NECESSARY AND SUFFICIENT CONDITIONS FOR SOME GENERAL OPTIMIZATION PROBLEMS

ĐÕ VĂN LUU

Institute of Mathematics

Hanoi

1. INTRODUCTION

The theory of sufficient conditions for optimality has not been yet fully developed. Some sufficient conditions for optimization problems with equality-type constraints in Banach spaces have been given by loffe and Tikhomirov [2]. A few necessary and sufficient conditions for optimization problems with equality-type and inequality-type constraints have given by Levitin, Milyutin, Osmolovskii [5], Alepseev, Tikhomirov, Fomin [4]. Note, however, that in all the mentioned works, only the inequality-type constraint including a finite number of functionals is considered.

In the present paper, using the locally M-surjective mapping theorem in [1] we obtain a general sufficient condition of second-order for the problem with an inequality constraint relative to a closed convex cone and a form of local K-function of this problem. Also, some necessary conditions are derived in the form of certain local K-functions for the case where the cone M is the non-positive orthant. Finally, a necessary condition of second-order is established. From these results we obtain as special cases certain earlier results, including one of Ioffe and Tikhomirov in [2].

Let X, Y be real Banach spaces. Assume that Y is ordered by a closed convex cone M. Let D be an open subset of X, f_0 a real valued function on D, and F a mapping from D into Y. Let us consider the following problem:

(I)
$$\begin{cases} f_0(x) \to inf \\ F(x) \in M \end{cases}$$

The Lagrangian of Problem (I) is defined as follows:

$$\mathcal{L}(x, \wedge) = f_0(x) + \langle \wedge, F(x) \rangle,$$

where $\land \in Y^*$.

Assumptions.

- (i) f_0 , F are continuously Frechet differentiable in a neighbourhood of $\mathbf{x}_0 \in D$;
- (ii) At \mathbf{x}_0 the Kuhn-Tucker necessary optimality condition holds. This means that there is continuous linear functional $\bigwedge \in (-M)^*$ such that

$$\mathcal{L}^{\cdot}(\mathbf{x}_0, \wedge) = 0;$$

(iv) $F(x_0) = 0$.

We now recall some notations and results (see [1], [3]), to be used in the present paper.

Let f_1 , f_2 be two mappings from an open subset U of X into \bar{Y} . The mapping f_2 is said to be ([1]) in the (U, α) -Lipschitz proximity of f_1 if:

$$(\forall x, x' \in \mathbf{U}) \parallel f_1(x) \mid f_2(x) - f_1(x') - f_2(x') \parallel \leqslant \alpha \parallel x - x' \parallel$$

In the case that f_l is continuously Fréchet differentiable in U, the mapping $f_2(x) = f_l(x_0) + f_l(x_0)(x - x_0)$ is in the (U, α) - Lipschitz proximity of f_l for some $\alpha > 0$.

The inverse of a convex process G (from X into Y) is the convex process $G^{-1}(Y \to X)$, whose norm is defined by

$$\parallel G^{-1} \parallel = \inf \left\{ \begin{array}{l} \gamma \geqslant \mathrm{o} \, ; \, \forall \, y \in \mathrm{range} \, G, \, \exists x \in G^{-1} \, (y) \colon \| \, x \, \| \leqslant \gamma \, \| \, y \, \| \, \end{array} \right\}$$

If G is a convex process, then by a lemma in [1] $\|G^{-1}\| < \infty$.

THEOREM 2.1 [1].

Let f be a mapping from an open subset U of X into Y and $X_0 \in U$. Assume there is in a (U, α) - Lipschitz proximity of f a M - surjective mapping $f(x_0) + g(x - x_0)$ such that $g: X \to Y$ is linear continuous, and $\alpha \parallel G^{-1} \parallel 0 < 1$, where G denotes the convex process G(x) = g(x) - M.

Then for every $u \in U$, for every v such that $||v - f(u)|| < \frac{1-0}{||G-1||} \rho(u, \frac{1-0}{||G-1||})$

 $X \setminus U$) and for every $\delta > 0$ the equation

$$f(x) \in v + M$$

has at least one solution x satisfying

$$||x - u|| \le C ||v - f(u)|| (C = \frac{1+\delta}{1-\theta} || G^{-1} ||)$$

where ρ (u, X \ U) denotes the distance from x to X \ U.

Hence f is M — surjective at every point of U and the mapping $F_l(x) = f(x)$ — M carries every open subset of U onto an open subset of $F_l(U)$.

To derive the general sufficient condition we need the following.

LEMMA 2. 1. Under the same hypotheses as in Theorem 2. 1., for every $\delta > 0$ there exists a neighbourhood U' of x_0 such that for every $x \in U'$ there is $\widehat{x} \in U$ such that

$$f(\widehat{x}) \in f(x_0) + M \tag{2.1}$$

$$\|\widehat{x} - x\| \le C \|f(x) - f(x_0)\|.$$
 (2. 2)

This Lemma contains as a special case the generalized Ljusternik's theorem [2].

Proof. Taking a number r > 0 such that $B(x_0, 2r) \subset U$, where $B(x_0, 2r)$ denotes the open ball of radius 2r around x_0 , by virtue of the continuity of f, we see that for every $\delta > 0$ there exists a neighbourhood U of x_0 (U $\subset B(x_0, r)$) such that

$$(\forall x \in U') \| f(x) - f(x_0) \| < \frac{(1-\theta)r}{(1+\delta) \| G^{-1} \|}.$$
 (2. 3)

Observe that

$$(\forall x \in U') \qquad \rho(x, X \setminus U) > r. \qquad (2.4)$$

By (2, 3), (2, 4) we get

$$(\forall x \in U') \| f(x) - f(x_0) \| < \frac{(1-\theta)}{\| G^{-1} \|} \rho(x, X/U).$$

Applying Theorem 2. 1 to the point $v = f(x_0)$, for every $x \in U'$ there exists $\widehat{x} \in X$ such that (2.1), (2.2) hold.

It follows from (2.2), (2.3) that

$$\|\widehat{x} - x_0\| < 2r$$

which means $\widehat{x} \in U$. This completes the proof.

DEFINITION 2.1. We say that the mapping f is M-regular at $x_0 \in U$ if f is Fréchet differentiable at x_0 and $f'(x_0)$ is a M-surjection of X onto Y i. e. the multivalued mapping $f'(x_0) - M$ is surjective.

When $M = \{0\}$ we obtain as a special case the usual concept of regular mapping.

LEMMA 2. 2. Assume f is M-regular at $x_0 \in U$. Then for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $\zeta \in B(x_0, \delta)$ satisfying $f(\zeta) \in f(x_0) + M$ there is $\eta \in X$ such that $\| \eta \| < \varepsilon \| \zeta - x_0 \|$ and

$$\zeta + \eta - x_0 \in \{\xi : f'(x_0) \xi \in M\}.$$

Proof. It has been established in [1] that if a mapping $g: X \to Y$ is M—convex, M—closed, M—surjective, then g is locally M—surjective. Thus the mapping $f'(x_0)$ is locally M—surjective i.e. the associated multivalued mapping $F_{j}(x) = u'(x_0)x-M$ is locally surjective. Hence there exists a number r > 0 such that

$$F_l(B_x(\theta, l)) \supset B_y(\theta, r) \tag{2.5}$$

(here $B_x(\theta, l)$, $B_y(\theta, r)$ denote the open balls of radius l, r around θ in X, Y resp).

For $\epsilon > 0$, by virtue of the differentiability of f at x. there exists a number $\delta > 0$ such that for every $\zeta \in B(x_0, \delta)$,

$$||f(\zeta) - f(x_0) - f'(x_0)(\zeta - x_0)|| < \varepsilon r ||\zeta - x_0||$$
 (2.6)

By (2.5), (2.6), there exists $\eta' \in X$ such that $||\eta'|| < 1$ and

$$\frac{f(\zeta) - f(\mathbf{x}_0)}{\varepsilon \| \zeta - x_0 \|} - f'(x_0) \left(\frac{\zeta - x_0}{\varepsilon \| \zeta - x_0 \|} \right) \in F_1(\eta'),$$

which implies that

$$f'(x_0)\eta' \in -f'(x_0) \left(\frac{\xi - \mathbf{x}_0}{\varepsilon \| \xi - \mathbf{x}_0 \|} \right) + \frac{f(\xi) - f(\mathbf{x}_0)}{\varepsilon \| \xi - \mathbf{x}_0 \|} + M$$
 (2.7)

Obviously,
$$f(\zeta) \in f(_{\circ}) + M \text{ implies } \frac{f(\zeta) - f(x_{\circ})}{\varepsilon \| \zeta - x_{\circ} \|} \in M$$
 (2.8)

It follows from (2.7), (2.8) that

$$f'(x_0)\left(\eta' + \frac{\xi - x_0}{\varepsilon \| |\xi - x_0||}\right) \in M$$
 (2.9)

Setting $\eta = \epsilon \| \zeta - x_o \| \eta$ we obtain $\| \eta \| < \epsilon \| \zeta - x_o \|$ and

$$f'(x_0) (\eta + \zeta - x_0) \in M,$$

which completes the proof.

We are now in a position to formulate a general sufficient optimality condition of second-order for Problem (I).

THEOREM 2.2. Assume that Assumptions (i) — (iv) are satisfied for Problem (I), and that the mapping F is M-regular at x_0 . Furthermore, assume that the mappings f_0 , F are twice continuously Fréchet differentiable at x_0 , and there is a number $\sigma < 0$ such that

$$\mathcal{L}_{xx}^{"}(x_0, \wedge) (\xi, \xi) \geqslant \delta \| \xi \|^2, \tag{2.10}$$

$$(\forall \xi \in \{ \zeta : F(x_0) \zeta \in M \})$$

Then x_0 is a local solution of Problem (I).

Proof. In In Indian Problem (I) at x_0 can be constructed, then x_0 is a local solution of this problem (see [2]). Hence it suffices to verify that the function φ defined as follows is a local K-function of Problem (I) at x_0 :

$$\varphi(x) = f_0(x_0) - \langle \wedge, F(x) \rangle - \gamma \parallel F(x) \parallel.$$
 (2.11)

where T is the number in Assumption (iii).

Recall that the function $\varphi \colon X \to R$ is said to be a local K-function of Problem (I) at x_0 if there is a neighbourhood U of x_0 such that

- a) $f_0(x_0) = \varphi(x_0)$,
- b) for every admissible point $x \in U$: $\varphi(x) \geqslant \varphi(x_0)$

c)
$$f_0(x) - \varphi(x) \geqslant 0$$
 $(\forall x \in U)$

We now prove that the function φ defined by (2,11) satisfies these conditions a)—c).

Condition a). In view of Assumption (i), it follows from (2.11) that

$$f_0(x_0) = \phi(x)$$

Condition b) Let x be an arbitrary admissible point of Problem (I) i. e. $F(x) \in M$. According to Assumption (iii), we have

$$> \land, -F(x) > \nearrow \gamma \parallel F(x) \parallel$$

which implies

$$\varphi(x) = f_0(x_0) + \langle \wedge, -F(x) \rangle - \gamma \parallel F(x) \parallel \geqslant f_0(x_0) = \varphi(x_0).$$

Condition c setting $p(x) = \mathcal{L}(x, \wedge) - f_o(x_o)$ we obtain

$$f_0(x) - \varphi(x) = p(x) + \gamma \parallel F(x) \parallel.$$

Because the mappings f_0 , F are twice continuously Fréchet differentiable at x_0 , for every $\varepsilon > 0$ there exists a neighbourhood U_1 of x_0 ($U_1 \subset D$) such that for every $x \in U_1$, $| p(x) - p(x_0) - < p'(x_0)$, $x - x_0 >$

$$-\frac{1}{2}p''(x_0)(x-x_0,x-x_0)|<\frac{\varepsilon}{2}||x-x_0||^2.$$
 (2.12)

Putting $F_1(x) = F'(x_0) x - M$ we see that is a convex process and $||F_1^{-1}|| < \infty$. Hence, for a positive number 0 < 1 there are a neighbour-

hood U_2 of x_o ($U_2 \subset U_1$) and a number $\alpha > 0$ such that $\alpha \parallel F_1^{-1} = \emptyset < 1$, and, the mapping $F(x_0) + F'(x - x_0)$ is in the (U_2, α) - Lipschitz proximity of F(x).

Since $p'(\mathbf{x}_0) = 0$ and $p'(\mathbf{x})$ is continuous in a neighbourhood of \mathbf{x}_0 , there exists a neighbourhood U_3 of x_0 ($U_3 \subset U_2$) such that for every $x \in U_3$,

$$p(x) - p(x_0) \le ||x - x_0|| \sup_{\xi \in U_3} ||p'(\xi)||$$
 (2.13)

Applying Lemma 2.2 to the mapping F we have a number $\delta_1 > 0$ such that $B(x_0, \delta_1) \subset U_3$ and for every $\zeta \in B(x_0, \delta_1)$ satisfying $F(\zeta) \in M$ there exists $\eta \in X$ such that $\| \eta \| < \varepsilon \| \zeta - x_0 \|$,

$$F'(x_0) (\zeta + \eta - x_0) \in M.$$
 (2.14)

Applying Lemma 2.1 to the mapping F, yields a neighbourhood U of x_o such that $U \subset B(x_o, \delta_1)$ and for every $x \notin U$ there exists $x \in B(x_o, \delta_1)$ satisfying

$$F(\widehat{x}) \in M \tag{2.15}$$

$$\|\widehat{\mathbf{x}} - x\| \leqslant C_I \|F(x)\| \tag{2.16}$$

From Lemma 2.2 applied to \hat{x} it then that there is $\eta \in X$ satisfying (2.14).

According to Assumption (ii), by (2.12), (2.13), (2.16), and the mean value theorem we have for every $x \in U$.

$$\begin{split} &f_{0}(x) - \varphi(x) = p(x) - p(\widehat{x}) + p(\widehat{x}) + \gamma \parallel F(x) \parallel \geqslant \\ & \geqslant -\sup \left\{ \parallel p^{*}(\xi) \parallel : \xi \in [x, \widehat{x}], \ x \in \mathbb{U} \right\} \parallel \widehat{x} - x \parallel + \gamma \parallel F(x) \parallel + \\ & + \frac{1}{2} p^{**}(x_{0}, \widehat{x} - x_{0}, \widehat{x} - x_{0}) - \frac{\varepsilon}{2} \parallel \widehat{x} - x_{0} \parallel^{2} \geqslant \\ & \geqslant \frac{1}{2} \left\{ \mathcal{L}_{xx}^{**}(x_{0}, \wedge) (\widehat{x} - x_{0}, \widehat{x} - x_{0}) - \varepsilon \parallel \widehat{x} - x_{0} \parallel^{2} \right\} \end{split}$$

In view of Lemma 2.2, and the fact that \mathcal{L}''_{xx} (.) (ξ, ζ) is a bilinear form, it follows from (2.10), (2.18) that for every $x \in U$,

$$\mathcal{L}_{xx}^{"}(\mathbf{x_0}, \ \land) \ (\widehat{x} - x_0, \ \widehat{x} - x_0) - \varepsilon \ \|\widehat{x} - x_0\|^2 \geqslant 0.$$

completing the proof. of Theorem 2.2.

Applications.

From Theorem 2.2 we obtain as special cases certain known results, including one of Ioffe and Tikhomirov in [2]. Let us mention some of these cases.

1) Consider the following problem

(II)
$$\begin{cases} \min_{x \in F_o} f(x), \\ \text{subject to} \\ F(x) = o, x \in D, \end{cases}$$

where f₀, F, D are as in Problem (I).

COROLLARY 2.1 (Ioffe and Tikhomirov [2])

Assume that F is regular at x_0 , F $(x_0) = 0$. Furthermore, assume there exist $h \in Y^*$ such that $\mathcal{L}_x^*(x_0, h) = 0$, and a number $\delta > 0$ such that

$$\mathcal{L}_{xx}^{"}(x_0, \wedge)$$
 $(\xi, \zeta) \geqslant \parallel \sigma \parallel \xi \parallel^2 (\forall \xi \in Ker \ F(x_0))$

Then x_0 is a local solution of Problem (II). Proof. It is easily seen that Assumption (iii) holds with $M = \{0\}$ and any number $\gamma > 0$. Hence the corollary follows from Theorem 2.2.

2) Consider the following

(III)
$$\begin{cases} \text{minimize } f_o(x), \\ \text{subject to} \\ f_i(x) \leq 0, i = 1, ..., k, \\ G(x) = 0, \mathbf{x} \in D, \end{cases}$$

here f_o , D are as in Problem (I), and $f_i:D\to R$ (i=l,...,k), $G:D\to Y$. COROLLARY 2.2. Suppose that G, f_i (i=0,l,...,k) are twice continuously Frechel differentiable at x_0 , and $(G'(x_0),f'_1(x_0),...,f_k(x_0))$ is a M_l — surjection of X onto $Y\times R^k$ with $M_l=\{0\}\times R^k$, where R^k denotes the non-positive orthant of R^k . Furthermore, there are numbers $\lambda_i>0$ (=i,l,...,k) and a functional $y^*\in Y^*$ such that $G(x_0)=0$, $f_i(x_0)=0$ (i=l,...,k) and

$$\mathcal{L}_{x}(x_{0}, \lambda_{1}, ..., \lambda_{k}, y) = 0,$$

where $\mathcal{L}(x, \lambda_1, ..., \lambda_k, y) = f_0(x) + \sum_{i=1}^k \lambda_i f_i(x) + \langle y, G(x) \rangle$, $\mathcal{L}''_{xx}(x_0, \lambda_1, ..., \lambda_k, y) (\xi, \xi) > \sigma \|\xi\|^2$, (for some $\sigma > 0$,

$$\forall \xi \in Ker \ G'(x) \land \{\xi : \langle f'_i(x_0), \xi \rangle \leqslant \theta, i = 1, ..., k\}$$

Then x_0 is a local solution of Problem (III).

Proof. Since $\lambda_i > 0$ (i = 1, ..., k), the functional (y, λ_1 ..., λ_R) is uniformly positive with respect to the cone M_1 . Thus all the hypotheses of Theorem 2.2 are satisfied, and therefore the Corollary follows.

3) Consider the mathematical programming problem:

(IV)
$$\begin{cases} & \text{minimize } f_0(x), \\ & \text{subject to :} \\ & f_i(x) = 0, (i = l, ..., k) \\ & f_j(x) \leqslant 0, (j = k + l, ..., n), x \in D, \end{cases}$$

where f_0 , D are as in Problem (I), $f_i : D \to R$ (i = 1, ..., n).

COROLLARY 2.4. Assume that f_i (i = 0,1,...,n) are twice continuously Fréchet differentiable at x_0 , and the system $f_i^*(x_0)$, ..., $f_i^*(x_0)$ is linearly independent. Suppose in addition that there exist numbers $\lambda_1, ..., \lambda_n$ with $\lambda_i > 0$ (i = k+l,...,n) such that $f_i^*(x_0) = 0$ (i = 1,...,n),

$$\mathcal{L}'_{x}(x_0, \lambda_1, ..., \lambda_n) = \theta$$
,

whe**re**

$$\mathcal{L}(x, \lambda_1, ..., \lambda_n) = f_0(x) + \sum_{i=1}^n \lambda_i f_i(x),$$

$$\mathcal{L}_{xx}^{"}(x, \lambda_1, ..., \lambda_n) (\xi, \xi) \geqslant \sigma \|\xi\|^2 (for some \sigma > 0,$$

$$\forall \xi \in \{\ell : < f'(x), \ell > = 0, < f'(x), \ell > < 0.$$

$$\forall \ \xi \in \{\zeta : \langle f_i^*(x_0) \ \zeta \rangle = 0, \langle f_j^*(x_0), \ \zeta \rangle \leqslant 0,$$

$$i = 1, ..., k; \ j = k + 1, ..., u\}$$

Then x_0 is a local solution of Problem (IV).

Proof. Since the system $f'_l(x_0)$, ..., $f'_n(x^0)$ is linearly independent, $(f'_l(x_0), ..., f'_n(x^0))$

 $f'_n(x_0)$) is a surjection. Furthermore, the functional $\bigwedge = (\lambda_1, ..., \lambda_n)$ is uniformly positive with respect to the cone $M = \{0\} \times R_-^{n-k}$, where $\{0\} \subset R^k$, as $\lambda_j > 0$ (j = k + 1, ..., n). Thus all the hypotheses of Theorem 2.2 hold and therefore the Corollary follows.

In the theory on necessary and sufficient optimality conditions, a key point is to incorporate certain constraints onto the objective function. In this section we shall prove a theorem of this type, which implies a result of loffe and Tikhomirov [2].

Consider the following problem:

(1°)
$$\begin{cases} \mathcal{L}(x, \wedge) \to \inf, \\ F(x) \leftarrow M, \end{cases}$$

where ∧ is the in Assumption (ii).

It is of interest to note that if \mathbf{x}_0 is a local solution of Problem (I') then \mathbf{x}_0 is a local solution of Problem (I), but the converse does not hold in general (under Assumptions (ii), (iv)).

THEOREM 3.1. a) Let there be given f_0 , F satisfying Assumption (i), (ii) (iv) Assume that the mapping F is M—regular at x_0 . Then, any local solution x_0 of Problem (I'), is a local solution of the following problem for every number $0 \beta > 0$:

(V)
$$f_0(x) + \langle \wedge F(x) \rangle + \beta \| F(x) \| - f_0(x_0) \to \inf$$

b) It the mapping F satisfies Assumption (iii), then any local solution x_0 of Problem (V), is a local solution of Problem (I) here $\beta \leftarrow (\theta, \gamma)$, γ is the number in Assumption (iii)).

Proof. a) First, suppose that x_0 is a local solution of Problem (I') i.e. there exists a neighbourhood U_1 of x_0 such that for every $x \in U_1$ satisfying. $F(x) \in M$,

$$\mathcal{L}(x, \, \wedge) - \mathcal{L}(x_0, \, \wedge) \geqslant 0. \tag{3.1}$$

Putting $p(x) = f_0(x) + \langle \Lambda, F(x) \rangle - f_0(x_0)$, we get

$$p(x) = \mathcal{L}(x, \dot{\wedge}) - f_0(x_0) \tag{3.2}$$

For any positive number $\theta < 1$, we can take a number α so that $\alpha \| F_1^{-1} \| = \theta < 1$, where $F_1(x) = F'(x_0)x - M$, such that the mapping $F(x_0) + F'(x_0)(x - x_0)$ is in the (U_2, α) - Lipschitz proximity of F(x) for some neighbourhood U_2 of $x_0(U_2 \subset U_1)$.

By Assumptions (ii), (iv) it follows from (3. 2) that $p(x_o) = 0$, $p'(x_o) = 0$. Because of Assumption (i), p'(x) is continuous in a neighbourhood of x_o . Hence for an arbitrary number $\beta > 0$, there exists a neighbourhood U_3 of x_o' ($U_3 \subset U_2$ such that for every $x, x' \in U_3$,

$$|p(x) - p(x')| \le \frac{\beta}{c} ||x - x'|| (c = \frac{2 ||F_1^{-1}||}{1 - \theta})$$
 (3.3)

By Lemma 2. 1 applied to the mapping F there is a neighbourhood U of x_o ($U \subset U_3$) such that for every $x \in U$ there exists $\widehat{\mathbf{x}} \in \mathbf{U}$ satisfying $F(\widehat{x}) \in M$ and

$$\|\widehat{x} - x\| \leqslant C \|F(x)\| \tag{3.4}$$

From (3.1) it follows that $p(\widehat{x}) \geqslant 0$, hence by (3.3), (3.4) we have for every $x \in U$,

$$p(x) \geqslant p(\widehat{x}) - p(x) \geqslant -\frac{\beta}{C} \|\widehat{x} - x\| \geqslant -\beta \|F(x)\|,$$

This implies

$$f_0(x) - f_0(x_0) + \langle \wedge, F(x) \rangle + \beta \| F(x) \| \geqslant 0$$
 (3.5)

Therefore x_0 is a local solution of Problem (V).

b) Now assume that x_0 is a local solution of Problem (V), so there exists a neighbourhood U of x_0 such that for every $x \in U$ (3. 5) holds.

With $F(x) \in M$ it follows from Assumption (iii) that

$$-<\wedge, F(x)> \beta \parallel F(x) \parallel.$$

whenever $0 < \beta \leqslant \gamma$.

Hence, for every admissible point x ∈ U of Problem (I).

$$f_0(x) \geqslant - < \bigwedge, F(x) > -\beta \parallel F(x) \parallel + f_0(x_0) \geqslant f_0(x_0)$$

This means that x_0 is a local solution of problem(I)

Remark. In the case where the mapping F is regular at x_0 , Problem (I') can be replaced in Theorem 3.1a by Problem (I'). Thus if F—regular at x_0 , then x_0 is a local solution of Problem (I) if and only if x_0 is a local solution of Problem (V) (whenever $0 < \beta \le \gamma$).

THEOREM 3. 2. Let there be given f_0 , F satisfying Assumptions (i) — (iv). Suppose that the mapping F is M — regular at x_0 and x_0 is a local solution of Problem (I) (thus x_0 is also local solution of Problem (I)). Then for each $\beta \in (0, \gamma)$, the function ϕ_{β} below is a local K — function of Problem (I) at x_0 :

$$\varphi_{\beta}(x) = f_0(x^0) - \langle \wedge, F(x) \rangle - \beta \parallel F(x) \parallel,$$
 (3.6)

where γ is the number in Assumption (iii).

Proof. We shall check the three conditions of a local K-function to $\varphi_{\beta}(x)$.

In view of Assumption (iv) it follows from (3.6) that for any β , $\varphi_{\beta}(x_0) = f_0(x_0)$.

For an arbitrary admissible point x, we obtain by virtue of Assumption (iii) that

$$-< h, F(x) > > \beta \parallel F(x) \parallel$$

whenever o< $\beta \leqslant \gamma$,

from which it follows by (3.6) that

$$\varphi_{\beta}(x) \geqslant \varphi_{\beta}(x_0) = f_{0}(x_0).$$

Thus the condition a), b) of a local K-function hold for $\varphi_{\theta}(\mathbf{x})$.

To prove condition c) we observe that

$$f_0(x) - \varphi_{\beta}(x) = f_0(x) - f_0(x_0) + \langle \wedge, F(x) \rangle + \beta \parallel F(x) \parallel$$

Since x_0 is a local solution of Problem (I'), it is also a local solution Problem (V) by Theorem 3.1a. This means that there is a neighbourhood U of x_0 such that

$$f_0(x) - f_0(x) + \langle \wedge, F(x) \rangle + \beta \| F(x) \| \geqslant 0,$$

whenever $x \in U$, $0 < \beta \le \gamma$

In other words,

$$f_0(x) - \varphi_{\beta}(x) \geqslant 0.$$

This completes the proof.

COROLLARY 3.1. (Ioffe and Tikhomirov [2])

Assume that the mapping F is regular at $x_0 \in D$, x_0 is an admissible point of Problem (II). Then x_0 is a local solution of Problem (II) if and only if there is $\bigwedge \in Y^*$ such that for every $\beta > 0$ the function $\phi_{\beta}(x)$ below is a local K - function of Problem (II) at x_0 :

$$\varphi_{\beta}(u) = f_0(x_0) - \langle \rangle, F(x) \rangle - \beta \| F(x) \|$$

Proof. In this case we see that x_0 is a local solution of Problem (I) if and only if x_0 is a local solution of Problem (I'). According to the Lagrange multiplier principle, there exists $h \in Y^*$ such that \mathcal{L}_X' $(x_0 \ h) = 0$. Taking $M = \{0\}$, Assumption (iii) holds for h and any number y > 0. The Corollary now follows from Theorem 3.2.

In what follows, we shall give an example in which a solution of the problem under consideration is easily derived from Theorem 3.1. Example 3.1. Consider the problem (with $X = Y = R^3$)

$$(\text{VI}) \left\{ \begin{array}{l} f_0(x_1,x_2,x_3) = 3x_1 + 2x_2 + x_3 + x_1^2 \ + \ 2x_2^4 \rightarrow \inf, \\ f_1(x_1,x_2,x_3) = -x_1 - x_2 - x_3 \ + x_1^2 \leqslant \theta, \\ f_2(x_1,x_2,x_3) = -x_1 - x_2 \ + x_3^2 \leqslant \theta, \\ f_3(x_1,x_2,x_3) = -x_1 \ - x_2^4 \leqslant \ell. \end{array} \right.$$

We have

$$f_0'(0, 0, 0) = (3, 2, 1), \quad f_1'(0, 0, 0) = (-1, -1, -1),$$

$$f_2'(0, 0, 0) = (-1, -1, 0), f_2'(0, 0, 0) = (-1, 0, 0)$$

It is easily seen that the Kuhn Tucker necessary optimality condition holds with Lagrange multipliers $\lambda_1 = \lambda_2 = \lambda_3 = 1$ and Assumption (iii) is satisfied with $\gamma = 1$. Since the system f_1^2 , f_2^2 , f_3^2 is linearly independent, the regularity condition holds.

Then by the Remark to Theorem 3.1, Problem (VI) is equivalent to the following one (in a neighbourhood of the point 0):

$$f_0 + f_1 + f_2 + f_3 + \sqrt{f_2^1 + f_2^2 + f_3^2} - f_0(0) \rightarrow inf$$

which means that

$$\begin{split} g\left(x_{1},\,x_{2},\,x_{3}\right) &= 2x_{1}^{2} + x_{2}^{4} + x_{3}^{2} + \\ &+ \sqrt{\left(x_{1} + x_{2}^{4}\right)^{2} + \left(x_{1} + x_{2} - x_{3}^{2}\right)^{2} + \left(x_{1} + x_{2} + x_{3} - x_{2}^{2}\right)^{2}} \rightarrow inf. \end{split}$$

It rollows that the point (0, 0, 0) is a local solution of Problem (VI) because $g(x_1, x_2, x_3) \geqslant 0 \qquad (\forall (x_1, x_2, x_3) \in \mathbb{R}^3)$

4. SOME NECESSARY AND SUFFICIENT CONDITION FOR PROBLEM (III)

Let us now consider Problem (III) mentioned in Section 2:

(III)
$$\begin{cases} f_0(x) \to \inf, \\ f_i(x) \leqslant 0, i = 1,..., k, \\ G(x) = 0, \end{cases}$$

Here $f_i(x) = \psi_i[p_i(x)]$ (i = 0,1,..., k), p_i is a mapping from D into a Banach space Y_i , ψ_i a sublinear continuous functional on Y_i , and $G: D \to Y$.

Suppose $p_o,...,p_k$, G are continuously Fréchet differentiable in a neighbourhood of $x_o \in D$ and that the mapping G is regular at x_o .

Under these hypotheses, Dubovitsky — Milyutin [6] have shown that if x_0 is a local solution of Problem (I), then there exist numbers α_i , and linear continuous functionals $y_i^* \in Y_i^*$ (i = 0, 1,..., k), $y^* \in Y^*$ such that.

Fous functionals
$$y_i^* \in Y_i^*$$
 (i = 0, 1,..., k), $y^* \in Y^*$ such that.
$$\begin{cases}
\alpha_i \geqslant 0, < y_i^*, \ y_i > \leqslant \psi_i(y_i) \ (\forall y_i \in Y_i; i = 0, 1,..., k) \\
< y_i^*, \ p_i(x_o) > = \psi_i[p_i(x_o)] \ (i = 0, 1,..., k), \\
\alpha_i f_i(x_o) = 0 \ (i = 1,..., k), \\
\sum_{i=0}^k \alpha_i[p_i^*(x_o)]^* y_i^* + [G^*(x_o)]^* y^* = 0, \\
\sum_{i=0}^k \alpha_i = 1
\end{cases}$$
(4.4)

Denote by Ω_0 the set of all $\lambda = (\alpha_0, ..., \alpha_k, y_0^*, ..., y_k^*, y^*)$ satisfying (4.1) – (4.5) and for each number $\eta > 0$, denote by Ω_{η} the set of all λ satisfying the following:

$$\begin{cases} \alpha_{i} \geqslant 0, \langle y_{i}^{*}, y_{i} \rangle \leqslant \psi_{i}(y_{i}) & (\forall y_{i} \in Y_{i}; i = 0, l, ..., k) \\ \langle y_{i}, p_{i}(x_{0}) \rangle - \Gamma_{i}(x_{0}) \geqslant -\eta & (i = l, ..., k) \\ \alpha_{i} \Gamma_{i}(x) = 0 & (i = l, ..., k) \end{cases}$$

$$(4.6)$$

$$\langle y_i, p_i(x_0) \rangle - \mathbf{I}_i(x_0) \geqslant -\eta \qquad (i = l, \dots k)$$
 (4.7)

$$a_i f_i(x) = 0 (i = l, \dots, k) (4.8),$$

$$\int_{i=0}^{k} \sum_{i=0}^{k} \alpha_{i} \left[p_{i}'(x_{0}) \right]^{*} y_{i}^{*} + \left[G'(x_{0}) \right]^{*} y^{*} \| \leqslant \eta, \tag{4.9}$$

$$\sum_{i=0}^{k} \alpha_i = 1 \tag{4.10}$$

In [5] Levitin, Milyutin, Osmolovsky have proved that Ω_1 is convex weakly* compact.

Note that since G is regular at x_0 , by virtue of Lyusternik's theorem, there exists a neighbourhood U of x_0 , a number C>0 and a mapping $\chi:U\to X$ such that

$$\begin{cases}
 \|\chi(x)\| \leq C \|G(x) - G(x_0)\|, \\
 G(x + \chi(x)) = G(x_0)
\end{cases} (4.11)$$

$$G(x + \chi(x)) = G(x_0)$$
(4.12)

We now consider an admissible x₀ of Problem (III).

THEOREM 4. 1. x_0 is a local solution of Problem (III) if and only if for each $\varepsilon>0$, the function $\varphi(x)$ below is a local K-function of Problem (1) at x_0 :

$$\varphi\left(x\right)=f_{0}\left(x\right)-\alpha_{0}\left[\left\langle y_{0}^{*},p_{0}\left(x_{0}+\chi\left(x\right)\right)\right\rangle -f_{\varphi}\left(x\right)\right]-$$

$$-\sum_{i=1}^{k}\alpha_{i} \langle y_{i}^{*}, p_{i}(x_{0}+\gamma(x))\rangle - \langle y^{*}, G(x_{0})+\chi(x)\rangle \rangle - 2 \parallel \chi(x) \parallel, \text{ where }$$

$$\lambda = (\alpha_0, ..., \alpha_k, y_0^*, ..., y_k^*, y^*) \in \Lambda_0$$
(4.13)

Proof. It suffices to prove the necessity because the sufficiency follows from a result of Ioffe and Tikhomirov [2].

By (4.11), it follows from (4.2), (4.3) that condition a) for a local K-function for \phi holds.

Now let x be an admissible point of Problem (III). By (4.11) we get $\varphi(x) = f_0(x)$. Because x_0 is a local minimum of Problem (III), there exists a neighbourhood U of x_0 such that for every admissible point $x \in U$:

$$f_{0}(x) - f_{0}(x_{0}) \geqslant 0.$$

This implies

$$\varphi(x)-\varphi(x)\geqslant 0,$$

i. e. condition b) of a local K-function for ϕ holds.

Setting

$$g\left(x\right) = \alpha_{0}\left[\left\langle y_{0}^{*}, p_{0}\left(x\right)\right\rangle - f_{0}\left(x\right)\right] + \sum_{i=1}^{k} \alpha_{i}\left\langle y_{i}^{*}, p_{i}\left(x\right)\right\rangle + \left\langle y^{*}, G\left(x\right)\right\rangle, \text{ by virtue}$$
 of the differentiability of, p_{i} , G , for every $s > 0$ there exists $\delta > 0$ such that for any x satisfying $\|\mathbf{x} - \mathbf{x}_{0}\| < \delta$,

$$\mid g(x) - g(x_0) - \langle g'(x_0), x - x_0 \rangle \mid \langle \varepsilon \parallel x - x_0 \parallel$$
 (4.14)

Since G is continuous at x_0 , for $\delta > 0$ there is $\delta_1 > 0$ such that $\|x - x_0\| < \delta_1$ implies $\|G(x)\| < \frac{\delta}{C}$ (we can choose δ_1 so that $B(x_0, \delta_1) \subset B(x_0, \delta) \subset U$).

It follows from (4.11) that $x + \chi(x_j \in B(x_0, \delta))$, Hence by (4.14),

 $|g(x_o + \chi(x)) - g(x_o)| - \langle g'(x_o), \chi(x) \rangle| \le \varepsilon ||\chi(x)||, \text{ which implies by}$ (4.2) - (4.4) that

$$g(x_{_{\scriptscriptstyle{O}}} + \mathrm{C}(x)) + \epsilon \cdot \| \ \mathrm{C}(x) \| \geqslant g(x_{_{\scriptscriptstyle{O}}}) + < g^{\star}(x_{_{\scriptscriptstyle{O}}}), \ \mathrm{C}(x) > =$$

$$= \alpha_{o} \left[< y_{o}^{*}, P_{o}(x_{o}) > - f_{o}(x_{o}) \right] + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + < y^{*}, G(x_{o}) > + < y^{$$

$$+ <\alpha_o[P_o^{\bullet}(x_o)]^* \ y_o^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_{i=1}^k \alpha_i < [P_i^{\bullet}(x_o)]^* \ y_i^{\bullet}, \ \chi(x)> + \sum_$$

$$+ < [G'(x_o)]^* \ y^*, \ \chi(x) > + < \sum_{i=o}^k \ c_i [P'_i(x_o)]^* \ y^* + [G'(x_o)]^* \ y^*, \ \chi(x) > = 0$$

Thus

$$f_o(x) - \varphi(x) = g(x_o + \chi(x) + \varepsilon \| \chi(x)) \| \geqslant \theta \ (\forall \ x \in B(x_o, \delta_1)).$$

Therefore φ is a local K-function of Problem (III) at x_o .

THEOREM 4. 2. x_0 is a local solution of Problem (III) if and only if for each number $\eta > 0$, the function ϕ_{η} below is a local K-function of Problem (III) at x_0 :

$$\begin{split} & \varphi_{\eta}(x) = f_{o}(x) - \max_{\Omega_{\eta}} \; \{ \; \alpha_{o}[< y_{o}^{*}, \; P_{o}(x) > - f_{o}(x_{o})] \overset{\cdot}{+} \; \underset{i=1}{\overset{k}{\sum}} \; \alpha_{i} < \; y_{i}^{*}, \; P_{i}(x) \; + \\ & + < y^{*}, \; G(x) > \} \end{split}$$

Proof. As with Theorem 4.1, it suffices to prove the necessity. In [5] it has been shown that

$$\max_{\Omega_{\eta}} \big\{ \alpha_{o} \big[< y_{o}^{*}, P_{o}(x_{o}) > - f_{o}(x_{o}) \big] + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x_{o}) > + \\ + < y^{*}, G(x_{o}) > \big\} = 0$$

Hence condition a) of a local K-function for ϕ_{η} holds.

By virtue of the compactness of Ω_{η} , there exists

$$\overline{\lambda} = (\overline{a}_0, ..., \overline{a}_R, \overline{y}_0^*, ..., \overline{y}_R^*, \overline{y}^*) \in \Omega_{\eta}$$
 such that

$$\varphi_{\eta}(x) = f_{o}(x) - \overline{\alpha}_{o} \left[< \overline{y}_{o}^{*}, P_{o}(x) > - f_{o}(x_{o}) \right] - \sum_{i=1}^{k} \overline{\alpha}_{i} < \overline{y}_{i}^{*}, P_{i}(x) > - \overline{y}^{*}, G(x) > 0$$

Since $\langle \overline{y}_i^*, y_i \rangle \leqslant \psi_i(y_i)$ ($\forall y_i \in y_i$), for any admissible point x, one has

$$\begin{split} & -\overline{\alpha}_o \; [<\overline{y}_o^*, \, P_o(x)> -f_o(x_o)] \geqslant \; -\overline{\alpha}_o \left[\; \psi_o(P_o(x_o)) -f_o(x_o)\right] = \\ & = -\overline{\alpha}_o \; [f_o(x) -f_o(x_o)] -\overline{\alpha}_i < \overline{y}_i^*, \, P_i(x)> \geqslant -\overline{\alpha}_i \; \psi_i \; [P_i(x)] = -\overline{\alpha}_i f_i(x) \geqslant \\ & \geqslant 0 \; (i=1,\ldots, k), \; \text{which implies that} \end{split}$$

$$\varphi_{\eta}(x) - \varphi_{\eta}(x_o) \geqslant (1 - \overline{\alpha}_o) [f_o(x) - f_o(x_o)].$$

It follows from (4.10) that $1-\overline{\alpha}_o \geqslant 0$. Therefore, for every admissible x belonging to some neighbourhood U of x_o ,

$$\varphi_n(x) - \varphi_n(x_0) \geqslant 0$$

as \mathbf{x}_o is a local minimum of Problem (III). Thus Condition b) of a local K-function for ϕ_n holds.

In [5] it has been proved that for every x belonging to some neighbourhood V of x_0 (which can be chosen so that $V \subset U$).

$$\max_{\Omega_{\eta}} \; \{ \; \mathbf{x}_{o}[\; <\boldsymbol{y}_{o}^{*}, \; \boldsymbol{P}_{o}(\boldsymbol{x}) > -\boldsymbol{f}_{o}(\boldsymbol{x})] + \sum_{i=1}^{k} \; \boldsymbol{\alpha}_{i} <\boldsymbol{y}_{i}^{*} \;, \; \boldsymbol{P}_{i}(\boldsymbol{x}) > + <\boldsymbol{y}^{*}, \; \boldsymbol{G}(\boldsymbol{x}) > \} \geqslant \boldsymbol{\theta}.$$

Hence fo(x) $-\dot{\phi}_{\eta}(x) \geqslant 0 \ (\forall x \in V)$

Therefore ϕ_{η} is a local K-function of Problem (III) at \boldsymbol{x}_{o} .

By a proof similar to that of Theorem 4.2, using results in [5] we obtain the following theorem.

THEOREM 4.3. x_o is a local solution of Problem (III) if and only if there exists a number $\eta_o \gg o$ such that for every number η satisfying $o \leqslant \eta \leqslant \eta_o$, the function below is a local K-function of Problem (III) at x_o

$$\begin{split} \phi_{\eta}(x) &= f_{o}(x) - \max_{\Omega_{o}} \big\{ \alpha_{o} \big[< y_{o}^{*}, P_{o}(x) > - f_{o}(x) \big] + \sum_{i=1}^{k} \alpha_{i} < y_{i}^{*}, P_{i}(x) > + \\ &+ < y^{*}, G(x) > \big\} - \eta \ \sigma(x) \end{split}$$

where
$$\sigma(x) = [f_o(x) - f_o(x)]^+ - \sum_{i=1}^k f_i(x) + ||G(x)||, f^+ = \max\{f, \theta\}.$$

Finally we derive a second-order necessary condition for Problem (III) which contains as a special case a result in [4].

THEOREM 4. 4. Suppose that f_0 , ... f_k , G are twice continuously Fréchet differentiable in a neighbourhood of x_0 , G—regular at x_0 , x_0 is a local solution of Problem (III). Then for every ξ belonging to the set

$$T = \mathbf{K}er \ G'(x_0) \ \land \ \{ \ \xi \colon \langle f_i^*(x_0), \ \xi \rangle \leqslant 0, \ i = 1, \ ..., \ k \},$$

there exist numbers $\overline{\alpha_0}$ $(\xi) \geqslant 0$, ..., $\overline{\alpha_k}$ $(\xi) \geqslant 0$, and \overline{y}^* $(\xi) \in Y^*$ such that

$$L_{xx}^{"}(x_0,\overline{\alpha_0}(\xi),...,\overline{\alpha_k}(\xi),\overline{y}^*(\xi))(\xi,\xi)\geqslant 0\,(\forall\,\xi\in T)$$

where
$$\mathcal{L}(x, \alpha_0, \alpha_k, y^*) = \sum_{i=0}^k \alpha_i f_i(x) + \langle y^*, G(x) \rangle$$

Proof. For any $\xi \in T$, by virtue of the compactness of Ω_0 there exists $\overline{\lambda}$ $(\xi) = (\overline{\alpha}_0(\xi), ..., \overline{\alpha}_k(\xi), \overline{y}^*(\xi), ..., \overline{y}^*(\xi), \overline{y}^*(\xi)) \in \Omega_0$ such that

$$\begin{split} Q_o & (\xi) = \max_{\Omega_0} \left\{ \begin{array}{l} \alpha_o \left[\left\langle y_o^*, p_o \left(x_o + \xi \right) \right\rangle - f_o \left(\mathbf{x}_o \right) \right] + \sum_{i=1}^k \alpha_i < y_i^* \right., \\ p_i & (\mathbf{x}_o + \xi) \left\rangle + \left\langle y^*, G \left(\mathbf{x}_o + \xi \right) \right\rangle \right\} = \overline{\alpha_o} \left(\xi \right) \left[\left\langle \overline{y}_o^* \left(\xi \right), p_o \left(x_o + \xi \right) \right\rangle \right. \\ & > - \left. f_o \left(\mathbf{x}_o \right) \right] + \sum_{i=1}^k \overline{\alpha_i} \left(\xi \right), < \overline{y}^* \left(\xi \right), p_i \left(x_o + \xi \right) \right\rangle \\ & + < \overline{y}^* \left(\xi \right), G \left(x_o + \xi \right) \right) \end{split} \tag{4.15}$$

Assume now that there exists $\xi_o \in T$ such that $\|\xi_o\| = 1$, but

$$\mathcal{L}_{xx}^{\prime\prime}\left(x_{o}^{-\alpha}_{o}^{-\alpha}(\xi_{o}^{-}),...,\overline{\alpha}_{k}^{-\alpha}(\xi_{o}^{-}),\overline{y}^{*}(\xi_{o}^{-})\right)(\xi_{o}^{-\alpha},\xi_{o}^{-})=-\gamma<0$$

Choose $\eta > 0$ so that: $\eta \parallel G$ " $(x_0) (\xi_0) \parallel < \frac{\gamma}{2}$,

$$\eta \parallel f_o''(x_o)(\xi_o, \xi_o) \parallel < \frac{\gamma}{8}, \ \eta \parallel \sum_{i=1}^k f_i''(x_o)(\xi_o, \xi_o) \parallel < \frac{\gamma}{8}.$$
 (4.16)

By virtue of the differentiability of f_i and G, there exists a number $\delta > 0$ such that for every x satisfying $\|x\| < \delta$,

$$\|G(x_{o} + x) - G(x_{o}) - G'(x_{o})x - \frac{1}{2}G''(x_{o})(x, x)\| < \frac{\gamma \|x\|^{2}}{16}, \quad (4.17)$$

$$|f_{o}(x_{o} + x) - f_{o}(x_{o}) - \langle f_{o}(x_{o}), x \rangle - \frac{1}{2} f_{o}^{"}(x_{o})(x, x)| < \frac{\gamma \|x\|^{2}}{16}, \quad (4.18)$$

$$|g(x_o + x) - g(x_o)| - \langle g'(x_o), x \rangle - \frac{1}{2} g''(x_o) (x, x) | \langle \frac{\gamma \| x \|^2}{16}, (4.19) \rangle$$

(where
$$g = \sum_{i=1}^{k} f_i$$
),

Setting $\overline{\mathcal{L}}(x,.) = \mathcal{L}(x,.) - \overline{\alpha_0}(\xi_0) f_0(x_0)$ and noting that $\overline{\Lambda}(\xi_0) \in \Omega_0$, one has $\overline{\mathcal{L}}(x_0, \overline{\alpha_0}(\xi_0),..., \overline{\alpha_k}(\xi_0), \overline{y^*}(\xi_0)) = 0$, $\overline{\mathcal{L}}_x(x_0, \overline{\alpha_0}(\xi_0),..., \overline{y^*}(\xi_0)) = 0$ and

$$\mathcal{L}_{x}^{'}(x_{0}, \overline{\alpha_{0}}(\xi_{0}), ..., \overline{y^{*}}(\xi_{i})), \overline{\mathcal{L}}_{xx}^{"}(x_{0}, .) = \mathcal{L}_{xx}^{"}(x_{0}, .)$$

$$|\overline{\mathcal{L}}(x_{0} + x, .) - \overline{\mathcal{L}}(x_{0}, .) - \langle \mathcal{L}_{x}^{'}(x_{0}, .), x \rangle - \frac{1}{2} \mathcal{L}_{xx}^{"}(x_{0}, .) + \langle \frac{\gamma \|x\|^{2}}{16}$$

$$(4.21)$$

Hence for t satisfying $0 < t < \delta$, $\parallel t \mid \xi_0 \mid \parallel < \delta$ and for the function

$$6(x) = [f_0(x_0 + x) - f_0(x)]^+ + \sum_{i=1}^k f_i(x_0 + x) + \|G(x_0 + x)\| \text{ (where } x = 1)^k$$

 $f^+ = \max\{f, 0\}$, it follows from (4.16) - (4.19) that

From this and (4.21) we get

$$\overline{\mathcal{L}}(x_0 + t\xi_0, .) + \eta\sigma(t\xi_0) < -\frac{\gamma t^2}{2} + \frac{\gamma t^2}{16} + \frac{3\gamma t^2}{8} = -\frac{\gamma t_2}{16} < 0$$
 (4.23)

It follows from (4.1), (4.2), (4.23) that

$$\begin{split} &Q_{0}(t\xi_{0}) + \eta\sigma(t\xi_{0}) \leqslant \overline{\alpha}_{0}(\xi_{0})[\psi_{0}(P_{0}(x_{0} + t\xi_{0})) - f_{0}(x_{0})] + \\ &+ \sum_{i=1}^{k} \overline{\alpha_{i}}(\xi_{0}) \psi_{i}[P_{i}(x_{0} + t\xi_{0})] + \langle \overline{y^{*}}(\xi_{0})G(x_{0} + t\xi_{0}) > + \eta\sigma(t\xi_{0}) = \\ &= \overline{\mathcal{L}}(x_{0} + t\xi_{0}, \overline{\alpha_{0}}(\xi_{0}), ..., \overline{y^{*}}(\xi_{0})) + \eta\sigma(t\xi_{0}) < 0 \end{split} \tag{4.24}$$

On the other hand, it has been proved in [5] that for every x belonging to some neighbourhood of 0:

$$Q_0(x) + \eta \sigma(x) \geqslant 0$$
.

This implies that for t small enough,

$$Q_0(t\xi_0)+\eta\sigma(t\xi_0)\geqslant 0.$$

contradicting (4.24). The proof is complete.

COROLLARY 4.1 see [4].

Under the hypotheses of Theorem 4. 4, if x_0 is a local solution of Problem (III), then for every ξ belonging to the set

$$T_1 = \{ \xi : G'(x_0) \xi = 0, \langle f'_i(x_0), \xi \rangle = 0, i = 0, 1, ..., k \},$$

there exist numbers $\alpha_i(\xi) \geqslant 0$, $i = 0, 1, ..., k, y^*(\xi) \in Y^*$ such that

$$\mathcal{L}_{xx}^{\prime\prime}(x_0^{},\alpha_0^{}(\xi),...,y^*(\xi))(\xi,\xi)\geqslant 0\;(\,\forall\;\xi\in T_1^{})$$

Received July 23 1981

REFERENCES

- [1] P.C. Dirong and H.Tuy-Stability, Surjectivity and local invertibility of non-differentiable mappings-Acta Math. Vietnamica. Tom 3. No1 (1970), 89-105.
- [2] A.D. Ioffe, and V.M. Tikhomirov—The theory of extremum problems. Moscow. 1974 (in Russian).
- [3] R.T. Rockafellar Convex analysis. Princeton University Press. Princeton 1970.
- [4] V.M. Alekseev, V.M. Timokhorov, S.V.Fomin Optimal Control Moscow. 1979.
- [5] E.S. Levitin, A.A. Milyutin, N.P.Osmolovsky On necessary and sufficient conditions for local minimum in the press of constraints. DAN SSSR. TOM 21, No. 1022-1025.
- [6] A. Ya. Dubovvisky. and A. A. Milyutin Extremum problems in the presence of constraints. Z. Vychisl. Mat. i Mat Fiz. 5 (1965 453.)