =VieJ 1w,  =0ifi=m+L.,m+n

L
Zw,=Mifi=m+ni1
s J

J=1

and let Wk +1 be the set of all w corresponding to all pairs (u, v) for which

le-l—f (w)J > n — 1 and there exists no ze V \ {u, v} '

satisfying o
| A, z4 b, =0foried (W) {1,., m},
2, =0foriel () {m+1,.,m+n}. A
jé_‘.:zsz fmtntteld ., (w)
Set

. .
Viers =V N VOVUw_ .

4, Sét k 4~ 1 « k and return to 2

%



Since at each step the current polytope §, is obtained fromithe previous one,

Sk—I » by adding one new constraint, since all these constraints are taken from
2

the system (12), it is easily seen that the algorithm stops after at most m steps.

!

6. ILLUSTRATIVE EXAMPLES
We first consider Hoffman’s example (2] (nonlinear constraint case):
" inimize | — e —a )2
Minimize f (3:1 , a:z_) = {:cj ;’L‘2) / 2:1:1,
subject to 4, (:vi, z, )= —283::1 + 9z, + 21 <0,
— 92 ¥
g, (a:l , a:g) = 9:::1 72:31 + 169:; <0,

93(‘”1 , a:z) = 643:? — 192 T, — 36;32—1— 153 < 0.
Initialization. The initial enclosing polytope §, is chosen as follows
, SI={(a:1,x2):0.5\<\‘x1,0g:cz,xi—i-xggﬁ}.
The vertices of S, are (0. 5, 0); (6,0); (0.5, 5. 5). "

Step 1. The vertex of S having minimum objective function value is z7 =(0.5,5.5)

~ with f(:r’)_. — 25 and g, (a7) = 47.5; g, (a) = 450.95 ; gs(=? ) = —125.
. We zelect 1 = 2. The new constraint is

hy(@;, 3y) = — 63z, + 176z, — 486.25 < 0 - (@)
Thus

Sy =5, n iz, 3,) by (e, 7,) < 0).
The vertices of S, are (0.5,0); (6.0): (0.5,2.94176) aﬁd (2.38389, 3.61617),
Step 2. The minimum of f over-Sz is achieved at the vertex z? (0.5, 2. 94176)
‘with f(z?) = —5.9621919 and g, (2?) = 30.77584; 9,(2%)=104.71323; g, (2?) =

© —32.90336 < 0.
Again i, = 2. The new constraint is '

hy(@;, 25) = —63w, + 94 . 13632x, — 140.71323 < 0 i)

| Ss = Sz N {(xj, Z,) hz(.rj, zy) < 0}.
33 has four vertices: (0.5,0); (6,0) ; (0.5,1.829403) and (2.69896,3.3010%),
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After twelve more steps we arrive at'the solution
1 = (1.6578327,0.2942215) with objective function value —0, 5608031 and

max {g, (&), g, @H, gy (@4} = 0,00234.
Fig. 2 depﬁcts the feasible set D, the initial enclosing polytope §; and the

constraints added up to the step 9.
The data relative to these steps can be found in Table 1.

Table 1

k xk = (a:';f, :c;) fzk) mazg,(z%):i1=1,2,3
1 (0.5,5.5) —25 450.25
2 (0.5,2.94176) —-5.9621919 104.71323
3 (6,0) * - —3 1305
4 (3.73437, 0) —1.867185 328.5228
5 (0.5, 1.829408) - —1.76730%. . - 23.4646
6 (2.58572, 0.0) —1.29286 84.442426
7 (1.97808, 0.0 —0.98904 23.62787
8 (1.5913674, 0.0) —0.7256837 9.5343
9 (1.78472, 0.327657) —0.594778 2.392538
10 (1.6880449, 0.296248) —0.57376%4 0.598151
11 "(1.639707%2, 0.2805448) —0.5633086 0.149546 .
12 (1.6638756, 0.2967041) ~  —0.561688 0.037386
13 - (1.675959%, 0.3047833) —0.5609097 0.009352
14  (1.6578327, 0.2942215) —0,5608031 . 0.0023%

T4 |
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As a second exam'ple, we solve the prohleﬁi (linear constraint case):
f= —3x§_2r§ —» min ‘xz '

oz, —3u, 60 (1)

r, + r,—10<0 (2)

—z, + 2.1;2 — 810 (3)

T, — x, = 40 (4

1
x, > 0 (5
T, > 0 (6)
Initialization,

M =10 = mar {z; + &, ®
(g » @) satisfying (1) — (6},

v, = {0.0); (10,0): (0,10)}.

Associated objective function
values

f = {0, —300, —200 }
ol = (10,0); f &’) = —300,

Step L. _
vy = maw { —14,0, —18, 6 }-=6 > 0,
i, =4 - | ~
vy = {(0,0); (0,10) }5 V¥ = {(10,0) },
V2 = { (0,0); (0,10); (4,0); (7.3) },
f =10, =200, —48, —165 }.

. Step 2. z? = (0,10); f (%) = —200,

¥y = max { — 24,0, 12, —14 } = 12 = 0,
f2 = 3, " ‘
vy =1 (0.0); (40); (7:3) } vy =1{0.10) },

Vg = {0005 (h0); (7.3): (0,45 (4:,6) L
f = {0, —48 —165, —32, —120}
Step 3. 2% = (7,3): f(2% ) = — 165,
vg = max {-17,0, — 9.0} = 0.
- Stop: 2 = (7,3) is an optimal solution, with objective function value
f(xopi) = — 165. ' ‘
Received May 28, 1982
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