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1. INTRODUCTION

Consider the abstract control system:

r=Ax+ By z€X, u€QcU : €))
where X and U are the rea! Banach spaces and B < [U, X1 the Banach space
of all bounded linear operators from U into X. Unless otherwise stated, X
always intended infinite-dimensional. Throughout this paper the operalor A is
assumed to be (closed linear with dowain D(A) dense in X and range R(A)in X)
the infinitesimal generator of a strongly continuous semigroup (of class C,) of
bounded linear operators S(t), t>> 0 [1], Qisa non-cmpty sel of the space U,

The properties of controllability for systems of type (1) with X, U being
finite-dimensional spaces are studied by a number of authors [2] — [4] under
various assumptions on the restraini control set Q. For the systems (1) in the
infinite-dimensional Banach spaces, to our knowledge, the controllability pro-
blem was studied up to now only for the case, when Q = U, i, e., for the sys-
tems without resiraints on control (see. e.g. [5]—[7])

The purpose of this paper is to present necessary and sufficient condi-
tions for local controllability of the infinjte-dimensional system (1) with
the arbifrary restraint control set Q, which salisfies, in general, only one
requirement;:

Ju, € Q@ ; Bu, =0. (2)

The main result of this paper, Theorem 6 and Theorem 7, can be consi-
deredasan extension to infinite-dimensional sysiems of the well-known conlrol-
lability criteria, which have been obtaind by Brammer [3] [or sysiemsin R,. .
It is also worth remarking, that the technique of [3] — [4], which Dbased on (he
arguments of linear algebra and the theory of almost periodic funclions, obvi-
ously, can not be applied to the case of infnite-dimensional syslems. The method
developed here for the studying controilability is quite different from the tech-
nique mentioned above: it is based on some fundamental results of functio-
nal analysis, such as Baire cathegory theorem, open mapping theorem, the
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properties of a mnieastre with values in a Banach space, ete, Central to ous
analysis is the use of Krein-Rubman® s therem [8], which for the aim of our
paper, can be slated as follows;

Theorem A (Krein-Rutman). Lel € be u convex cone with non-empty
inlerior in a Banach space X and Iet {S([)} be a family of commutative boun-,
ded linear operators, mapping the cone G into litself, i.c., S(1) C ¢ C Tor all 1.
Then there exists a positive funclional f & C¢ ¢ X* which is a common eigen-
vector of all dual operators : '

SO [ =AML, for all t, where A(h) > 0.

2. DEFINITIONS AND PRELIMINARY RESULTS

Lel us consider the linear aulonomous syslem (1) In this seclion we shall
inlreduce some definilions aud auxiliary resulls, which will be used helow.

Defirition 1. A U-valued funclion v (1) defined for t 3> 0 is said to be an
admissible control if for every T > 0, u(l) is strongly measurable on [0, Tj,
esscnliully bounded on this inlerval and takes ils values in  (he restraint
conlrol set Q, i.e., u(t) € Q for all [ > 0.

For each admissible conlrol u (t) and cach x, € X we will refer io the
function a (1), defined by the f’ormula:

[ ’ .
_x(t):S(l)x(,—}-J‘S(Lh—r)Bu(r) dr , (3)
0

as mild solultion of syslem (1). Here and in what follows the inlegral is under-
stood in the sense of Bochner. ‘ ' '

The term «mild solulion » is motivated by the well-known fact, that if
the Tunction u () (t 2> 0) is strongly continuously differentiable and T, € D(A),
then (3) is the unique solution of system (1).

For every T >0 we denote by Qr the set of all admissible conlrols a (b,

resiricted on the interval [0, T 1.It is clear, that Q7 is a subset of the Banach
space L, ([0, T1, U), the space of all essentially bounded functions on [0, T}
with the norm [fu(.) ||, = Vraimax || u(t) oo '
; 0{eCT
We say thal a point x, € X is reachable on {0, 1] from the origin (by
system (1)) if there exists an admissible conlrol u (1) € Qr such that;
T

Xy == J‘S(T — Dyuty dl.
)

L

The set of all points ol X reachable on [0, T] from Ihe corigin will
be denoted by Rr and called (he allainable,sel of system (1) on [0, T}
Let R = URT
T>e

~
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. Definition 2. The control system (1) is said lo be locally coniroilable
+ (locally controllable on [0, T if the sel R (respeclively, the set Ry) conlains
the origin in ils inlerior, i.c., 0 &€ int R (respectively, 0 &€ int Ry), aud is said
to be locally e-controllable (locally s-conlrollable on [0, T} if R (respeclively,
Rr) is dense in some neighbourhood of the origin i.e., 0 € int R (respectively,
0 € int Ry). _
Our method of studying the local controllability of syslem (1) is mainly
based.en geometrical properties of the allainable set Ry, We shall need two
following lemmas:

Lemma 1. The closure of the allainable set R+ is convex.

The proof of this lemma is similar to the proof of_the analogous result

[or the finite-dimensional case (see, e.g. [2]) and, by thal reason will not be .

presented here. The only difference in the proof is thal, instead of the well-

known Lyapunov’s lemma, we need use here ils infinite-dimensional genera-

* lization obtained by Uhl in [9]. Tt is also necessary to remark, that in the ana-

logous way we can even establish a more general properly, than the previous

lemina. Namely, for any mecasurable subset E of the interval [0, T], lhe clo-
sure of Lhe sel Rg, defined by:

Rg = {;L‘O € Xz, = J.S(T —LDBu@d,u €Qforall t € E} (1)
is convex. We also omil ilie proof of this fact.

N

Lemma 2. The closure of Lhe attainable set of system (1) remains uncha-
nged when one replace the resirainl conirol sel by its convex hull coQ,

ie. Ry = BT, where the symbol Ry denote the altainabie sel on [0, T1 of
the syslem -

x = Ar 4+ Bu, u & coQ. E )]
Proof. Clearly, it suffices (o prove the following inclusion:
Re < Rr. (6)
Consider the attainable set ﬁéf’) of system (5) by means of all simple conlrols
11(5)(t), which are defined as follows:

uls) 1) = uy for all t € i,
and k = 1, 2,..., N,
: _ N
where uy € coQ, Ey are measurable, E, n Ej = ¢ if j -k and U Ex = [0, T].
’ k=1 -

Let ;E,S) be an

86



arbitrary point of R.f,s ) Then by definition we have

~(s) N Ny . d N
8 . - ~
.’I','O = E E ?\'k_] I N (F—-[) bUkJ’ dt = E: Tys } (7)
k=1j=1 J k=1

S

where Ag; > 0, A + Ak + .. 4 Mg = L wg € Qforall j = 1,2, N, ang
'k = 1,2,.., N. It is ohvious thal =, € coBig , where the set P‘Ek is defined as
(1). By Lemma 1, as is has been noled above, the closure of R, is convex.
Hence co R, < EEk' It implies that for any &> U there exists an admissible
conirol uy (1) € Q (for all t E,) such that

I %y — I S(T—t)B u, (ty dly < —\E-Tu &)

I
Ik ’

‘Now we defline : Ug (1) = uy (1) fort € By, and k =1, 2,,., N, Then, clearly,

Ue (1) is admissible on [0, T] in the sense of. Definilion I i e, ug(t Ea'r-
Let xg = Ry be the corresponding reachable poinl. Then, by (7) and (8), we have

N : .
|Ix(5)-—\ T =1l = (g — f S(T—0B uy (1 dty )

O
k=1 F
N )
< 2 W — .[ S{F—t) Buy (t) dt < &
k=1 oo
Ey
It'means that Ry is dense in ﬁflf’), or, in the otlier words
ﬁ,(;;) C Rr. o (M)

On the other hand, for any point, ':'c:, = R, by definjtion
T
:ﬁt:uo = J. S(T—ty Bu(t di,
0.

where the funclion u(l) is strongly measurable, essentially hounded on [0. T
and u(l) g coQ for all L€ {0, TL. Since u(l) is inlegrable in the sense of

Bochner, there exists a sequence of simple functions uff)(t) wilh values in coQ
such that. . '
T

j. luc) — ul(f)(t) Hdt — 0 ‘ as n —» oo,
: .
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Next, from the Sthllg continuity oi the seungtoup Sty and the *boun-e |
dedness of- B, il follows that
T T
J j S(T—t) Bu () dt — I S(T— t)B u (t) dat || <
%
4] v . '
) ‘ r ’
< M esT’ { Il udt) — ufls)(t) hdt— 0
g
S as n—> o (Above, M = || B || and « is any constant greater Lhan
w, = lim In § S(t) § /t,
f~e co

see, e. g, ['10]).
' Therefore, ’ﬁ,g,s) is dense is ﬁT, 1ie.
Hrc B o (10)

From (9), (10) it directly implies the desired 1nclu31on (6) and thus the -
- Lemma 2 is completely proved.

'~ We now make some remarks concerning with the concepts of controlla-
bility introduced above by Definition 2. Firstly, we note that if the operator
B is compact then system (1) can not be locally controllable. If, in addition, the
control set Q is bounded, then system (1) can nut even be locally e-controllable
- on any finite interval [0, T]. These properties can be easily’ shown by virtue of
-the fact, that, provided the compacl,ness of B, the controllability operator Kr
defined by: '

o ‘
Ky u() = "' S(’_I‘——t)B u(t)dt - (11
. 0 N

from L_({0, T], Uy into X, is compact [10]

It is obvious that, if the Banach spaces X and U are f1n1te dunenslonal
Lthen the concept of local controllability (local contrallabﬂlty on [0, T}]) coinci-
- des with the concept of local e-controlabilify (resp., local e-controllabilily on
[0, T]). Moreover, if the condition (2) is satisfied, then the local controllability
imp],ies the local controllability on some suitable finite interval [0, T]. This
property, in general, is violated forinfinite-dimensional systems. For example, it ~
is not difficult to check that the system in X = l5: T=1u€ Q C Iz, where Q

-

is the « Hilbert brick » (i..e.,_ Q=!u= @y, 1,y ,..;,): by | << —l—f) is éven glo-
V ) > . - n

bally e-controllable, ie. R = X =.1l,. However, thissystem is not locally &-con-

* trollable on any finite interval [0, T}, since for every T >0 the attainable’ set

Ry of this system equals to TQ and hence Int Rt = ¢. -
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Thus. it is an interesting problem to study the relationship between the
concepls of local controllability for infinile-dimensional systems, However, il
is not the purpose of this paprer.and so we will restricl ourselves here by for-
mulating some results obtained in this direelion. The reader is refered lo {11].
for e delails. '

u

Theorem 1. Suppose the restaint conltrol set Q is bounded and contains Q
in ils interior: O cintQ. Then, system (1) is locally controllable on [0, T7if
and only if itis locally e-controlable on [0, T1.

Theorem 2. Assuine Lhat for some finite Ty >0 the closure of the attai-
nable sel RT has a nonempty interior: int ﬁT =+ ¢. Let, additionally, the con-
o o

dition (2) be salisfied. If system (1) is locally e-conlrollable, then for a suitable
finite T:>0 (he system is also locally e-controllable on the interval [0, T].

Corollary 3. If system (1) with additional condifion (2) is locally control-
lable, then for a suilable finile I'>0 the system is locally e-controllable on
the interval [0, TJ.

_ Theorem 4. Assume that the restraint control set Q is convex and for some
<> 0 the attainable set Ry has a non-empty interior:int Ry <=¢. Let, additio-
nally, (2) be satisfied. If system (1) is locally controllable then there exists 4a

finite {ime- T, >0 such Lhat the system-is also locally controllable on the
iterval [0, T,). :

Corodléry 5. Suppose Qis convex, hasa non-empty interior and satisfies
(2). I system (1) is locally controllable then there exists a finite time T, > 0
such that the system is also locally controllable on the inlerval 0, T,1.

3. THE MAIN RESULTS

We begin this section by making the following remarks. It is well-knowri
from the analytical theory of seriigroups {hat if a Banach space X is reflexive
and A is an infinitesimal gencralor of a strongly conlinuous semigroup S(1) on
X, then the dual operator A* is also'(linear, closed, wilh domain D(A*) strongly
dense is X#) and the infinetesimal generator of the strongly continueus semi- -
group S*t) on X*. If the space X is nol rellexive then D(A*) need mnot be
strongly dense in X*. However, in this cas, a dual semigroup theory with the .
desired continuity properties can be carried out on the closure of D(A®). So,
for the sake of simplicity, we assume in this section that the Banach state space
Xis reflexive. - -

We are now in a position lo stale our main controllability result,

“Theorem 6. Suppose Q is convex set . with non-empty interior and satis.
fies the condition (2). Lel, in addition, the semigroup S(t) be differentiable.
Then system (1) is locally controllable if and only if

\
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a) the system with unconstrained control

P Ar4+Bu re€X, uel (12

is globally (exactly) controllable;

b) there is nol any eigenvector [ € X*® of the dual operator A¥, corres-
pending to a real eigenvalue A and supporting to the set BQ: f & X+
A*F = Af and (f, Buy > 0 for all u € 8.

Proof. Necessily: The neccssﬁs’ of a), obviously, follows from the defi-
nitions. We shall prove the necessity of by by contradiclion.

Let f, € X* be an eigenvector of A* with a real cigenivalue A and f, is
supporling to BQ: (fo, Buy> 0 for all n € Q. Then for every T > 0 and any
r, € Ry we have: : _ :

T T
{ﬁo ) -I:D>= J.(fos S(rr - [) BU(L)) dl' = J‘(S#(T - l-)fﬂ 3 Bu(l))dt
0 0

N
Since, obviously, {, € ﬁ D(A*), the funclion S¥T — 1) f, is infinitely
- n=1 - - -
diflerentiable iu | and,'therelore, it can be represented by the Taylor f ormula
as lollows [1]:

“"HT . : 1 T—t : .
SHT — by = ), il AsEf, . (T — t — )"t S*(1) A*"f, dz
k—pn &! (n—1}! o
0

m=1,2,3 ..)
Hence, for every natural n we obiain:

T—t
. l‘l_—_'l ko pk n -
(S#(T — O)f,, Bu) = E Lﬂ__,ﬂ. (f,, Buy + A j (T —t — 7yl %
.. : k=40 k! (n— 1) ! )
. = . ;

X{S‘*(z’)fm Bub dz, for all t & [0, T} and u & L.
If (fo, Bu) = 0, then it follows from the above formula that:
(S%T — vf,, Buy = 0 for all t € [0, T}, If (f,, Bu) >0,
then by the boundedness of S(i) on {0, T], the above expression can be writien
in the following form: = ; :

v

.,n=1,y _ Ihk : n-t
(S*(T — 1f,, Bu) =<«I,, Bu) (2 MIT - g (lﬂ_—-—)) as nsoe.  (13)
' k=0 kT: . n—"n! .
: n—1 4% &
Since the sum Y AT 0% uniformly converges to eMT=D 35 n-see, we Ob-

~ B k:U .
tain, by virtue of (13), that (S*(T — Df,, Bu) > 0 for a}ll t&€ [0, T}
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So, in any case, (S*(T — 0OF, . Ba) > (0 for all { < [0, T] and n € Q. The-
relore, (SYT — if,, Bu(®)) > 0 for all L& [0, T] and all u() € Q. Conse-
quenlly, (f,, 2,) > 0 for all x, € Ry and hence, Ly the abitrariness of T, for
all xz, €R. This contradietion to the local controllability of svstent (1) proves
the necessily of b). :

Sufficiency : Consider the controltability operator K¢ defined by (11). Then -

it implies from the condition a) that X = DK‘*Tk (L., E[O, Ti], U)) where 0<<T<
. . k=1

LTy <CTy oo < oo and Ty, — oo a8 kK —> oo, By the Baire theorem, there exists

Tx such that’ K, (L. ([0, Tx], U)) is of the second cathegory in X and thus,.

Ky, is an open mapping from L_, ([0, Ti], U) onto X, By assumplion, Q is convex
and inf Q == @, hence the set §Tk of all admissible controls on [0, Ty} is also

convex and has a non-empty interior: int EZT;; == ¢: Therefore, the attainable
set R, , being the image of a7, by the open linear mapping Ky, » is also con-
vex and has a non-empty interior. Thus, by (2), the set B is convex and
int R =& ¢. . : - ’ o
We now prove that 0 € int R. Let 0 ¢ inl R. Then by the Hahn-Banach
theorem, there exists a nontrivial functional f; € X* such that (f;, To) == 0 for
“all z, € R. Consider the cone C generated by R, i.e., C = U AR Then the dual
: ‘ A0
cone C* of positive functionals is non-trivial since €# contains [ It is quite’
easy to verify that for every I € C* (f, S(hBu) =0 forallt €[0, T] and uel,
We will show that the semigroup S(), t 2> 0 maps the cone C into itself. Indeed
since a bounded operator commutes with the Bochner integral, for every
r, € R and t 2> 0 we have: |

]

T
St x, = f St S(F — =) Bu(r) dr =
O

T ‘ : (+T L
= _f St + T — 1) Bu(z) dr =_fS(t + T — ) Bu () dx.
o .

(8]

where the control E(:r) is defined as follows: .

u(r), 0Lz << T,

. u(e) = J
U, T<<eLTHL

Obviously, u¢) € Qpy Hence, S(t) 2, € Ryy ¢ R and thus (). RCRfor a 11t >= 0,
Furthermore, by the property of semigroups, the operalors S(t) and S(ty) are
commutative one with another for any ty, t; > 0. Applying the Krein-Rutman °
theorem (Theorem A) we find in the dual cone C* a common eigenvectorf, of
all dual operators S*(t), t > 0, with, correspondingly, nonnegative eigenvalues

AL, 12> 0, ie.S(t) T, = At F; (for all t>> 0) A(h >0, ) (14)
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Since he Banach state space X is reflexive we have, by the differentia-
bility of S(t), that S*(t) X*CD(A*) for all t > 0 [12]. Thus, I,€ D(A*) and so,
S*(t) f, is defferentiable for t > 0. By differentiating the equalily (14) we obtain:

A#S#(t) f, = S¥(l) A*f, = M(t) f, for all. t > 0.
It implies from the strong continuity of S*(1) that
| 3lim S¥(t) A* fo = A%, =} 1,
t—>+0
where A,=1lim ?Ltl) as t—-+0. Thus f, is the eigenvector of A®* with real
eigenvalue A,. On the other hand, according to our renstruction, {,&C* and so

(for S(t) Buy>> 0 for all t>> 0 and u &€ Q. It implies, partleuhﬂ} that {, is
supporting to BQ. This contradicts b) and completes the proof of the theorem.

In the case, when the convexity‘of the control set Qis not assumed we
have the following theorem,

Theorem 7. Assume that convex hu!l of Q has a non-empty interior and
Q satisfies the condition (2). Let, in addition, the semigroup S(t) be differentiable,
‘Then the condition a) and b) of Theorem 6 are 5uff1C1ent for local e-control-
lability of system (1),

Proof. Consider the sel coQr of all admissible controls om {o, T] with
“values in the convex hull of Q: w(t)E cof for all te [0, T). Let the symbol

ﬁ:[‘ stand for the attainable set of the system x = Ax - Bu by means of all

admissible controls u(.) € co Q. Then, according to*Lemma 1 and Lemma 2:

Ry = Rrand Ry is convex. In the analogous 'way as the proof of Theorem 8,

we find that, for some T >0, int fi«%qﬁ and so, int Ry == ¢. 011 the. other,

.hand, it is easy to show that R =|JR+ -_—Ujf{“; and by (2), '}_{T] C _I—D‘Tz'if T<Ts.
T>0 T>o0

Hence, R is convex and has a non-emptyinterior: int R 4 ¢. We now only

_have to show that 0 €intR. Let 0 ¢= int R, then by using ihe analysis deve-
loped prevlously in the proof of Theorem 6, we may establish that the convex

© cone 01 generated by/R is invariant under the actmn of the semigroup S(l).
t> 0 ie. S(HC (C G for all t 2> 0. Further, applying, similarly, the Krein -

.Rutman theorem we obtain a contradiction to the condition b) which completes
the proof. We omit the delails. ' .

 In conclusion, we make some remarks, concerning wilh Theorems 6 and 7
Firstly, it is important to note that the requirement int Q =f=- ¢ and int coR == ¢
is essential for these theorems. Indeed, for example, consider the” following

systén in X = Iy r=Ar + U, u € Q, where A is, the left shift operalor, i.e.,
Az, T2 X3,...) = (T2, T3 Tgs ") amd Q is the set of all positiife veclors in Iy, Since
the dual operator A* has no’ eigenveclor, the condition b) is SB.[Perd for this
. -system. Further, it can be directly verified that the corresponding system with

8 -



L3

unconstrained conlrol = = Ax + u is globally (exactly) controllable in f. and
so a) also holds. However, the system under consideration is not locally con-
trollable, since, clearly x, > 0 for every x, < R. Notice that in this case the
interior of the control set is empty.

In spite of the above remark Theorem 6 and 7 can be acltually streng-
thened by replacing conditions int Q=~¢ and int coQ+¢ by the weaker assump-
tions ri Q== ¢ and, respectively, ri coQ = ¢, where the symbol riM demotes
the relative interior of a sel ] M (O g M) in the indueced Lopo]o 'y of the closed
subspace sp M, which is gemeraled by M. And what is more, under these weakm
conditions -one must only, instead of a), require that the system:

a:‘:A:c-l-Bv,a:eX,vesp (2 —uy)

be globally (exactly) controllable in X. This properly is not difficult to be
shown from the proof of Theorem 6. Finally, we also notice that the neces-
sity part of Theorem 6 is proved without using the dlffEIthl‘lbllltV of the
semigroup S(t) : L '
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