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THE TEST OF THE DISCRIMINATION
FOR TWO POISSON PROCESSES

NGUYEN NAM HONG

Hanoi

In this paper we give first the test of the discrimination for two Poisson
processes. Next we stndy the asymptotic normalily of the statistics determina~
ting the test and the convergence raten this normal asymptotic process.

I— A RESTRICTED TEST PROBLEM

[

Let T be a separable metric space, ® be the o-field of all Borel éubsets,of
T. Standard notations and cohcepts in [1] (cf.. Chapters II, ITI) will be used
throughout the paper. Assume that a realization ! of the Poisson process () is
observed and we have to choose one of two posibilities: ) = on or () =‘Qp] .

where QP’ QP1 are Poisson processes with densities py, py (pg. o1 are Radon
0

measures on T), Thus we have the following test problem:

Test of the hypothesis (= on

)¢ - - :
‘ with the alternative hypothesis Q = Qp

In general, this problem has no testable solution by a simple observation
and we are led to the following restricted test problem:

g Test of the hypothesis QK = QK
(HE) o
2 with the allernaiive hypothesis QK=Q§

: , 1
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whete K isa compact subset of T and Q%, Q%, QX are images of Q, @, , &,
- A Po FI Po” THL
under the mapping M — & (LK is the restriction of } on K),

Let p be a Radon measure on T such that
pi & p (i=0,1) ' F
Then for every compact subset K of T

Pf < QK (i = 051)‘

Therefore, from [1] (Theorem 1, Chapter VI), we have:

of < o (=01
with
] |
deE () = exp { —(pi(K) —p (K)) + W (Inf )} \
ot ‘
i) = 20 G=0.

¥

By the Neymann — Peason’s s basis Lemma (cf, [3], p. 95-96), it follows that
the most powerlul test with significance level « of the problem (# ;) have the

critical domain of the form

gu i (In;;)>c(oc)%, T

1}

where c(e) is defined so that
RPN O Qe
o g sz f _—
Hence, the most, powerful test with significance level « of the problem (H ;)

‘is completely determined by the statistics

Z ~ &/ f1),
FORR G fo)

Now we investigate the distribution of Z . b

Since )
M (Z, = —o}@suppht CKn{fi> 0},
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and
(2 {7 =+ o}y esupp b ¢ K~ {fy >0},
its follows that
on {ZI(: _— oo} =1 - exp {'—' po(I{f\ {fl = 0})}; QPG {ZK -<—!—- oc} o= 1,

¥ Q, AZp=+o}=1—exp{—alin {ly=0h}; Q, {Z; >—=}=1.

Further, from (1) we infer that under the hypothesis QK = in the charac-
teristic function of 4 . with Z.K > — o= is of the form
f

q’)?{ (u) = exp {p, Um\{[1>{)} (exp (iuln T) - D}

L

Analogously, from (2) it follows that under the alternative hypothesis

QK = Q;i, the characterislic function of Z , with Z, < 4- o, is ol tne form

. . . f
cp"K (1) = exp {p; UK/\{i'U}O} (exp(mln t—;) — DI}

These results give us all informations to determine the critical point c(e)
and the power of the test of the problem (Hy).

II — THE ASYMPTOTIC NORMALITY

Let K;, K,... denote an increasing sequence of compact subsets of T such
that lim Kn =T, Put

n—roe

Z (W)= ZKn (W), n=12,..

Denote by L, (X) the distribution of the statistics X with respect to the

probabilily measure Q o, (i = u1).

THEOREM .1: Assume that the following conditions are satisfied

{ 1) py <oy
2) §(f1(1) — 1) o, (dl) = o where f(t) =§—p°—(f).
T . P
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3) There exists M = 0 such that
(g + o)zt )] = M) <ee

Then as n — oo & : _ .

L= (Zﬂ_—.aﬂ
0 |t | > A OD
. r 0
where
1/3
tI = dt t )
| Loy ot u= () 0 f(t)p"( )
LM M
K n K“1
M
k¥ k_~EY, KM= {2 | In (@) | < M)
Proof. Note that Z  can be decomposed as follows ¥
Z _Z1) 4+ L(")
where
(0 __{ (2) _ . (1)
AR In—f—n(—)l-l(i), VA R Al
I&M
- n
We shall prove that
@) Lyt A0
bﬂ
. and -
7. (2)
s, {b——’ 0£=1'.
n
Since for Qp — almost all p there exists a finite limit
Z(2) = lim 5(2)
n=—se>
it suffices to prove (3) and
@) - lim b ‘= oo

n—roe
From the condition 2) of the Theorem we have |
12 . 1y
() oo = g (1 - _—-) soldl) 4+ (1 — w—) p.(dt)
‘ KM fI/? - Eﬁ{- f112

s

where KM = {-T : |nf(z) | > M}._
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VWo can wrile

KM o KM 4 ga

where

M 1 .
KM . } P B KM gM KM

Thus we have the estima'ion

/ 1y 1 - .
6) [ 1-— —-) s on KM
(®) ( f12 f >
and
) _
(7)(1—1—) <1 on K¥ ,
112 . <

From (5) «+(7) and from the condition 3) of the Theorem it iollows that

\ 13
®) 3 (1—35) w@=
‘ K

Further, we see that (3) is satisfied if and only if one of the following con-
ditions holds: - ‘

. , 2
i) S (1 — —1—11—/;) pg (dt) = o for every s > 0
KM A{ ]| < c}

(ii) There exists ¢ > 0 such that .
. 1 12 )
g (1—£”2) oo (dt) = oo ,
KM/\{‘,I Inf | > c}

From (i) it follows there exists ¢ > O such that if t inf | <C ¢ then

'.3_1_ HL !
©) In? — >(1 )

fi2

which together with (8) implies (4).
To prove (3) let us denote
' 1 o
T ()=-— In —,
n O b, KD

. ‘ &
Hence, the logarithm v (u) of the characteristic Tunction of

' Z — _u‘_ is of the form
I ’
I _(a) S exp (T, () —1—iuT_ (OF oo (dD)
M ~

n

g



Thus we have the estimation

n? ' . 2
0) |, W+ 3 ]< S exp (uiT, ()—1-—uiT (1) + _25 T ()| e (d) <
Minp
= B,

which together with (3) implies (3). .
Theorem 1 is proved.
Analogously we can prove the following-

THEOREY 2. Assume that following conditions are satisfied
1) pr <<po

, d
) J@HD = P e (dD) = where  g(t) = = (O

Po
3) There exists M > 0 such that
(o +po) {x: L Ing(@) | > M} < oo

Then as 1 — oo

L, (M)a A (0.1)

d,
where
en = Ing(t) pdD),  dp = (J Ir*g(h) ex(dD)'
K# : R K;‘
Kf is the same as in the Theorem 1.

From Theorem 1 and 2 we have

THEOREM 3. Assume that fhe‘follou_)ing condilions are salisfied
1) ;= o )

2) !;(flm(t) — 1)y pyldl) = oo . where f(f) = Z_Z'Jh ()
: _ do,

3 ) There exists M ~ 0 such that
(po+p) {xeilnf (®)] = M} <Te

Then as n— oo

L, (_z_"_‘.‘_.fff_) N0, L (f_‘%) — 0.1,

bll £

where a, bn are the same as in Theorem 1 and € da as in Theorem 2
. A
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IH. THE CONVERGEENCE RATE '

THEOREM 4. Assume that the condilions of the Theorem 1 are salisfied, Thep
there exists A > 0 such that for every integer n

1 - .A
oy swp | B =0 @< g
where .
. Fn(x) - on ; 1L Ln(ug a, < X ;
and

@(x)= ']/__4"8 exp (—" ;) dt

v

Proof : Let us denote

{1 .
Fis{x) = QPO

Then for every € > 0 we have

(12) Fy(x) — O(®) = [Fo(x) — Filx + &) |+ [FE(x 4+ o) —O(x4=)H[@(xe) —O(x)).
Moreover, since ‘
(13) . 0<O(x+e)—0(x) < —;1_—__9.

: : ¥ 2=

/
and

2)

o
an(x)—Fg)(x—}—)]\{on ?\i) ;es.

by Chebyshev's inequality we get
A
eb

(14) | Fal) — F& (x4} | <

where

n

Ar=op, {len | > M}

Now let ¢(u) and ¢(a) denoie the characteristic functions of Fland @, res-

pectively. Then we have .

80 = 0(0) | =900 59 a0+ ) ~ 11

Hence and by (10) Ju | < (%)1/3,“ it follows that for any [u | < (%1)”3



2M
b

o) - ;—

2
| gafu) — (1) | < 29(0) Jujs. exp } .- {

2

] \<‘
« .

Therefore, by the Esseen’s inequality (ef. [2], Pp. 207), we infer that for~

-
M
r u? .
] | A(M , "5 21 8 A
] (1) 2 ?
(13) s:pl Fo' (5) — (D))< ‘TC_S by u*e du + yane. [ < b, + 51?;_ '
o T

where .
Ay == AM/m, A, =241 / V27 .

" From (12) -+ (15) the relation (11) holds with

A = max (A, sup (Ag/b¥?), sup (A,/bls
I n

where -

. A.4 - -\/A]_ / ZVZ_TC. .

Theorem 4 is proved. -
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