A NUCLEARITY CRITERION FOR LOCALLY CONVEX SPACES HAVING SCHAUDER BASES

P.K. KAMTHAN
Indian Institute of Technology (India)

1. INTRODUCTION

Our purpose in this paper is to provide an alternative proof of the nuclearity criterion of a locally convex space equipped with an equicontinuous Schauder base and thereafter deduce the well-known Grothendieck—Pietsch citerion for nuclearity as a very simple corollary of the former. In the course of proof of the first result we develop a general technique for estimating Kolmogorov's n—th diameters of (semi—norm) neighbourhoods in a locally convex space possessing an equicontinuous Schauder base.

2. TERMINOLOGICAL EXCERPTS

We follow [1], [7], [10] and [4]; [5] respectively for the theories of locally convex spaces, nuclear spaces, Schauder bases and sequence spaces & series; however, we recall only a few relevant portions which interest us most for this paper. Throughout we write $X = (X, \mathcal{I})$ to mean a Hausdorff locally convex space (abbreviated hereafter as i. c. TVS) and we use the symbol \mathcal{D} for the family of all \mathcal{I} —continuous semi—norms generating the topology \mathcal{I} , For $p \in \mathcal{D}$, let us denote by U_p the set $\{x \in X; p(x) < 1\}$. A Schauder base for (X, \mathcal{I}) will be designated by $\{x_n; f_n\}$ where n = 0, 1,... and we say that $\{x_n; f_n\}$ is equicontinuous provided for each $p \in \mathcal{D}$ there corresponds some $q \in \mathcal{D}$ such that

$$p^*(x) \equiv \sup |f_n(x)| p(x_n^*) \leqslant q(x) \forall x \text{ in } x.$$

If A and B are subsets of X such that A is absorbed by B then we can talk of the n-th Kolmogorov diameter $\sigma_n(A, B)$ of A relative to B (for various elementary and useful properties of the numbers σ_n , w_n refer to [3]; [4], Chap. 1; [6] and [7], Chap. 9).

In the sequel we shall need the following two interesting characterizations of nuclear spaces to be f und respectively in [7], Chap. 4 and [8], p. 15.

THEOREM 2.1 An l. c. TVS (X, \mathcal{I}) is nuclear if and only if for each $p \in \mathcal{D}$ there exists $q \in \mathcal{D}$ and a sequence $\{g_n\} \subset X^*$ with $\{\sup\{g_n(x) \mid : q(x) \leq 1\}\} \in l^1$ such that

$$p(x) \leq \sum_{\substack{n \geq 0}} |g_n(x)|, \forall x \text{ in } X.$$

THEOREM 2.2. An l.c. TVS (X, \mathcal{I}) is nuclear if and only if for each $p \in \mathcal{D}$ and each $\alpha > 0$ there exists $q \in \mathcal{D}$ such that

$$\sum_{n \geq 0} \sigma_n(U_d, U_p)^{\alpha} < \infty.$$

3. THE MAIN RESULTS

The first main result which finds a different proof hereafter is the following theorem to be found in [2].

THEOREM 3.1: Let (X, \mathcal{F}) be an l.c TVS possessing an equicontinuous Schauder base $\{x_n : f_n\}$. Then (X, \mathcal{F}) is nuclear if and only if fore ach $p \in \mathcal{D}$ there exists $q \in \mathcal{D}$ such that

(*)
$$\sum_{n\geqslant 0} p(x_n)/q(x_n) < \infty, \left(\frac{\theta}{\theta} = \theta\right).$$

Proof: Let (X, \mathcal{I}) be nuclear and choose $p \in \mathcal{D}$ arbitrarily. Now (X, \mathcal{I}) is a Schwartz space, therefore there exists $q_1 \in \mathcal{D}$ such that

$$(3.2) p(x_n)/q_1(x_n) \to 0 \text{ as } n \to \infty.$$

In fact, from (2) of [12], p. 237, for each $\epsilon > 0$, there exist $q_1 \in \mathfrak{D}$ and a finite dimensional subspace L of χ such that

$$U_{q_1} \subset \epsilon U_p^* + L$$
,

and so

$$\sup_{n} |f_{n}(x_{k}/q_{1}(x_{k})) - f_{n}(y_{k})| p(x_{n}) \leq \varepsilon, \forall k \geq 0$$

where yk & L. One can find an integer N such that

$$\begin{split} f_n(y_k) &= 0, \ \forall \ n \geq N \ \text{and} \ k \geq 0 \\ \Rightarrow p(x_n)/q_1(x_n) &\leq \epsilon, \ \ \forall \ n > N \end{split}$$

and the preceding inequality results in (3.2); for an alternative argument of the existence of (3.2), see Theorem 2.1, of [13], p. 7. Putting $\alpha = 3$ in Theorem 2.2, one can find $q_2 \in \mathcal{D}$ such that (or, alternatively, one may use Lemma 1.5 of [9])

(3.3)
$$\sum_{n>0} (n+1) \delta_n (U_{q_2}, U_p^*) < \infty.$$

Let us also note that there exists some q₃€D with

$$(3.4) p^*(x) \leq q_3(x), \forall x \text{ in } \chi.$$

If $q = max(q_1, q_2, q_3)$, then (3.2), (3.3) and (3.4) are true with q_i 's replaced by q. Define

 $\alpha_n = \begin{cases} p(n)/q(x_n), & \text{if } q(x_n) \neq 0; \\ 0, & \text{if } q(x_n) = 0. \end{cases}$

Let us observe that if the set of integers where $q(x_n) \neq 0$ is finite, then (*) readily follows. Hence assume that the set $N_1 = \{n \in N : q(x_n) \neq 0\}$ is infinite, where $N = \{0, 1, 2, ...\}$ and let $N_1 = \{n_0, n_1, ..., n_s, ...\}$. Now

$$\lim_{i \in N_1} \frac{q(x_i)}{q(x_1)} = 0$$

and so we can find a permutation π of N_1 such that

$$\alpha_{\pi(n_m)} \leq \alpha_{\pi(n_s)}$$
, for $n_m \geq n_s$,

where n_s , n_m ϵN_i . Denote by L_{s+i} the subspace of χ gennerated by $x_{\pi(n_o)}, \dots, x_{\pi(n_s)}$ and let

$$x \in \alpha_{\pi(n_s)}(U_p^{\bullet} \cap L_{s+1}).$$

Then

$$x = \sum_{i=0}^{s} f_{\pi(n_i)}(x) x_{\pi(n_i)}$$

and consequently

$$q(x) \leq \alpha_{\pi(n_s)}^{-1} \sum_{i=0}^{s} |f_{\pi(n_i)}(x)| p_{\pi(n_i)}(x)$$

$$\leq (s+1) \alpha_{\pi(n_s)}^{-1} p^{\bullet}(x) \leq s+1.$$

Therefore from a theorem of Tikhomirov (e.g., [10], p. 58)

$$\frac{p(x_{\pi(n_s)})}{q(x_{\pi(n_s)})} \leqslant (s+1) \delta_s(U_q, U_p*)$$

$$\Rightarrow \sum_{s \geqslant 0} p(x_{n_s}) / q(x_{n_s}) < \infty,$$

and hence (*) follows.

Conversely, let (*) hold good for a given choice of p and a corresponding q in \mathfrak{D} . Let $g_n = p(x_n) f_n$, $n \geqslant 0$. Then

$$\sup \{|g_n(x)|; q^*(x) \leqslant 1\} = p(x_n) \sup \{|f_n(x)|: q^*(x) \leqslant 1\}$$

$$\leq \frac{p(x_n)}{q(x_n)};$$

further, for x in X,

$$p(\mathbf{x}) \leqslant \sum_{\substack{n > 0}} |f_n(\mathbf{x})| p(x_n)$$
$$= \sum_{\substack{n > 0}} |g_n(\mathbf{x})|.$$

The nuclearity of (X, G) now follows by applying Theorem 2.1.

The Grothendieck—Pielsch Criterion: Let P be a power set (Stufensystem) and $\lambda(P)$ the corresponding Köthe sequence space (see for instance [7], p. 97 and [10], p. 77), then the following result ([7], p. 98) is usually known as the Grothendieck — Pietsch criterion for the nuclearity of $\lambda(P)$. We deduce this result as a simple corollary of Theorem 3.1.

THEOREM 3.2. The space $\lambda(P)$ is nuclear if and only if for each α in P there corresponds β in P with

$$\sum_{i>0}\alpha_i/\beta_i<\infty.$$

Proof: Let us recall that the natural locally convex topology \mathcal{G} on $\lambda(P)$ is generated by the family $\{p_a: a \in p\}$ of semi-norms on $\lambda(P)$ where

$$p_a(x) = \sum_{n \geq 0} |x_i| a_i, x \in \lambda(P).$$

It is clear that $(\lambda(P))$ is an AK-space and so the mappings $x \to x_i$ can be identified with the sequences e^i (cf. Exercise 3.8. Chap 2 of [4]) where

$$e_{j}^{i} = \begin{cases} i, & j = i; \\ 0, & j \neq i. \end{cases}$$
, $i, j = 0, 1,...,$

It is now simple to verify that (e^i, e^i) is a Schauder base for $(\lambda(P), \mathcal{F})$. If $\alpha \in P$ then

$$\sup_{i} |e^{i}(x)| p_{\alpha}(e^{i}) = \sup_{i} |x_{i}| z_{i} \leqslant p_{\alpha}(x), \ \forall x \in \lambda(P)$$

and so $\{s^i; e^i\}$ is an equicontinuous Schauder base for $(\lambda(P), \mathcal{G})$. Since

$$\sum_{i \geqslant 0} \frac{z_i}{\beta_i} = \sum_{i \geqslant 0} \frac{p_{\alpha}(e^i)}{p_{\beta}(e^i)},$$

the result follows from Theorem 3.1.

Finally I place on record my grateful thanks to Dr. Manjul Gupta for having stimulating discussion with her on the subject matter of this paper.

Received July 15, 1981

REFERENCES

- [1] Horvath, J. Topological Vector Spaces & Distributions, Vol. I; Addison Wesley, Reading, Mass., 1966.
 - [2] Kalton, N.J. On absolute bases; Math. Ann., 200 (1973), 209-225.
- [3] Kamthan, P.K. Kolmogorov's diameters and their applications; Proc. Sem. Fnl. Anal. Appl. AMU (1977); Bull. Aligarh Muslim Uni., 7 (1977), q-21.
- [4] Kamthan, P.K. and Gupta, Manjul Sequence Spaces & Series; Lecture Notes Series, No 65 Marcel Dekker, New York, 1981.

- [5] Kothe, G. Topological Vector Spaces I; Springer-Verlag, Berlin, 1969.
- [6] Mitiagin, B.S. and Pelezynski, A. Nuclear operators and approximative dimension: Proc. Int. Cong. Math., Moscow, 1966; Eng. Translation: AMS Translations, 70, 137-145.
 - [7] Pietsch, A. Nuclear Locally Convex Spaces; Springer-Verlag. Berlin, 1967.
- [8] Schock, E. Diametrate Dimension, approximative Dimension and Angwendungen; Schr. Ges. Math. Datenv. Bonn, 43 (1971), 1-48.
- - [10] Singer, I. Bases in Banach Spaces, I, Springer-Verlag, Berlin, 1970.
- [11] Terzioglu, T. Die diametrale Dimension von lokalkonvexen Raumen: Collect. Math., 20 (1969), 49-99.
 - [12] On Schwartz spaces: Math. Ann., 182 (1969), 236-242.
- [13] Linear operators on nuclear spaces and their extension properties: Rev. Fac. Scs. Uni. Istanbul, Ser. A, 37 (1972), 1-21.