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1. INTRODUCTION

“The theory of sufficient conditions for optimality has not been yet
fully developed. _Sdme sufficient conditions for optimization problems with
equality-type constraints in Banach spaces have been given by loffe and
Tikhomirov [2]. A few necessary and sufficient conditions for optimization
problems with equality.type and inequality-type constraintgr’?have given by
Levitin, Milyutin, Osmolovskii [5], Alepseev, Tikhomirov, Fomin [4]. Note,
however, that in all the mentioned works, only the inequality-iype consiraint.

including a linite number of functionals is considéred.

In the present paper, using the locally M-surjective mapping theorem in[I)
we obtain a general sufficient condition of second-order for the problem with
an inequality constraint relative to a closed convex cone and a form of local
K-function of this problem. Also, some necessary conditions are derived in the
form of certain local K-functions for the case where the coneMis the non-
positive orthant. Finally, a necessary condition of second-order is established.
From these resulis we obtain as special cases cerlain earlier results, including

one of Ioffe and Tikhomirov in [2].
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2. A GENERAL OPTIMALITY CONDITION FOR PROBLEM (1) AND ITS CONSEQUENCES

Let ¥, ¥ be real Banach spaces. Assume that V is ordered by a closed
convex cone M. Let D be an open subsel of X, foa real valued function on D,

and F a mappin‘g from Dinto Y. Let us consider the following problem:

' fola) — inf : 7

@ Faye M

The Lagrangian of Problem (I) is defined as follows:
£(@ N) =Fo@) + <A, F@)>,
where A € Y*. - )
Assumptions,

(i) fo, F are continuously Frechet dilferentiable in a neighbourhood of
X € D;

(i) At x, the Kuhn-Tucker necessary optimality condition holds. This means
that thereis continuous linear functional A& (— ;\I)* such that

’ 2 (XD: /\) = 05
(iv) Flzg) = 0.

We now recall some notations and results (see (1], [3])., to be used in the
present paper.

L'etfj’ f, be two mappingsj from an open subset f"'bf X into Y. The
mapping fo is said to be ([1]) in the (L', »)- Lipschilz proximity of f if: o g
: i i
v,z eU) @) fyle) — LY =@ < ez —a| -
In the case that ft is continuously Fféchet differentiable in U, the map-
ping [, @ = f, @)+ T} (%) @=wy ) is in the (U, «) — Lipschitz proximity

of fl for some @ = 0,

The invérse of @ convex process G (from X into Y) isthe convex process

-

¢ 1(¥ - X), whose norm is defined by . )
. T 3 o
|| G-' || = inf { v >o0;¥yecrangel, Jve T(y): haefl <yl gyl l
If G is a convex process, then by a,lemma in (1] | GI < oo,
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THEOREHM 2.1 [1).

Lel f be @ mapping from an open subset U of X into Y and X, e 7. Assu-
me there is in a (U, ¢) — Lipschilz proximity of f a M — surjective mapping
f(a;o),—l— gz - x,)such thal q : X ~» Y is linear continuous, and « || G 1 |

—= 0 < 1, where G denoles the convexr process G(x) = g(x) — M.

1—0

Then for every u € U, for every v such that || v —f(u) || < —Ti— o1,
_ , ! NG-1
X \\ ) and for every & > 0 the equation

ftxyev + M

has af least one solution x zalisfying

um—uﬂéCanHmuﬁu=§i§uadn}

where p (z, X \ ) denotes the distance from x fo X N\ U.
Hence f is M — surjective al every point of & and .the mapping
F, (z) = f(x) — M ca ries every open subset of {7 onlo an open subset of ¥, (0).
To derive the general sulficient condition we need the following.

¢

LEMMA 2. 1. Under the same hypotheses as in Theorem 2. 1., for every
& > 0 there exisls a neighbourhood U’ of xy such that for every x € U’ there

5

is /:; & U such that
f(2) &f (33 + M | @
17—z <C | fx) — flx,) | - ©. 2)

This Lemma conlains as a special case the generalized Ljusternik’s

)

theorem {2}. ' _ '

_ Proof. Taking a number r > 0 such that B (x,, 2r) C U, where B (z,, 2r)
denotes the open hall of radius 2r around x,, by virtue of the continuity of f,
we see that for every 8 = 0 there exists a neighbourhood U of z, (" C B (xu,
r) such that |

o g {1 — §)r .
| (’v%a e U) IIf(x) — fixg) I < (14 &6

2. 3)
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Obscr.ve that
(Y € U) (@ XN U)o 2. 49
By (2. 3), 2. 4) we get

(¥x €U 1F(x) = f (20) | < etz x.0).

Applying Theorem 2. 1 to the point v == f(x,), for every x & [/’ there exists

Z & X such that (2.1), (2.2) hold.

It foliows from (2.2), (2.3) that
17— 2l <2r,

which means ?r:\e U. This completes the proof. : [

DEFINITION 2. 1. We say that the mapping f is M-reqular at xyeU if f is

Fréchet differentiable ai x, and f*(x,) is a M-surjeci:on of X ontoY i. e. the

multivglued mappznq f(x,)— M is surjeclive.

When M = {0} we obtain as a special case the usual concept of regular
mapping. - .
LEMMA 2. 2. Assume f is M-regular ai z, e ['. Then for every ¢ > ( fhere
exists © > 0 such that for every € B(x,, ) saiisfying .f(¢) € f(x,) + M there
ismeXsuchthal ||| < el —a,lland ' '

C + MT— T, & {E : f‘(‘ro) E,.G *1[}‘

Proof. It has been established in [1] that if a mapping g: X — Y is M—convex,

M —closed, M—surjeclive, then g is loeally M — surjective. Thus the map ping

f'(x,) is locally M—surjective i.e. the associated multivalued mapping F, (x) = .

uw'(xy )r—J is locally surjective. Hence there exists a number r = o such that

Fy (B, (0.) > B, (0,r) (2.5)

(here Bm (0, 1), Bg (0. r) denote the open balls of radius [, r around 0 in X, ¥

.resp).

For ¢ > 0, by virlue of the differentiability of f at x. there exists a number
& >> 0 such that for every { & B(xy, 8),,

1FEQ) — Flso) — F(0) € — @) | < er I & — ag | (2.6)
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By (2.5), (2.6), there cxists v’ ¢ X such that || 1’[| <" 1 and

f(c)'_f(xo) Ty
vnt—-xu H”(suc— ) Fy(m)

which im plies that

B N FE) = f(x)
fz)m e —fi(x,) (———M : ”) e T (2.7)
Obviously, f(2) € f( ,) - M implies f_ﬁ%”—f% e M (2.8)
£ —_— :L‘D

It follows from (2.7), (2.8) that

fi(z, =% Yy 2.9
{1+ ) < ¢
Setiingn = e} £ — %, |]'fn’ we obtain|| )< eli{ — X, || and

F(ze) (Mt — 7)€V,

which completes the proof.

We are now'in a position to fmmulate a general sufficient opiimality con-

dition of second-order for Problem (I).

THEOREM 2.2. Assume that Assumptions (i) — (iv) are satisfied for Problem
(I), and that the mapping F is M-reqular al x, Furthermore, assume that the
mappings f,, F ure liwice qonlinudusly Fréchet dif ferentiable at x,, and there is

a number o < 0 such that
Lexe N) BB ZONENS ‘ (2.10)

(Vee {L: Fi(z) L e M})
Then x4 is a local solution of Problem ().
Proof. loffe and Tikhomirov have proved that if a local K function of Problem
(I) at x4 can be consiructed, then x, is a local solution of this problem (see [2]).

Hence it suffices to verify that the funclion ¢ defined as follows is a local
K-function of Problem (I} at x;: _

p(x) = folxo) — <A» Fl@) >— v | F@@) | - @2a)

where 7 is the number in Assumption (iii).
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Recall that the function ¢: X — R is said to be a local E-function of Prob-

lem (1) at x, if there is a neighbo urhood U of x, such that

a) fo {(Tg) = @ (330),
b) for every admissible point x € U: () > ¢(Tode

&) fo (@) — ¢(@) >0 (¢ x & U)

We now prove that the function ¢ defined by (2,11) satisfies these condi-
tions a)—c).

Condition a). In view of Assumption (i), it follows from (2.11) that

fo (.’150) = @(x)

Condition by Let & be an arbitrary admissible point of Problem (I} i. e. F(x)e
M. According 1o Assumption (iii), we have

> A — F@) > =y | F@) I
which implies )
_wM—Hm+<A—HP—MHWIfm%Mw
Condition ¢ sefting p(_x) = L{x,A\) — f,(x,) we obtain
£, () — o) = p(®) -+ 7 | F@@) Il

. Because the mappings f,, F are lwice continuously Fréchet differentiable
at 2, for every ¢ > 0 there exists a neighbourhood I’y of z, (Uy C D) such that
for every @ € Uy | @) — P(x) — < P&, & — & >

) |
— 5 D) @ e T = T < e LR LA C(212)

Putting F; (x) = F(x) * — M we see that iz a convex process and

I F——]“ < oo, Hence, for a positiVe number § < 7 there are a neighbour-

hood U, of (U‘, —U;)and a number a > 0 such that « || F_l_—e < 1, and
the mapping F(x,) -+ F’ (x—%,) 1s in the (Uy» o) — Lipschitz proximilty of F(x)

) Since p’ (x,) = 0 and p’ (x) is continuous in a neighbourhood of x,, there
* exists a neighhourhood U of z, (U U,) such that for every & & Usgs

plx) —p (@) <l @ —x, llsupif p’ (|
' tel, © {2.13y

42



Applying Lemma 2.2 to the m.apping F we have a number &; > ( such that
B3(xg, &) Uy and for every § e B (x5 O1) satisfying F () e M there exisls
1 € X such that |9 <ell{— %1,

Fo (@) (6 - - 1) € M. - (2.14)

Applying Lemma 2.1 {o the mapping F, yields 2 neighhourhood U of x, such

that U < B (x,, 6,) and [or every x & U there exists x € B (2, O1) salisfying
- . F@)e M ' ‘ (2.15)

-z} < C it F@)I (2.16)

Frem Lemma 2.2 applied to %'it then that there is 1 € X salisfying (2.14).
A’ccordihg to Assumption (ii), by (2.12), (2.13), (2.16), and the mean value

theorem we have [or every xel.
o)== o2y = p(x) -~ p(@) +-p(F) -+ VEF () [ >

> sap {Ip @ :zelz, ¥l welliz— a4+ v FQ) |+

P ' a

. N ™ . o) e~ ,
P (Xor (T = &y & — L) - 5 hr To >

._1|_

b.':];—x

1 N o~ ~
| Ry {27 (w0 A) (@—mg @ — ) —¢l @ —x?}
|
In view of Lemma 2.2, and the faci (hat £ () (%, ) is a bilinear form, it
O

follows from (2.10), (2.18) that for every rel,
. —~ ~—~ . —~~
£2 (o N (2 — T T—F) — e |2 —-2% > 0.

completing the prooi, of Theorem 2.2,

Applications,

From Theorem 2.2 we obtain as scpecial cases certain known results,
including one of Ioffe and Tikhomirov in [2]. Let us mention some of these
cases. '

1) Consider the following problem

minimizef_ (z) .

(If) { subject to )
F(x) =0, &b,



where £, F, D are as in Problem I.
COROLLARY 2.1 (loffe and Tikhomirov [2])
Assume that F is reqular at r,, F (%) = ‘0. Furthermore, assume

there exist A & Y* such thal ﬁ; (e A) = 0, and a number 8 > ¢ such thai

5

LY (% A& D >Na B (¥ EE Ker F(z))

Then x, is a local solulion of Problem (I1).

Proof. It is easily seen that Assumption (iii) holds with M — {0} and any
number y > 0. Hence the corollary follows from Theore a 2.2

. 2) Consider the following

minintize [ (),

bject to
19) W e,
( ) fi(x)\<\0¢1=11"’k

(G(a:) =0,xeD,

here f , D are as in Problem, (I), and f,: D - R (i=1.., k), G: D—=>Y.

COROLLARY 2.2._Suppose that G, f, (i= 0, b..., k) are twice contf;!uously Fre-
chel differentiable at x,, and (G’ (xo), f’l (@o)yees [1.(Xa)) is @ M| — surjeclion of
X onto YXRF with M, = {0}_>< Rk, where RE denoles the non-posilive orihant

1 -
_Of RY., Furthermore, there are numnbers hl. >0 (=1 L., k) and a functional

g e Yesuch that G(we) = 0, f; (7o) = 0 (i = l vy k) and
gx('}:o! Aip aees ?\-;;! y*) = 0,
where jz(.’L‘, A1y vees 11{: y’) = fn(x) + : Ai fi (3") = g, G(_x) >
. i=1 '
J‘Z’x,x(x”’ My wens Ao YD) (EE) 2 0 || 'g-\u 2, (for some 6 > 0,

Ve e Ker G'(2) N {E: < D), £ < 0,1 =1, iy k})
Then , is a local solulion of Problem (111).
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Proof. Since ?‘i => 0 (=1, .., k), the fanclional (y*, 2; ... hn} s uniformis
positive with respect to the cone M, . Thus all the hypotheses of Theorem 2.2
are satisfied, and therefore the Corollary follows.

3) Consider the mathematical programming problem:

nmrinimize f, (x),
subject to:

@) L@ =0G=L k)
fj(;z:) LO0(j=k+1 ..,0)x € D,

shere 1, D are as in Problem (1), f; : D - R (i =1, .., n).

COROLLARY 2.4. Assune tha fl.(i = 0.,1', .y N) are twice continuously Fréchet
dif ferentiable at @, and the system f; () e f;l(a:(.) is Alvz'nearly independent.
Suppose in addition that there exist numbers },, ..., 7\." with A =0 (i= k41, ..., n)
such that f@)=0(@{=1..,n), ‘

.g;:(xﬂ, K1,.-no’ :\,n) == 0’ [
n
where LA(xy Ay wey b)) = folx) + T Ay fi (),

L2 @ by o A E B0 [IE)? (for some ¢ > 0,

VEe{li<fi@)l==0<F@E)l=<0,
i=1, ., k;j=k+1,.,u}
Then x, Is a local solution of Problem (IV). |
Proof. Since the sytem £ (X} oo £}, (x°) is linearly independent, (f] (xo), ...
f;l (o)) is a surjection. Furthermore, the functional A = (A, ..., A ) is uniform-
ly positi\;e with respect to the cone M = {0} x R"E, ;vhere {0} R¥, as
7\.j>_ 0(j=%k '+- 1, ..., n). Thus all the hypotheses of Theo;efn 2.2 hold and

therefore the Corollary follows,
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3 — SOME NECESSARY CONDITIONS FOR FPHrOBLEM (}_)

In the theory on necessary and sufficient optimality conditions, a key point
‘is to incorporate,certain‘constraints onto the objective function. In this section
we shall prove a theorem ol this type, which implies a result of Joffe and
Tikhomirov [2].
Consider the following problem:
() L{x, \)— inf,
Flx) « M,
where A is the in Assumption (ii).
It is of interest 1o note that if x, is a local solution of Froblem (I’) then X,

is a local solution of Problem (l), but the converse does not hold in general
(under Assumptions (ii), (iv)).

THEOREM 3.1, a)’ Let fhere be given f,, F salisfying Assump'ion (i), (if)
(iv) Assume thal Lhe mappin;j F is M —regular ai :I,o Then, ary local solufion
a9 of Problem (I’), is a local solution of the fallowing problem for every
number 0 3 > 0:

(V) fo@)+ < A F(x) > + | F@) || — fo(x) — inf

by It the mapping F satisfies Assumption (iif), then any local solution x, of
Problem (V), is a local solution of Problem (I) here' < (0, v), y Is the number ‘

in Assumption (iii)).

Proof. a) First, suppose that x4 is a local solution of Problem (I') i.e.
there exists a neighbourhood U, of x, such that for every xel’ satisIying.
F(x)eM,

2@, N) - LT N)> 0. (.1)

Putting p(s) =Fo(x) + (A, F@))— fo@o) we vl ‘
p(x) = Lz, N) — folzo) (3.2)

For any positive number 8 < 7, we can take a number « so that « || Fy? =0«
<1, where F (x)= F'(z, Yo — M, such that the mapping F(x) + F'(20) (x — %)
isin the Uy, o) — Lipschitz proximity of I(x) for some neighbourhood U2'of
Xo (U.? — UI ).
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By Assumptions (ii), (iv) it follows irom (3. 2) thal plx) =0, PN, ) = 0.
Hecause of Assumption (i), p(x) is continuous in a neighbourhood of X, Hence

for an arbirary number g > 0, there exists a neighbourhcod U, of I, v, < [:'2
f o il

such that {er every x, " € U3,

2 1B i
B __i% (3. 3)

jpE) — pln)| 7\<\ - fx — It (e = —

By Lemma 2. 1 applied to the mapping I there is a neizhbourhood U of
@ (U U, )such that for every x € U7 there exists x € U satislying F(‘z/\) < M

and
he —xf <CH F(z)l ‘(3. 4)
From (3. 7) it follows that P&y > 0, hence by (3. 3), (3. 4) we have Jor
every x € U, '

mﬂ>ﬂ%~puw%~%n?—wu>+ﬁwwm,

This implies .
fo@) — folx)) + < A F(@) >+ 1 F@)) >0 _ (3.9
Therefore z, is a local seluticn of Problem (V).

b) Now assume that x, is a local .solution of Problem (V), so there exists a
neighbourhood U of x, such that for every = ¢ U (3. 5) holds.

With F(x) € M it lollows from Assumption (iii) that
— < A F@y=>p [ F@) Il

whenever 0 < B < v.

Hence, for every admissible point x & U of Problem (I}

flx) = — < A, F(x) > — Bl F@) i + folas) > folxo)

This means that 'xu is a local solution of problem(I)
Remark. In the case where the mapping F is regular at x, Problem (I}
can be replaced in Theorem 3,la by Problem (I, Thus if '—regular al x,, then’

¥o is a local solution of Problem (I} il and only if x; is a local solution of

Preblem (V}r(whenever o << B < v
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CHEOREM 3. 2. Lel there be given fo, F satisfying Assumplions {i) — (iv).
Suppose that the mapping F is M — regular al x, and zyis a local solution of
Problem (I') (thus x, is also local soution of Problem (I)). Then for each B e
(0, v)> the function ¢, below is a local K — function of Problem (1) al xp?

oa(@) = Fo'x%) — < A, Fx) = —B I F@) I, (3.6)

whe;e v is the number in Assumplion (iii).
Proof. We shall check the lhree conditions ol a local K—function to CPp(.'I:)..

In view of Assumption “(iv) it follows from (3.6) that for any B, @s(@o) ==
= fo(o) k

For an arbitrary admissible point x, we obtain by virtue of Assumption
(iii) that - :
— < \F)y>> Bl F@ I,
whenever o< B < 7T,
from which it follows by (3.6) that

@s(T) > @alae) == Folo).

Thus the condition a), b) of a local K—function hold for ¢s(x).

To prove condition  ¢) we observe that
foiz) = gata) = Fo@) — Fol@e) + < Ay F@) >+ Il Fl@) i

Sifice X, is a local solution of Problem (I*); it is also a local solution Prob-
lem (V) by Theorem 3.1a. This means that there is a neighbourhood Uof x,

such that
£ — Fol@ + < Ay F@ > + 8 |l F@) | >0,

whenever z €U, o< B < ¥

In other words,
. fo@ — @e(x) > 0.
This completes the proof. . ,

- COROLLARY 3.1. (Ioffe and Tikhomirov [2])

Assume thal the mapping F is regular at zy € D, %o is an admissible point
of Problem (II). Then xy is a local solution of Problem (II) if and only if
there is N & Y* such that for every p > o the function @u(x) below is a local
K — function of Problem (ir) at xp : -

ga() = fo(ap) — <>, Flay > — B [ Fy |
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Proof. In this case we see that x, is a local solution of Problem () if and enly
if %, is a local solution of Problem (I). According to the Lagrange mulkiplier
- principle, there exists /\ @ ¥’ such that 2 (x. A) = 0. Taking M = {0},
Assumption (iii) holds for A and any number > 0. The Corollary now follows
from Theorem 3.2,

In what follows, we shall give an example in which a solution of the

problem under consideration is easily derived {rom Theorem 3.1.
Example 3.1, Consider the problem (with X = Y = R%)

2, ok
fu(x1,:r2,:rg):33:1+2;1:9-}--x3+x1 4 2:c;—> inf,
2 .
fi(@g,a,,o3)=—T,— %y — Ty + @7 L0,
(V1) 9
fg(“'1"r2’9’3)=“$1 — T, + a5 <0,
2] > ey 4 4 -
fglw,> ¥y, Tg)=—2, -—-x’?ﬁf.

‘We have

fo,0,0)==(32 1), fi (0,0, 0)=(—1, —1,~ 1),

fé(osos 0) = (_'L —1, O)sfé (0’ 09 0):(—-1, 0: 0)

It is easily seen that the Kuhn Tucker necessary optimality condition holds

with Lagrange multipliers A; = hg-= A;=1 and Assumption (iili) is satisfied

with v = 1. Since the system fj, 3, fais linearly independent, the regulari.y
condition holds.

Then by the Remark io Theorem 3.1, Problem (VI) is equivaleni to the
following one (in a neighbourhood of the point 0y: -

- b el 212 = 10 — i,
Which means that
g (@;s Ty Tg)= 22+ xy + 25+

Y ] S
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1t rollows that the point (0,0, 0)'is a local solution of Problem (VIy because
9@y, Ty 7,) >0 O (2, 2y, ) € R9)

4. SOME NECESSARY AND SUFFICIENT CONDITION FOR PROBLEM (HI)

ks

Let us now consider Problem (III) mentioned in Section 2:

s fo(x) — int,
(I 3 f. (@) <0 i=L.,k _
' G(SC) == 0; ) . -

Here fl. (@ =, [p; @](i=0,L.., k), p, isa mapping from D) info a Banach
space Y.i s Py 8 sublinear cént‘inuous functional on Yi ,and G: D — Y.

Suppose p,_ ;... p,, ( ave continuously Iréchet differentiable in a neigh-
bourhood of 2 €D and that the mépping G is regt;lar at x .

Under these hypotheses, Dubovitsky -~ Milyalin [6] have shown that if @0 t5

- a local solution of Problem (l), then there exist numbers o s and linear contie

nuous‘ functionals y’; < Y’:. (i=.0,L.., k), y* € ¥* such that,

]

' ) .
“f > 05 < y:’ gl> \<.. qpl(yl) (V Ui@ Yi ) Z:O,'ﬂ,..., k) (4'1)

<yp pi(a,) > =9, [p, ()] (=0, b k), @2
o, fi (a:u) =0 (i= L., k),
k . ] .
EO o [p; (@ )" s+ G (x,)]" g* =0, (4.4)
r .
Zj o =1 (4.5)
\ =0
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Denote by Q, the set of all A = (G ¢ yﬂ, Y., y*) salisfying (4.1 — (4.5

and for each number n = 0, denole by Q” the set of all A satisi‘ying the

tollowing :

’ “ =0, (g, p ) < v, (y; ) (W y; e¥, 501 =0,1..., I (4.6)
(zr » P; (X)) — I, (xg) > — 7 ({ =1l k) | 4.7
i .
ic: (@) =0 ' (i = L., k) (4.8),
|k
I E e [ p) ()] g+ LG @)y < ms (4.9)
L=
k
= O'.i =1 : (4.10
i=0 .

In [3] Levitin, Milyutin, Osmolovsky have proved that €. is convex weakl g™
conipact.

Note that since G is regular at X by virtue ol Lyusiernik's theorem, there
exists a neighbourhood U of X3, 4 number C = 0 and a mapping ¥: U ~» X
such that '

/‘4(1) <G G(”C) G(@) 1l (4.11)
G +2%@) =G (x) | (4.12)

We now consider an admissible x, of Problem (111).

THEOREM 4. 1, x, is a local solutzon of Problem (1Y if and only if for each
¢ > 0, the function ¢(z) below is a local K. function of Problem (1) ai Tg:

@) = o @) — w [CYs po (2o +2% (@))) — F, ()] —

|
il 5

&gy (i p oty (@)))~ (G () 2 @)) )y~ 2|l % (@) I, where
A= (2gsrers % g; s Yps Y E A, (4.13)

Proof. It suffices to prove the necessity because the sufficiency follows
from a resuit of Tofle and Tikhomiroy f2]. '

By (4.11), it [ollows [rom (4. 2), (4.3) that condition a) for a local K-function
for ¢ holds, '
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Now let x be an admissible point of Problem (IlI). By (4.11) we get
¢ (x) == fp (x). Because x, is a local minimum of Problem (III),Bthere exisis a
neighbourhood U of'x, such that for every admissible point x ¢ U:-
fo (.]:‘) - fD (‘Tﬂ) > 0.
This implies |
| ¢ @) — o) >0,
i. e. conditien b) of a local K-function for ¢ holds.

Setting

k _
g@ = l(y,p@)—f @]+ = ( ;. p;(x))+(y" G(2)) by virtue

of the differentiability of, p,, G, for every 3= 0 there exists 6 = 0 such that

for any x satisfying | x—x0 || < 3,

| g@) —g@)—( g @) z—z) 1 (slz—2] (414)

Since G is comtinuous at x, for & = 0 there is &, = 0 such that
| £ — % Il < & implies | G (@) | < —g (we can choose &; so that I3 (o 01) C
B (rg, &) C 1)
It follows from (4.11) that z - %(z, € B (x,. 8), Hence by (4.14),
| g@, + 4@ — 9(x,) — <g@,) ¥x) > <el W) I, which implies by
(4.2)— 4.4 that '
o, + K@)+ el @ > o, < g, U > =

.

’ k ' )
=a, [<H§’Po(~’co)> — fo(mo)]-}-EIoii <47, Pl. () >4+ < y¥", G(x0)> NE
i=

i=1

k _
+ <a [P 45, M@) >+ 2 oy < [P2 (@ % 3s M) > +

Tk
<[l v K@ >+ < T [P @) ]+ (6@ 0 1) > =0

Thus
f, @) — @)= g(z, + %)+ e FHN 1> 0 V@ eblz,, 8,))-

Therefore ¢ is a local K-function of Problem (III) at ac;. i’
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TAEOREM 4. 2. & is a local solution of . Problem (III) if and only if for

each number 1 = o, the funclion P below is a local K-function of -Problem

(1) at x 2

_ .k
#@) = £ (@) = maw (o, (< y Po@ > = fo @il 2 o < 972 P @) +.
s i=1
+ < y*, ) >} -
Proof. As with Theorem 4.1, it suffices to prove the necessity. In [8] it has

been shown that
mazx {o,[< y5, P('c)>—]c(.L)]—|—Z'. a<g P(x,)>+
QT] i=1
. + = y°, G(x())ﬁ:—}:ﬂ
Hence condition a) of a local K-function for @ holds.

By virtue of the compaciness af QT&' there cxists

— (a T vE L og¥
% = (20 sor- Sps Youos Yo Y )€ Q. such that

o < 7s Pii@) > -

Py() = f(x)—a[<y P (@) > — f (z, ]_- .

i (L

— ¥ G(z) >
Since <§;, y; > < W ;) (Vy[. ey, ), for any admissible point x, one has
L (T Py @) > — F @)1 ol 1,(Py () = F, (&, )] =
o [ — @ =S =B P @) = 5 =1 [P @] == ) >
-0 (i = 1,u., k), which implies that
0, (@) — o) > (1 —5,) [, @) — £, @)}

It follows from (4.10) that 1 —o 2> 0. Therefore, for every admissible x
belonging to some neighbourhood U of x,,

(@) — 0y(@,) > O '



as x_ 19 a local minimum of Problem (1il). Thus Condition b) of a local K-fune-
tion for O holds.

In [5] it has been proved that for every x belonging to some neighhourhood
_Vof x (which can be chosen so that V. U}

A . '
maz {e [ <y, P o (@) > —f @]+ T o <y, P (x)>+<y" Gx)>} >0,
SQ,[] i=1{ .
Hence fo(x) — q')ﬂ(.:c) >0 (f xEV)
Therefore g, is a local K-[unction of Problem (Il)at x .

By a proof similar to that of Theorem 4.2, using resulis in [5] we obtain

the following lheorem.

TEEOREM 4.3. & is a local solution of Problem (I11) if and only if there

exisis a number 1,>> 0 such that for every number 1 satisfying o << v <<, the
function below is a local K-func’ion of Problem (I1I) at 2

k
(@) = Fo@ —maz {2, < 43 Py@ >~ F,@1+ 2 o <ufs £ >+

1

+ <y G@) >} — 7 o(r)

| ) | ‘
where o(2) = [, (#) = F,@IF — £ ;@ +16@ 1, [+ =max{f. Ot
. i=1

Finally we derive a second-order necessary condition for Problem (III)

which contains as a special case a result in [4].

THEOREM 4. 4. Suppose thal fo, .. f,» G are twice continuously Fréchet

dif fereritiable in a neighbourhood of x, , G—regular at ©, , x, {5 @ local solution
of Problem (III), Then for every § belonging to the set

T=IerG"(;r_D).r\{f;:<f’.(.-rd),?; <0i-——1 s K},
there exist numbers o (EY> 0, u, o () > >0, and 7 '(E)eY“ such that

L1

L7 (@ (B s @ 1(E)T €) G D>0(¥ET)
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I
3 N 1 @ A
where g (2, o, w5y ) = Z 0: o fz. (r) +=<y% G {x) >
I = n ~

Proof. For any & e 7, by viriue of lhe compactness of £, there exisis

TO = (G, O o w @ ) @ g, & T (B) €2 such that
k

(E)-L_‘l(fi‘:{cc [(J »p, (@, +E)—T, )J—'r_;lai-:y:,‘,

Py 8, RO (s, 4B = T () 1y, @, (@, +9) >

',".
>—f, (5,0 T =, @, < @ p, (x, +8)+
i= 1

=Ty ), Gz, +8)) (4. 15)
Assume now that there exists E, & T such that || g, I =1, but
gi{,x (:}30 _‘;‘o (Eo )s e 7]{ (go )s —y_*(éo) ) (Eo * Ea) e AL

Choose 4 > ¢ so that: n |i G” (x5,) G < rg s ‘

T () € 5) | < Al TR s )6, L B < <5 @416)
i=1

By virtue of the differentiability of fl_ and G, there exists a number
8 = 0 such that for every x satisfying |[x] <4,

, . 1 .. Thzp®
WGz, +2) — G, ) — 6" (%, )r — TG @) (@) || < 16, s (4.17)

‘ [ e a
Vf(x, T+ fv)mfo(xo)—<f; (x,) >-—%f;’ (x, )z, <! ”1";” . (4.18)

v ) N N . 3
| gz, +2) — g(#) =< g (xb),x>—%g" @,) @ )| < L2

6 (4.19)
(where g = ‘: )
i=1
1 2
(£ (@, 4-2) =7 (2,5 ) ~ L), > — 5 i @, ) (. a:)|<_vn1;:n
(4.20)
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Setling Z{x..) = £ (%,.)— o, (§,)f ;(x,)and voting that s (3)) € Q,,

one has ﬁ(fbo, cto(go)s 90‘]\(‘:0) y (&0 )H'“O 1“ l(ﬂ:o,%o (C’O)’ ’y (';0))_

= and
2@y T () TN 2 () = £ (240)
| Z (gt 20) = T (59, ) — < L. (550 )@ > — % £ (24,0 1 <
| yizi
< 1 (4.21)
Hence for t salisfying 0 <t< S, i g, < & and for the [unction
. I .
62) = [f, (p+ @) — T @)+ T2 F @+ 2) -+ 1 6@y+2) Il (where
i=1
f+ = max { f, 0}), it follows from (4.16) — (4.19) that
Mo(t &) = 1lf (%, +f§0)—f (T, W41 : filmy+ t8)) 40 Gz, + 1)
i=1
. Byt
< i’S—— (4.22)
From this and (4.21) we get'
— ' vi2 Ivi? 12 ’
Z(@,+ ) + (5 < — A ety = — <0 (4.23)
It follows from (4.1), (4.2), (4.23) that |
0y )+ 10(1E)) < (& iy ( Py @yt 189) ) —Fy ()] +
koo —
I G W 1Py (g ()] < )6 g+ ) > + () =
= Z(x,+ 1y oy Gl TG + 0 ()< 0 (4.24)

On the other hand, it has been proved in [5] thal for every x beldnging to

. gome neighbourhood of 0:

Gylz) + 730(3:) >0
This implies that for { small enough,
Qi)+ e(izg) >0
confradicting (424) The proof is complete.
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COROLLARY 4.1 see [4].
Under Lhe hypotheses of Theorem 4. 4, if x, s a local solution of Pro-
blem (111}, ihen for every & belonging fo the set
P={8:G@)s=0,<f] (X)), t>=0,i=0,1,...k}
there exist- numbers a8 >0,i=0,1,.,k y ()€Y such thal

Ly @y oy (s e ' EONGE) >0 (F 5 T,)
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