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Introduetion , e
It appears that there cxists a dual parallelism between the homological
analysis of the Eilenberg—MacLane spaces K(x,g) and that of the iterated loop

spaces QI¥¢X. In particular, there i an analogy between the Steenrod cohomology / b

operations and the Dyer—Lashol homology operations on these spaces (Serre [29],

Araki—Kudo [2], Dyer—Lashot [11])

This is the [irst in a series of papers to afford some examinations o a more
suflicient understanding of this phenomenon and,-furtker to make a review of
the (co) homology operalions with a particular conviclion that some new tools
to handle them elficiently may arise from this.- In the preseni paper, we shall
show that the above mentioned dual parallelism has’the origin in the classical
Poincaré —Lefschetz duality. ‘

Let C6° denote the category of compacily generated Hausdorlf spaces with

nondencrate base points. Reeall that, by a theorem of" Deold—Thom, the infim'l'o_
symmetric product SP=X is weakly homotopy equivalent to a direct productol the

Iilenberg—MacLane spaces if X is an arcwise connected space in CG’. On the other
hand, in this case, there exists a weak homotopy equivalence ay: C(X,p)—R1Z9X,
where C(X.g) is a space built up from the configuratlion space F(R%mn) and the
- smash product X["] (see May [17]). These fundamental resulls, lead us to make
a review of the infinite symmetric product SP=39X of the g—ilerated suspension
34X of X, and consider the relation belween C(X,q) and SP~23X, It will be easily
" observed that SPEIX is homeomorphic to the space built up from the nqg—dimen-
tional sphere (X RY) and X["] by a similar way in the_cpnstruction of C(X, q). From

1

this remark, with a liftle care, C(X.q) can be imbedded naturally in SP(X.q) as
a subspace. Consequently, it is natural to construct the space B(X,q) built up from
F(R,ny = (X R [T(R%n) with T(R%,n) = (X RY - F(R"n), and X["], and then

to consider the relation between B(X,q) and C{X.q).

. »)} This work was announced at the sccond Vietnamese Mathematical Cengress,
August 15~19, 1877, :
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From the Poincaré — Lefschetz duality in the sphere (xR with respect
to ((x Rq)‘, T(R.n)), we shall ‘obtain correspondingly a duality in the infinite sym-

metrice, pfoduct SP(X,q) with respect to (SP(X,q), D(X,q)) i.e. a dualily betwecn

‘ B(X.q) and C(X,q). Here D(X,q) is a a subspace of SP(X,q) builtup from 7'(R%,n)

and X[*}|: we note that B(X.q) = SP(X,q)/D(X g). _

- B(X,q) and C(X,q) are topological monoids in CG’ (sce § 4). So their singutar
chain complexes S, (B(X,q)) and S, (C(X,q)) are DG algébras. Now, the duality
belween B(X,q) and C(X,q) appears in the following

Main Theorem. Let X € CG'. Then Lhere exist the morphism of DG algebras
(1) BISCy(X) > So(B(X,9))
b : (if) FISICY(X) —> So.(C(X-Q))

which are chain equivalences for any DG A-module € (X) such Lhat Co( X)meSy(X).
Here, BY and F9 denote the g-iterated bar construction and cobar construction
respectvetly and—d the g-iterated suspension.

A direct consequence of this theorem is that the homology algebras
Hu(B(X,q) ; Zy) and H(C(X,q); Z,) are completely determined by the method of Car-
tan construction (see Cartan {6], Milgram [21]), whenever H, (X : Z,) is computed,
We shall present the computation in details in a subsequent paper. The compu-
tation of H, (C(X,q); Z,) has been done in May [19} and Cohen [7] for g—eand
g<Toe respectively by a different lines. Mainly, they applied the Dyer—Lashof’s

- computation of H, (Q'2VX ; Z,) and used the approximalion between C(X,q) and

Q1ZIX. So, the assertion for €(X,q) here is ol independent interest. Note that, ins-

‘tead of lor C(X.¢) in (ii), Milgram [21] has proved a similar relation for J, (X), a

space of the same homotopy type with Q47X when X is conneeted.

The paper contains 11 seclion. In §1, we recall some basic facts on the
point set topology for the spaces in CG’ in a convenient {form to construct in §2
a class of spaces L(X.q) including SP(X,q,) B(X,q) and C(X,g) as special cases.
In § 3, we prove a Steenrod’s decomposition theorem l'or the homology ol L,(X,q).
The notion of mDGA — algebras (DG4 — algebras with multiplicity) formulated
by Nakamura [26] will be recalled in §4, and the notion of mDGA — coalgebras
will be introduced in §5. These notions are of particular, importanee, since
they are compatible with respect to the Steenrod’s' decomposition theorem.

The main tool of our study will be found in §6. Phat is the decomposition

.of the space X RY given by-Nakamura in [26] from which we obtain automatical-
. n

by a CW — decomposition for the space F(R%.n) . The section 7 is a homelogical
study of the space B(S°¢), and §8 is a general study of the space B(X.q). Here
the part (i) of the main theorem is proved. By a dual analogy, we proceed to study
homologically the space € (X,q) in the two next sections §9 and § 10, and we shall
prove there the second part of the main theorem, Note that we shall prove more
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than what we stated in the main theorem : the morphisms of DGA algebras in (i)
and (i) are compatible with the Steenrod’s decomposilions for the homology
groups ol B(X,q) and ((Y,q). o ,

- The paper is concluded by section §11 with a prool ol the well known
group completion theorem for a0 €(X,g) -~ 0% 39X [or every X jn CG'.

it is a greal pleasure to acknowledge the gratitude of the author lo Prof.
Tokushi Nakamura [rom whom he has obtained among the green leaves of the
gingkos many valuable explanations about the notion of mIGA - algebras and
the decomposition of the space X RY, y

n

§ 1. PRELIMINARIES ON THE CATEGORY CG

The paper of Steenrod [34] shows why it is convenienf to work in the ca-
tegory of compactly generated Hausdorff spaces. In this spirit, we shall work in
this category. All products, mapping spaces et cetera are always assumed to be
given the compacltly generated topology. Correspondingly the nolion of topolo-
gical monoids. group actions, fiber spaces... are modified in coherence with this
notion of products. The point set topology required here can be found in [34).

Let CG denote the category of compactly generated Hausdorff spaces and
continuous maps. Let €G" denote the category of based spaces in €G and base
point prescrving maps. We shall denote by = the base point unless otherwise spe-
cified, and base points are always assumed to be non-degenerate, in the sense

that {} is a neighborhood deformation retract in X (briefly an NDR in X) for -

each X in CG'. i
1.1 Let G be a finite group, and X a G-spa‘ce in CG. Recall that a subspace

Aol X is a G-equivariant NDR in X if A is invariant under the action of G and if -

there exists a representation (u, k) of (X, A) as an NDR-pair (i.e. a pair of maps
w: X > ¥ = [0,1]such that 4 = u-! (0), h: I X Y — ¥ such that h(0, x) =x,2€X
and h(l, x) € A whenever u(x) < 1)'is a pair of G-maps. For instance, as it is
well known, a pair of G-equivariant CW-complexes is a G-equivariant NDR-pair,
If (X, 4) is a G-equivariant NDR-pair, then (X/G, A/G) is obviously an NDR-pair
- with the representation induced from that of (X,4). '

A G-equivariant NDR-pair (X,4) will be said to be relatively G-free if X—4
is free under the action of G. Parlicularly, if X € €6 and A = f* 1, we have the
notion of relatively G-free based space or simply G-free based space.

1.2 Suppose that we are given a sequence of spaces in CG:

X, ¢Xi< ... <X .

- where X; is embedded in X, as a closed subspace for cach k. Lel'X = v X\
k>0

have the topology of the union. Then, according {0 [34; 9.2 and 9.4], we have.

7 (1.3) If each (X, X)) is an NDR-pair, then X is in CG and each X, is.an

NDR in X. ‘ ' :
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By a f{ltered space X we understand a space X in CG and a sequence of clo-
sed subspaees * ' :
N, <X . X C .
of X such that X = ; Xy and X has the topology of the union. (Notc that a
I Z0

closed subspace ol a space in CG is in CG [34: 2.4], so the definition implies
Xy € CG for each k). In addition, if each (X ks A1) is an NDR-pair, X is said to
be filtered by NDR’s.

] 1.4 Given the liltered spaces A [ Xu |, Y= | Y], ... Z=1{ 2] Their

product is the space X X Y ¥ .. X Z filtered by ’
(XXYX~><Z)I\’: v ;YIXYmX---xZn'
: ' : *i+m+..r=k _

By [34; 10.3 and 10, 5], AxY >< ¥ Z is then a [iltered space. Further, il the
filtrationsof X, Y, ... Z are by NDR’s, then X XY X ..X Zisalso filtered by NDR’s.

1.5 Let (X,. 1) bc an NDR-pair. Consider X as a space filtered by NDR s with
X,=Jdand Xy = X for & > 1. Then the n-fold product I = [(X™)] is'a space
flll(rcd by NDR’s.

Moreover, let 6, be the eymmetric group of degree n. Let G, operate on X7
by permuting the factors. Then X7 is filtered by G, - cquivariant NDR’s according
to the proof of [34; 63] sce also May [17; A.4]).

For later convenience, we introduce the following notion.
1.6. Definition. Let 7 = {Gy] be a sequence of finite groups
G, C G C.., CGx Coew

A filtered space X = [X,} is called a Z-space if the following conditions (i)

and (ii) hold, ‘ :
(i) Xy is a Gg-space for k >
(i) Set X~ = U g Xi_i. Then the composulon of maps
9SGy '

Xk--l/Gk—l — X /Gk-—-l - X [G—

-

is a homeomorphism for k£ > 1.
In addition, if X satisfies the condition
‘ (iif) (X, X)) is a Gy -equivariant NDR - pair t01 |k > 1, X is said to be a
#-space filtered by NDR’s. In particular, if (X, X2 ) are relatively Gy-free, we

Y -

say that X is ralatively 7 - free.
Given a # space X = {Xi}. We write
Xi? = X/G.

Here Xy_i/Gi— are imbedded in X,/Gy (as closed subsets) by use of the
homeomorphisms Xy_y/Gry = X /G in (ii). An immediate consequence of the
definition and. (1. 3) is the followmg
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- L. 7. Propesition. If X is a Z-space filtered by NDR’s then X/? is in CG and
filtered by NDR's. ' ‘
Now we recall the notion of symmetric producls.
2.8, Let G denote the sequence of symmelric groups
6, C 6y €. C G C
where‘ G, = G1and Gy is the symmelric group on the set f1, 2,...k] for each k1.
Let (X, %) be a space in CG’ and let X* the filtered space
: X= = {X*} :
where X° = [«]..and X*'is imbedded in X* by the injection (%g,....Tx—1)— (Ziperrs
Tx—r. ¥) for each {xp.x_) € X*1, Then we have
¥ i
A" =@, = _le- X oo X ] X oo X K.
im

So we have X*-'/G\_; = (X):‘_l/Gk. From 1.5, we observe that X = {X*] is
an 6 -space filtered by NDRs. '

Deline ' '

SP=Y = X*/6 = [SPY|
with SP°X={#}. SP*X=X"/G\. I >1. SP*X and §P=X are called the k-fold symmetric
product and the infinite symmetric product of X respeetively. The point % of SP°.Y
will be considered as their base point. According to Proposition 1.7, SP=Y =
{SP'X}is in CG’ and it is a space fillered by NDR’s (see May [17: §3]).

' For k finite or infinite. SP* is clearly a natural funclor in CG’, Further, it is
also a homotopy and limif preserving functor (sce Spanier [30; §6]. I f(X, ») —
(X°, ») is a map in CG', then we denote by SPYf: SPXX — SP*X” the map induced
by f. In particular, if i : A C X, then SP*i:SC*A — SP*Y is an injection. Via this
map, SP*A is regarded as a subspace of SP*X. From 1.5, il 4is an NDR in X, SP*A
is an NDR in SP*X. - :

:

1.9 Let usrecall the iterated suspension funcior. . _

Given a’nonnegative integer ¢. Let 89 be the g-sphere obtained by the one
point compactification of the euclidean space R of dimension ¢. Let the point of
compaclifcation be its base point. By the slandard injection i : $9-»89+!, that is the
base point preserving map given by i(d'..., a¥) = (a"....a%,.0), ai € R, we regard
8T as a subspace of S+, K .

Let X € CG'. We define 32X, the q—iferafed suspension of X, to be the smash
product '

. XAS =XXSYXXis)u s} xs9.
It ¢ = 1, Z1X is denoted simply by TX.
By means of the injection _
LAT:ZIX = X A 8¢ = ZH1Y = X A 11,
we regard Z9X asasubspace of Z9+1X. (§9+1, $9) is an NDR - pair, so it is easily seen
that (29+!X, 39X) is an NDR - pair. Hence define X = [ 27X}, ==X is a space
filtered by NDR’s according to 1.3, 29X is also in CG’.

¥ o
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: Given a map f: X - X’ in CG’, we have the map 3¢ = f /\ Ig% : ZIN 21X,
It is easily scen that £%s a natural functorin CG’, and further it is a homotopy and
Timit preser vmg functor for q finite or infinite.

N

§2. INSIDE OF THE SYMMETRIC PRODUCTS

‘Let'(X, %) be a space in CG".
We  first consider the k-fold symmetric product SPXZ9X of the g-iterated
suspensmn Z9X. By definition, we have

SP"Z‘J\/SP“ azay = @ e, o \[“/\(S“)“‘]
Thus, we ha.ve : Gy

SPESIX/SPR139X =~ XK] A (x RY)-.
Gy k

Here and in what foliows, X[kl denote the k-fold smash product X /\ CAX (k

times), and (>< R1)y the one point compactification of X RY on which G, operates
k

hy fixing thr. point of compactification %, and by permuting the factors of X RY,
. _ , k
(Remind that for k¥ = 0, X R = ¢ and (X Ri) = { #|.) This homeomorphism leads
k k

us to the following review of the space SP¥Z4X.
Let py,i: (x R‘i) - (>< Rq) 1 i k' denote the base point preserving maps

given by

Pk.i (ﬂ] y sany ﬂk) = (al serey El. vary ak). . l (21)
Let ~ denote the equivalence relation on X* x (x R1) generated by

((x’l»v.{': ;:5 mk)’ ay = (xl seeey :v-u; Ty), a,) | . (22)

whenever pyi(t) = pi(a’) with 1 i<k Then we define the spaces

SP(X, g 0) = %, SP(X, g, k) = X* X (X RY)/ ~, k>1 (2.3)
with quotient topology. Via the embedding of X¥-1x (x R9) in Xk % (xR‘l) by the
k—1

inclusion X*-1 e X! X {»} C X* and the base point preserving map

fio1 OCRY: — ORIy @4
. -1 .

B (@150 @ 1) = (g4, Gk g, Gy),
we consider the space SP (X, q, k— 1) as a subspace of SP(X q, k). The single
point’in SP(X g, 0) is to be taken as the base point of SP(X, q, k). Observmg that |
SP(X, q, k—1) is a closed subset of SP(X g, k), we define
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SP(X, q) = k;o SP(X.q.k)

with the topology of the union. SP(X, q) is sometimes written by SP (X, q, o) for
convenience, ,

Via the diagonal action of &, on X" X (X RY): g(z, a) = (g2, ga) for-each
k

g€ 6,z € X ag (X RY, the space SP (X,q,%) becomes visibly an G-space,
k |

From this, SP (X, q) is an G-space. It is obviouly an G-spacc filtered by NDR’s (see
also the discussion below Definition 2.¢). We define
SP (X, q) == SP (X, q)/C = | SP(X.q, k)}

with SP(X,q,k) = Sp (X.q, k)/G¢. Then, according to 1.7, SP (X, d, )= SP(X,q)is a
space filtered by NDR’s. Now, by means of the maps ¥: X* X (X Rl — (&1 X)k
; k
given by the formula
W ({x1, wans CCk),.(’ah vy ax)) = ({21, @], «os [21, ak])
where [, a;] denotes the equivalence class represented by (@; a;) in Z9X, we obtain
immediately from definitions the homeomorphisms
SP(X.q, ky == SP¥ 29N, 0k < oo (2.5)
LetR(q) = (X RY)* denote the sequence of Gy-spaces '
X .

f#] = (X RY)" C (X RY Coe C (X RY) Coo.
o} 1 . k ’
wherc the embeddings are the maps i, given in 2.4. Visibly R(q) is an G. space
filtercd by NDR’'s. Now, to generalize the construction of SP (X, q), we introduce
the following : _ :
2.6 Definition. Let 6 = | Ex] be an G-space filtered by NDR" s wilh
E,=%,E, ¢ (X RYy and i, | Ex: ExC Exq1, & > 0. Then ¢ is said to be an 6-NDR
. k R . '
in R(q) if (xR, Ey), k>0 are G-equivariant NDR pairs; In addition, if @ satisfies
A .

the condition :
pri(E) = Ep ,1I<j<kk>1

e -

where El‘; is the complement of E, in (X R%), then we say. that G is an allowable
. k

G-NDR in R(g) .
Clearly R(q) is itself an allowable G-NDR. Another trivial example of allo-
wable G-NDR is the G-space *(g) = { E;} with E, = [*| forevery'k >0.
Let A- (resp. A*) denote the one point compaclification (resp. one point disjoint
union) of 4. Unless otherwise specified, these added points will be regarded as
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their base_ points. If A is.an open.set of (X R7)’, then we have the home‘bmofphism
A = (>< RY)/A° will .46 = (X RYy — A @7
. k -

by which we identily them [rom now on.

) Suppose we arc given an allowable G-NDR G =|Ey| in R(g) . Let £= [Li P
‘denote one of the following sequences of Gy- spaces

6 = [ Ej} orér = [EjM.

By 2.6, let 'pk,in: Ly — Ly (1L.=<i<< k) be the base -poinl preserving maps
induced canonically from py, ;; (X RY) - (X RY) given in 2.1, Then for each X
' ¢ K C k-1

in C&, we define the 6,—spaces.
LX, £,0) == LX, £, k)= X"XL/~, k> 1 " (2.8)

with the quotient topology. Here ~ is the ‘equivalence relation on X* X Ly given
(similarly as in 2.2) by '

i

(1, worr 30 wver Ti)s @) = (Xgs oy 3 over Ti)y B)

with z; € X, a, b € L, wheneyer pi, : (@) = px, : (b). For each (z, @) in XX Ly, we
let [z, a] denote its cqulvalence class.in I(X, £, k). The action of G, on oy, 2, k)~
is given by the relation ¢[x, a] = [gx, gal, g € G

E(X, £, k-1) will be regarded as a subspace of L(X. £, k) by identifying
each point [{xy, .., x_;), @] in E(X, £, k1) with [(x1, .ors zr 1 #), @] (@ = :Ek,k(a’))
in E(X, £, k). The single point in'E(X, £, 0) will be taken as the base point of
LT(X, £, k). Obviously from the relation py,i(Lx) = Ly, we have

DX, L, k=1~ =g € v gL(X, ¢, k—=1) = (X*)1 X L)~

k
and-the projection

PO XL My L) = LY, £, 1, KX, £, k=) @9)

is a relative Gy - equivariantly homeomorphism. On the othcr hand, by 1.5,
(X% X Ly, (X¥)eq X Ly) is an Gy - equivariant NDR - pair. Hence, according to

Steenrod [34; 8.41, (I(X, £ k), LX, 2, k — 1)~) is. an Gy-equivariant NDR-pair,
Now the following is evident. : ‘

2.10 Proposition,

(i} The space L(X, £y = (X, £, k) is an G-space filtered by NDR’s. The-
refore L(X, £) = {L(X £, k)} defined by ' : .

LY, £) =L, £)/6 = {LX, €, bie
is a space filtered by NDR's (see 1.7): E




(i) K¢, £, k) and L( , £, k) are natural, and homotopy ‘and limit preser-
ving funectors in CG'. : ‘
i) LY, 2, kyL(X, £, k=1)~ = XM AL

LX, £, kX, £, k—1) " =Xk A L,
_ &

For convenience, L(X, £) and L(X, £) are sometimes written by L(X. £, o)
and L(X, £, «) respectively. Later we also use the convention L(X, £, —1) = ¢,

3.11. Definition. Suppose that we are given an allowable G-NDR 6 = [E,}
im R(q)°. Then we define ’
- N(X, ¢) = {N(X, ¢, K)] ,
1o be the 6 - subspace of SP(X, q) = {SP(X, ¢, k)] with N(X, ¢, k) the G;-subspa-
ce of SP(X, ¢, k) consisting of all elements Fepresented by points in X*X(XRY)-
: k

of the form g(x, &) with.g € 6; and x = (xy, ..., X, #, 0 w) € XK 1, €X ~ |o]
fOl" 1 < i <n if n 2 1 a : (al' ey fn, Ay, ren, an)! (al& vy, an) G‘Ek’ I Kg n ‘~<\_ k'
We prove a :

~

- 2.12. Proposition,
(i) N(X, &) is an €-space filtered by NDR’s. 'I"hereforei
N(X, 6) = |N(X, 6. k)] defined by . : _
| N(X, 6) = N(X, 6)/6 = [N(X, 6, b)/Gi}
is a space filtered by NDR's. | _ ,
(ii) (SP(X, ¢ k). N(X, ¢, k)) is an €, -equivariant NDR pair. 'Fherefore
(SP(X, q. k), N(X, &, k)) is an NDR pair.,
(i) (X, é°, k) == SP(X, q, KIN(X, 6, k)
L(X, ¢, k) = SP(X, q, b}/N(X. &, k.
Proof. According to 1.7, to prove (i), we need only to prove its first part.
By definition, & is an G-space filtered by NDR' ». Immed—iately we have N(X, &,
k—1) £ N(X, 6, k—1)"/6y. So it remains to show that (N(X, ¢; k), NiX, ¢, k—1)—~)
is an Gy-equivariant NDR pair, ‘ '
Let N = N(X, 6, k=1)~U | [z, a] : 2€ (X—o)", a € Ein )
and let (ux, ki) be a representation of (K, El:x} as an 6y - equivariant NDR pair.
Then define the maps u: N (X, ¢, k)—sland h:1x N (X, &, lo—~ N(X, ¢, k) by
u([x, al) = u(a), h (L. [z, a]) = [x, hy (¢, a)]. 7
Obviously, (u,h) is a representation of (N (X; &, k), N’) as an G, - equivariant NINR

oair. Similarly, by use of a representation of (X%, (X“')::,}. we obtain easily a
‘epresentation of (¥, N(X, ¢, k—1)~). Now, from the proof of [34: 7.2} (N(X, ¢, k),
(X, 6, k—1)~) is an Gy-equivariant NDR pair,
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7 To prove (ii), again we need only to preve the first part. Let N -NX, ¢, k)ﬁ
Iz, al;x € X a € Ek] By use of the above drgument we have the G, - equi-
variant NDR pairs (SP(X g, k), N*) and (N~, N(X, ¢, k). Thus (SP (X, g, A)
N(X, &, k)} is an 6, - equivariant NDR pair.

The assertion (iii)’is by definition. The proposition follows.

Apply the dbové constructions to the obvious allowable G:NDRs R(g) and
*(q) m R(q) {givén beloW 2.6): we observe that

SP(X, ¢) = L(X, *¢)) = N(X, R(gy)-

Thus SP(X, q) is obtained as a special case, It appears quite likely many interesting
filtered spaces may be constructed by this way.

Now we define the filtered spaces B(X, g), and C(X, ¢) and (X, g). Note
that €(X, g) is (homotopically equivalent 10) a space introduced by P. May by use
‘of the little eubes operads [17]. Let F(A, k) denote as usual the k-th configurati~
on space of @, space A, that is o

(A, k) = [(a,,...,ak); €A a=aforijl. (2. 13)
Let @(g) = | T(RY, kY] with T(RY, k) = (X RY) — F(R, q). Then we have the G-
k

equivariamt NDR pairs ((X RYy, T(RY, K)), and (I {RY, by, T(RY, k — !)) for each
X ,
Ic(‘seE the CW - decomposition of (X Ry given by Nakemura [26] which will be
. -

recalled later in Section (§ 6). From this fact, it is easily observed that ©(q) is an
6-NDR in R{g). We define

B(X, q, k) = L(X, %(g)*, k)
© OX, q, k) = L(X, G(q)°, ky . : (2.14)
' IXX, q, k) = N(N, &g}, k)
Thus, we have the filtered spaces -B(X, ¢q), = § B(X, q. k)} CX,q) = {C(Y q, k)i
. and D(\ q) = lD(A g, k}}. Correspondingly we shall use the notation B(X, ¢, k),
(X, ¢, k) and D(x, g. k), ete,
For each k, the map’
' C(A g k) = 8P (X,q. k)
defmed canonically by means of the base pomt preserving map F(Rq L) a(xR‘I)

is. nol an IHJEQUOH of spaces, because not so is F(R‘l kyt — (x R7)-.

Let R'? an (—1,1)X... )X {—1,1) (g times), Let f: R1>R" denote thie map (a yoes
al) — (tanh ..., tanh a%). Then we have a homeomorphism (denoted also by) f:
X Rt — >( R‘* W’!th f(ay...a) = (fa), ..., f({a)). Lel

k
T (RS, k).= f(T(RY, k) — [«]) U ((X By — (X RD).
‘ k k
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Obviously, by 2 suitable G - equivariant CY - decompo';lllon on (>< RY), THRY, k)

is an Gy-equivariant NDR in (X RY)-. Furthel we have i ("(RY, —1))CT (Rq k),
and (I (RY, k), T” (RY, k—1)"") is an G-equivariant NDR pair. Consequently, we
have an allowable 6-NDR @ (¢) = { T (RY, k)| in 2R(g). Now, let
B (X, §) = L(X, @ (), G(X,9) = LY, @ (9))
: D (X, )= L(X, @ (q))
We have evidently the following

2. 15. Propounon
() B(X, ) = B (X, q), CX, q) =~ C(X, q), and D(X q)y =~ DX, q) :
(ii) The canonical map C(X, ¢) ~ SP(X, q) is an injection of spaces (by W hlch we
conmder C(X, ¢) as a subspace of SP(X, ¢)), and we have
’ SP(X, ) = C(X, 9 U D'(X, q)
CX,n D, )= |+].

§ 3. DECOMPOSITICN FORMULA

Let (Y, & be in CG7 . S, (X) denote the (integral) singular chain complex of
X. Let 5, (X) = Ker e where &: S, (X) > S, ({«}) is the augmentation given by
the surjection X — #. In this section, we shall analyse the chain complexes S
(B(A,g)) and §, (C(\.9))-
- As it is well known, under the lanquade of complete semi - simplicial com-
plexes, Steenrod has strted in his lecture [33] the decomposition formula

S, (SP¥X) = @ S*(SP“I\/SP"*IY) Co (3.1)

for each CW - complex X. Th . we have the corresponding formula for
SP(X,q,A) = SP5%.X in this case. Also we have .

3. 2. Theorem. If X is a CW —complex wilh base point, then -

Se (L (X, £, k) ~ @ 5. (LN, Lo E(X, £, n—1))
for £ =+ or L with ¢ an allowable G - NDR in R(q)".

Proof. (Sketch) The theorem can be proved by the same argument used in
Dold [8; §9] or Spanier [31; 6.7] in the proof of 3. 1:

— Construct the ¢, s. s, complexes L(K, £, k) for each (‘SS complex K;

— Show that there is a natural weak homolopy equivalence L(K, £, k) —
L(K, £, k) where K denoles the geometric realizalion of K as a CW -complex ;

‘ w Prove the decomposition formula (or (K, £, k).

If X is a CW-complex, then there is a weak homotopy equivalence |S,(X)|—+X
according to Milnor [22], and |S, (X)]—X also is a homotopy equivalence as it is
vell known (e. g. Spanier [26 ; 7.6.24]). So we have

L(X, £, L)~L(lb (). £, k) =~ |L(S 2, X), k)| (2.10)
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The theorem follows.
We shall prove Lhe followwg

3. 8. Theorem. Let { = |[ix] be an allowable G-NDR in L R (g). Suppose thit
((X Ry, Ey)is relatively 6x-[ree for each k. Then we have
X .

-
Su (L(X, £, 1))~ @ S, (L(X,£, )/ L(X, £, 1 — 1))

n—g

for each X &€ CG" where £ = % or £ = [°.

3.4, Corollary. It X' &€ CG’, then we have

S, (B(X.q.k)) = & 5, (B(X. q )/ B, (X.q, n—-:l))

az=o

Se(C(X, a. ky) =~ @ S (C(X, q.n) / ((XN.,q,n—~ 1)),
The proot of Theorem 3.3 is divided into a number of lemmata.

3.5 Lemma.

S (X, £, k) = Sy (L (X, L,k —1)7) @ S (LN, LK)/ LN L k~—17)
Proof. We use the nolation given in §2. According lo 2.9, we have the
following commutative diagram

(Xk.)k—l X Ly = X¥ % Ly — X5 X Lii( XY X Ly
2 ¥ l
TN L k=1~ DX, £ k) —» L(X, £, k)| £(X,2, k=D,
By the Eitenberg—Zilber theorem we have S, (\")(Lk)~ Su ) ® S, (Lk)
From tkls we obtain easily ,

Se (V¥X Ly~ S, ((\L)k._lek)) D (Su(X)* ®Sp(Li)). - (3.6)
In the other words, we have the splitting

A

Hy (X5 X Ly Z) 22 Hy (K% X Ly Z) @ Hy (X8 X Lics (X X Ly Z).
Since the last vertical map of the above diagram is a homeomorphism, this spllttmg
implies the spllttmg , . -

a, (L(Y’ﬁ ky; Zy = H, (X, £, kwi)’* /)@H (AN, 2,K), L(X, £, k— 1)"‘ Z)
by means of the homology sequences for the two horizonlal sequences of the dia-

- grami. Now, according lo Pr0p031t10n 2.10 (i), (LY, £, k), L(X, £, k=1 is an NDR

. pair, we have "

H, (X, £,k); Z) =~ HyE(X, £, k=1 )+ H (X, £, KL, £, k=1 ; Z).

The xsomorphlsm of the integral homology groups of two free complexes is equi-
valent with the homotopy equivalence of the two complexes. Consequenily, the
lemma is proved. ‘ .

. 111

e



4.7 Lemma.If (X, 4)is a relative G-free NDR pair, then we have the ho-

metopy equivalence )
S, (X, Ay ® Z =8, (X/G, A/G).
G

Therefore we have Sy (X/G) (8) Z = S ((X1A)/G).

Here as usual S (X, A) =5, (X)/84(4) for each pair of spates (X, A).

Proof. First we let (X, A) be an NDR pair. Let U denote an open DR nei-
ghborhood of A in X. Then we have the open covering % = {X — A, U} of X, Let
8, (AU) = S, (X — A) + S,(U), the subcomplex of S§,(X) generated by S, (X — A4}
and S, (U). Then the inclusion S, (%) C §. (X) is a homotopy equivalence (refer
to Spanier [31; 4.4.14}. ket 7: S, (X) — S, (%) denote the homotopy equivalence
given in the proofl of [31; 4.4.14] from there we observe that tv|S,(U) = ]S,,,(Gl[)-

Thus T (S, (A)) C S4(U) and 7 induces the chain map
S«X, A) = SU (X, A) = S, (U)/S, (U)

Now we have the commutative diagram

0= Se(d) > 8, (X)—= 5, (X, 4) =0
N It lz

0 = S (U) = 8, (U — S (X, 4) > 0.

The two horizontal sequences are exact, The two [irst vertical maps are
chain equivalences. By means of the homology sequences for these exact sequen-
ces, it is easily seen that _ . ' -

‘ ' 7:8,(X, 4) =8Y (X, 4). 3:8

Now let (X, 4) be a relative G-free NDR pair, and U is a G-equivariang
open DR neighborhood of A in X. Let p: (X,A) > (X/G, A/Gr) denote the projection,
Then we bave the chain map p,:8,(X, 4) ?Z—»SiU (X/G, A/G) given by p(oR]) =

po fore € S, (X—A4). p, is clearly well-defined and injective. On the other hand,
X—A is G-free byassumption, the surjectivity of Dy 1s a direct consequence of the
- well known relation §, (Y—A4) ®Z—>S (X —A)/G) (see MacLane [16; [IV 11.3]. Hence

P, is an isomorphism. Thus from 3.8 follows the lemma.

Combining Lemmata 3.5, 3.7 and Proposmon 2.10 (i), we complele the proof
. of Theorem 3.3. Here are some direct consequences of this theorem.

3.9 Corollary, Under the assumption of Theorem 3.3, we have

k__ —
Su (L (X, £, 1) 22 7@ (@ 5, ()" egs,ﬁ(L_n) ).

Proof Use the relation 3.6.
_ 3.10 Corollary, Under the assumptlon of Theorem 3.3, we have

Sy (L(X, L, 8)) =~ 2D (@9 G, (X)" ® C. (L))
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for any chain complex Cﬁ(X)zS‘%(X) and any G,-iree chain compiexes C.__:_A(Ln)
which are 6,-equivariantly homotopic to SalLn), n > 1,
Proof. According to the Steenrod’s fundamental theorem on extended ténsor

products of chain complexes [32;5.2], wehave $,(X)" R8u(Le)= C(N)" &C.(L,).
The assertion follows from 3.10. ' ’

Apply this result to the case where £ = @ (g or &(g)°+ i.e. lothe case I, =
F(R%,n) or F(R%,n)*, we shall construct in the later sections the chain complexes
V(IM,q) ~ S,(B(X,9)) and- W{(M,q)~S,(C(X, q)) for M ~ §_(X) by which the further
compulations become effective. -

§ 4. mDGA.ALGCEBRAS

Suppose Lhat we are given a [liltered space X = { X ]. Suppose further that
it satisfies the decomposition theorem. i.e.

k .
S:X) >~ @ S(Xo Xu))

n=o

for each k(0 < & { o) where X_ = X. For simplicily, all homology groups will
have coefficients in a fixed commutative ring A with ‘unit which will be usually
deleted from the notation from now on. In practice, A = Z, Z, (the priwe field
with p elements). Saying that elements of Hy (X, X, ;) are ol rank n, we oblain
then a’ module H, (X) bigraded by dimension and by rank. It H.(X\) is determined
for each k > 0, so is obviously H(X). However, as usually seen, there exists a
mathematical phenomenon that the infinite may be well understood before we
know about the finite. Thus suppose that H,(X) has been compnted, then there
exists a suitable bigrading by dimension and by rank on H.(X) rom which H(X})
are determined.’ '

This general approach is due to Steenrod [33; 22]. He has called attention
that this is an effective method to compute homology groups of the symmelric
products SP*X for a connected CW-complex X. In faect, by a theorem of Dold-
Thom, SP~X is weakly homotopy equivalent to § K(H,(X; Z), r). Tt follows that

. n =
H,(SP>~X) can be computed by the method of the Cartan construction [6]. In [26},
Nakamura has indicated how to give a bigrading on Hw(K(Z, n)) and on H (K(Z;,, )
- by which'one can. determine the homology groups of the symmelric products of
the n-sphere and the Moore space respectively ; hence one knows how to compute
H,(SP*X) for each connecled CW-complex X, Our further studies are substantially
based on the above described approach. _ _

Assuming of familiarily with elementary differential homological algebra
theory, we first fix some notation and terminology which will be used later: Let A
be a commutative ring with unit fixed as the ring of coefficients. All D(dilferentialy .
G (graded) modules are differential modules M = (M, ay) over A with positive
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gradation, i.e. M = @ M, unless;,o{het‘\\?ise specified, and with differential ay having
i=o
1 .
degree —1. An element x € M, is said to have dimension dim z =i We also
write || = dim ®. For each morphism of DC-modules /: M — N, we write fi=f| M.
A itself is considered sometimes as a DG-module with (rivial grading A, = A,
Aj = 0 for i > 0, and differential dp= 0.

A DGA-module M is a DG-module (M, ay) together with a morphism of

DG-modules &y: N~ A called the augmentation of M. A DGA-module M is said

to be n-connected if (ex); : M; =< A; for i < n. The O-connected DGA-modules are
called connected, and the I-connected DGA-modules are also called simply con-

nected. For each DGA-module M, the kernel Ker eu Pf €y will be denoted by IM.

By a DG-algebra A, we mean a DG-module (4,24) together with a multiplication
@y AR A - A (which is assumed to be associative) and a unit mu: A - A for @,,
Dually, a DG-coalgebra € means a DG-module (C, ac) together with a comultipli-
cation Ac: € — C®C (which is assumed to be associalive) and a counit Mg: C— A
for Ac. A DG-algebra A (resp.a DG-coalgebra €) is called n-connected if (ea)i:
Aj = A; (resp. ()it A== C) for i < n.

A DG-algebra A equipped with an augmenlalion, i.e. a morphism of
DG-algebras ey : A — A is called a DG A-algebra. Here we consider A as a DG-alge-
bra in a canonical way. It 4 js a DGA4-algebra, we have g, MNa = 1A . From this,
as a' DG-module, A may be identified with the direct sum 4 = A D IA,

A DG-coalgebra C equipped with-a coaugmentation; i.e. a morphism of
DG-coalgebras nc:A— € is called a DCA-coalgebra. Here we consider A as a
DG-coalgebra in a canonical way, If € is a DGA-coalgebra, we have s, Mo = 1A .

From this, as a DG-module, C may be identified with the direct sum C = A P JC.C,

Here we let JC denote the cokernel Coker e of 1c.

A differential Hopf algebra is a DG-module 4 equipped with the structure

morphisms Cy: AR A - A, Ay:A—>ARA, ey A— A, Ma: A— A such that (4, ay,
Dy, Ba, MaYis a DGA-coalgebra and either A, is a morphism of DG A-algebras or
®, is a morphism of DGA-coaigebras. :

.~ Forgelting the differentials, we have the notion of algebras, augmented
algebras, coalgebras, coaugmented coalgebras, Hopf algebras, Now we recall the
following definition. '

4.1. Definition (Nakamura [26; 1.2]). Let A be a DGA-algebra. A is called a

DGA-algebra with multiplicity, briefly an mDGA-algebra, if A satisfies the following

properties. ¢

+

(i) A= & ,4,a direct sum of D -modules such that
nzo . s : .

‘“A'-': 69 IlAls nAi = nA-nAi, n, i=0.
i=o

i14
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(1) &.(A& mA) € 1,md, |, m>0. |

(iii) ex]od = ,4 o A (therefore gy {od) = 0, > 1).
Forgetting the differential, we have the notion of algebra with mulfiplicity, bi'iefiy
m-algebra. For each mDGA-algebra A, H,(4) is eventually an m-algebra, and

H() = @ wHy(4) = @ Ho(,4):
n_>_0 n=9 .

If a € 4, we défine “a(a) = n and say that a is a homogenéous element of

. k L
multiplicity n. We shall denote A(k) = @ .4, k=0, A morphism of mDGA-alge-
n={ :
bras f: A —-»A’;is a torphism of Dbzi—aigebras preseérving thé mullfplicit'y, i.e.
f(A) € 24", n>0. :

Given-two mDG4-algebras 4 and A’ The tensor product of A and 4’ is the
- DGA-algebra A 4’ with the multiplicity given hy (AR A)= @ 148 4" Re-

I+m=n

mind that 4isa commutative mDGA-algebra, if and only if ®,: 4 RA—>4isa
morphism of mDG A-algebras.

An mDGA-algebra 4 is said to havefrivial multiplicity it 14 = |4 or equiva-
lently i = 0 for i > 1. Note thai ir A has trivial muitiplicity, then 4 is clearly an
‘algebra with trivial multiplication i.e. ab=0 for every a, b & IA.

Here are some examples of mDGA-algebras,

4.2. mDGA-algebras S9, ¢ > ¢. For each non-negative integer g, <9 is an
mDGA-algebra with trivial multiplicity such that ,;§9=Aq9, the free A-module gene-

rated by a single element ¢ of dimension ¢. Necessarily we must have <9 e AD
Ad? 207 = 0, (012 = (.

4.3. Iterated suspension. Let ¢ be a non-negalive integer and M a mDGA- ’
module. Then we define SIM to be the mDGA-algebra such that as a DG-module,
SIM=AP UM 1% and itis given a trivial multiplicity by ;SIM = IM g IS¢

If g =1, '™ will be wriiten simply by as SM, Immediately from the definition,
we have JTM == SS9-1 ) [or 9 >0, so we call S* M the g-iferated suspension of M,

Let ¢7: IM — S9M denote the map given by ¢%z = (—-1)“""x® clforx € IM,
tThen obviously we have -

3 (09%) = (—1)1¢%2 and .(o'qa:) (o"y) =0 forx, y < IM.

~ In parlicular, we suppose that M is 2 DGA-algebra A. As easily seen, we have
A= (A@IY/(A RIS @ 14 A) as DGA-algebras. Remark that $°A ~ 4 as DGA-
modules but generally S°4 - A as DGA-algebras. Since (e°a) (¢°b) = 0 for a, b < I A.
J°4 can be seen as y trivialization of the multiplication of A. Further, if 4 is an
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‘in-lJ(;‘iﬂi-aigei')r'a, we deline oS4 by neglecting the mu‘It‘ip‘libity on 4. When ¢ =1,
<°4 can be scen also as a trivialization of the multiplicitj of A.

Now, we suppose that M is an n-connecled DGA—module For eaeh negative
mleger g such that n 4+ ¢ > — 1, we define the mDGA-algebra JIM "with trivial -
multiplicity-called the g-suspension ({(—g)-desuspension) of M by the conditions

(ISM); = (IM)i_q and 2 gqj = (—1)%0u

We also have the mﬁp ¢l IM - JSM which is the identity in each dimension.

Note that if M is n-connected, we have by definition of‘”‘l M~J37 M il
n+q } — land n+q+q¢ > — 1.

4.4. Bar econstruction. Let A be a DGA-algebra. We reecall that the
{reduced normalized) bar construction of A is the D(rA-coalgebra BA defined as
follows. _ ),

[N
(1) As a graded module, BA = i} (MA)l where (1’<:5A)0 = A.
t==0

1t 1 >0, the element of BA corresponding to each element vy;®..Roa €

I J A)" will be denoted by [a |..la]; if # =0, [ ] indicates the unit 1 € (I & 4)°.

By definition, we have dim [¢; |...|a/] _Z (lai} + 1)

i=1

(iiy The boundary formula : e ' 4:\ :
oy L] o] = — Z( e [ay)...| oxat].. lar1+Z<—1> les] . s@isg |+ ]
i=—1 i=1

where e; = dim [ |...[ai-] for! i< ¢
(i) e {1 = [ 1. .

| 1 ir t =0
"6 (lart..au]) = ’ 0 ;r t>0. ' h

. t ’

{(iv) Apy [(11‘ -..Iful = Z [« ’ Iai]‘® (@i ] l(lt} ' \U

i=0

4. 5) Suppose that A is in addition a commutalive DGA-algebra, then the
multiplication @, : AQA—A is by definition a morphism of DGA-algebras. Thus, in
this case, we have a natural moiphism of L.GA-coalgebras. B(AQA)~BA. Compo-
sing this with the natural morphism of coalgebras BA® BA - B (4 ® 4), we
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bave the commutalive multiplication @, : BA@B-’l — BA (sce e.g. Cartan [6 :
* Expos¢ 4]).Thus BA is a Hopf algebra. Now, from [26; 1. 2]. we havu an cxplicit
formula for @y, given as follows: »

[ag]-. @] [ Loland =0 (—-1)%= {a,u__m)l e+ @z _q(40) . Here > isthe summation
' 7 | %
‘running over the set of all permutations % & Gy, satisfying the condition.
w(l) <.<7:(ty, 7 ({+1) < ..<<w( L+ u)
and c; is the exponent given for each by
=% (la|+ 1) da) + 1)
where 2’ runs over. the set of all couples (i, 1) such that 1<1<1r +H1=<j=f+u
and a(i) > x(j). -

Now let 4 be a commutative mDGA-algebra. Considered as an DG~ alg( ‘bra;
‘B is defined to be an mDG A- algcbra with the multiplicity extended from that
glven by the relation .

: St
pax ([a ]| @) = 2 pafa).
i=1

By iteration, B'A = BB%'A, g = 1 are mDGA.algebras. Here, by convention, we
let B°4 = 4.

4.6. A (1N, q),1>>0, ¢=0. Let C be an abelian semigroup and Z(G) its semi-
group ring. With the usual augmentation, we regard Z(G)as a DGA-algebra
where Z(G); = 0 for i > 0. Then we define

A(G, 0) = Z(G), AG, q) = BAG, q—1), ¢ = 1.

In particular. we consider the case where G is the semigroup 6f natural number
N = {a“; n = 0}. We have then Z(N)= EB Z(a—1)". Now, for cach positive

n=0
integer ¢, we define A (4N, 0), to bethe mDGA-algebra such that A(tV 0) Z (N)and

AN, 0) Zfa— 1y’ #f n=1tmm >0
0 otherwise.

By iteration, we define the mDG A-algebras A(@N, ¢) = BA(iN g—1), g>1.1f
t=1, we write AN, ¢) = A(IN,). This is the DGA-algebra with the multipli.
city defined in [26; 1§2].

Remind that A(Z, q) is not an mDGA-algebra. However, the morphism of
DG A-algebras AN, q) — A(Z, q) induced by the natural injection N — Z is a
chain equivalence see [26; L. 1.11}). So H, (Z, q; A)=H, (A(é g)y; A) is an m-alge-
bra with respect to the multiplicity given on A(N, q).
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A topological version to the notion of mDGA-algebras appears in the
following : : ’

4.7. Delinitien. A filtered monoid is a filtered space X = | Xy l with X, =*
(see the definilion below 1.3) together wilh a multiplication ®: X x X — X such !
that X is also a topological moneid and @ is a morphism of fillered spaces, that i!
is O(X; X X)) C X, +m for every [, m > 0.

As a dircet consequence of Definilions 4.1 and 4.6, we have the following

- 4.8. Proposition If X = { X\ | is a filtered monoid salis{ying the decompo-
sition theorem, i.c. )

k
S*(Xk} o= @ Sa&(‘\rm Xn—l)’ k > 0' N

n=a

h

then S,(X) is homotopic o an mDGA-algebra.

Let X & CG’. Then the fillered space SP(X.q) equipped with the multiplication ' 1
given by the relation

[t @ ), (@i @) (@) 5 (o By s (@ 4 poons &G )] = (4.9)

= [(xl""- x[ »{-m)’ (al""'l a[ +IT|.)1

is a filtered monoid. Also B(X, q) is a filtered monoid with the multiplication

induced from that of SP(X, q) via the projection SP(X, q) — B(X, q). Further, as
readily seen, SP(X, q) and B(X.,q) are abelian filtered monoids. 'Q}

The relation 4.8 does not induce canonically a multiplication on (]1H(X, q).

However, E(X, g) (then C(X, ¢) has a [iltered monvoid structure @ ;6(X, q)x(i-(X,q) —_
C(X, q) with ' (

O([z, a], [&", D =[x X &', @, (a, &)] where T & X, g'eX®and @, . F(R%D X
F(RY, m) — F(RY, ¥ + m), the map given by the formula: )

D o (s Gy ggpens Qo)) (4.10)

- IEES O A+l ¥
B (al'"’ “ (1 e +1l+1) Rha (1 iy mH-‘) aHm) ¥

Here |a;| = the distance between a; € RY and the origin of RY, and d = max
(@3] s 1 @), Obviously (@, o X 1) @, 4 0 =P g (1 X Oy ). Henee & is

associative, and thus E(X,q) (then C(X, ¢)) is a monoid.
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§ 5. mDGA-COALGEBRAS

L3
feg

5.1. Definition, Let C be a DGA-coalgebra. C is called a DGA-coalgebra
with maltiplicity, brielly an mDGA-coalgebra, |f C salisfies the [ollowing proper-
ties. .

(i) C = @ .C, a direct sum of DG — modules such that
n>>o

nC= e} 11.Ci9 nCi=ncr\Ci. ﬂ,iz {
izo '

(ii) Ac(nc) C @ C ® nl, R0

. !4+m=n
(iii) nc ' A =~ ,C (therefore e | uC =10, n > 1).

Forgetting the differential, we have thc notion of coalgebra with multiplicity, brie-
fly m-coalgebra. For each mDG A-algebra mDG A-coalgebra €, A (C) is eventually
an m-coalgebra.

The multiplicity of a certain element in an mDG A-coalgebra, morphisms
of mDGA-algebras, the tensor product of two mDGA-coalgebras are delined
by a similar way as in the case of mDG A-algebras.

An mDGA-coalgebra G is said to have trivial multiplicity if JC = \C, or
equivalently ;€ = 0 for i >> 1. Note that if € has trivial comultiplicity, then C is
clearly an. cealgebra such that every element c &€ JC is primitive, i.6, Ag(¢) =
=1&c¢c+c¢ @_1.

A Hopf algebra A'is called a Hopf mDGA-algebra either if A is an mDGA-
algebra and Ay: A— A % A is a morphism of mDGA-algebras, or if A is an
mDG A-coalgebra and @, : A® A — A is a2 morphism of mDGA-coalgebras.

Here arc some examples of mDG A-coalgebras.

" 5.2. mDEA-coalgebras &9, q > 0. We use the same notalion as in 4.2. For
each non-negative integer ¢, 59 is an mDGA-coalgebra with trivial multiplicity
such that as DG-modules. it is J7 of 4.2. It is easily seen that J9 together with
its algebra structure is a Hopf mDGA-algebra if and only if ¢ is odd or 2=0 inA.

5.3. q-iterated suspension. Let M be an n-connected DGA-moduile. For
each integer ¢ such that n + ¢ > — 1, we iniroduee an mDG A-coalgebra structure
on the DGA-module 1M defined in 4.3 by giving a trivial multiplicity, Again,
we denote this mDGA-coalgebra by SIM and call it the q-iterated suspension of M.
For suitable n, g, ¢’, we have JHUM ~ SISVM.

In particular, we suppose that M is a DGA-coalgebra. Then, we have
JIC = (CR IN(A®IST @ JC® A) as DGA-coalgebras. for ¢ > 0. Here the
right ‘side has the structure induced (uniquely) from that of C® J7 such that the
projection from €@ J9, is a morphism of DGA-coalgebras. :
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. l
. Remind that J°C ~ C as DGA-modules but generally °C @ C as DG A
"coalgebras. Sinece Ao (0%) =1 R 0% + 0% @1 for ¢ € JC, S°C can he seen
as a trivialization of the comultiplication of €. Further, if C is an mDGA-coalgebra,
- we defige J7C by neglecting the comultiplicity on €. When q=10, J°C can
be seen also as a trivialization of the multiplieity of C. _
5.4, Cobar construction. Let ¢ be a connecled DGA—coalgebra. We recall

thal the (reduced normalized) cobar construction of C if the DGA — algebra FC'
defined as follows :

(i) As a graded module, FC = @ (JSIO).
o
If 1> o0, the elemenl of FC corresponding to eacl element ol @ .. &
& o7le: € (JIIC) will be denote by {e; | .o )il t = 0, ( ) indicates the unit

t

1 € (. -1y ="A..By definition we have dim {Cy )ity = =(lei] =1
f=1 ; '
(i1) The boundary formula: . _ K&L
v 1
e < Cp |l >=— 5 (= DT <o) loccillen >
: i=1 )

t

+ (=D <A . o>

i—1
. . ;
where ei =3 (¢ | —~D=dim<e }..|¢ > mod 2 for I<ikt.
. ~ j-”l '
Here if Agec = Z ¢’ ® c”.(the Swedler’s nolation), we write -J{

c

A= S (=) e ger
c

() Mpe (D = < >, epe <€ | .o f&e>=( 1ift=0

) {0ift>0 -

@) Bre (el 0> @< o] | Cupn ) = <01 | e | i >

. (5.5) In addition, we suppose that C'is a commutative DGA-coalgebra. Then,
hvdefinition, Ac: C> C®Cis a morphism ol DGA.coalgebras. Thus, in this case,
- We have the natural morphism of DGA-algebras FC - F (C ® €). Composing this
wilh the natural morphism of DGA-algebras F (C® €) — FC ® FC, we have the W
commulative comultiplication Apc: FC— FC®R FC. Thus FC is a Hopf algebra.
An explicit formula lor Ap¢ is obtained as follows (refer to [26;1I § 3]

Breey [ T> =27 (= 1T <eg 1y ] . [eaqu) >@<Cm(u+ 1 - | ety >
4 ' .
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He'fe Z is the summation running over the set o all permulations «t € o\ satis-
JT

fying the condition :
' CT(1)<,,_<?f(a),.7c(u-i—‘l)<---<Cﬂf(ll’),0€M~<\,i

and e_ is the exponent given for each by

-
eﬁ=2'r(lci!+1)(!cjl+1)

where 3’ runs over the set of all couples (i, j) such that Iigu ut1<j<!

Cand @ (D > @ (j) _

' Now let C be a commutative connecled mDGA-coalgebra. Considered as a

BGA-coalgebra, FC is defined to be an mDGA-coalgebra with the - multiplicity

exlended from that of C by setting

.
p{cle]a>)= Z ulc)

i=1

_ Furlher,asgume that C is n-connecled, FC is then a commutative (n-1)-connected |
mDG A-coalgebra. Thus, for 0 <C ¢ < n + 1, by iteration, we define

¢ FOC — C, Fqc — FFq'IC.
FIC are commutative (n—q)-connected mDGA-coalgebras.

Given -a DG A-module M, S*M is then by definition an (n—1)-connected
commulative mDA-coalgebra. Thus, for 0 < g < n, the ¢-iterated cobarconstruction
FiS"M is an (n_—q)-connected commutative mDG A-coalgebra. If M = o, F1 g7,
0<q<nare \mDGA-algebras of particular interest.

Examples of Hopf mDGA-algebras can be found in the following proposition

which is ready seen in 4.5 and 5.5.

) 5.6. Proposition. Let ¢ > 1. Let A be a commutative mDGA-algebra and € an
‘(n——l)-conneéte&COJmmUtative mDG A-coalgebra. Then B4 is a g-connected Hopf

mDGAm'lgebras with commutative multiplication, and F(C with ¢ < nis an (r—q)-

connectéd commutative Hopf mDGA-algebra with commutative comultiplieation.

Let A be a DG A-algebra and C a connected DG A-coalgebra. Let py: Bd —J4
and re : FC — S1C be the maps given by :
‘ ody i t=1

pa(lag] .l ad) = ;0 i 1> 1

o—lc if t=1

ai...]a ==
rcl(< 1] 1 >) }0 . i > 1,
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Then obviously py is a morphism of DG A-coalgebras and r¢ is a morphism of DGA-
algebras. Thus, we have the morphism of DGA-algebras

oy = r(‘JA F(PA\) : FBA — FdA4d— C_‘jn.{i.

On the other hand, lel ) : !
) Bc : 3°C - BFC

',be the map given by B¢ (¢°%) = [ <<¢>] fof ¢ € JC. Then obviously, B¢ is a mor- .

phism of DG .A-coalgebras.

Now, according to Drachman [10], Husemoller-Moore-Stashe(f [14; I1.4], and
Munkholm [23; 2.15], we have the following

5.7. Theorem. oy : FBA —~ J3°4 and Bc: JS°C = BFC are chain equiva-
lences. . :

§ 6. NAKAMURA' § CW — DECOMPOSITION OF (XR")
n
In this section, we recall a decomposition of XRY given by Nakamura in
. n ‘ -

{26 ; II.1] from which we obtain an G,-equivariant CW-decomposition of

(X R%Y). Since this will be a main tool of our further study, we shall attempt to
o

present the material in details for the convenience of the readers.

Consider XR? = (XR9)" — [*}] Let R? be equipped with the lexicographic

order by agreeing that a>b with a = (d',..., a¥), b = (b,..., B)&€RY if and only if
there exisls a non-negative integer p such that a” = b%if o<p and aPTispP+l,
Then an arbitrary point of qu can be wrilten in the form g{Qyenss @) =
= (a gy a _1(n)) where ¢ 6 G, a, G RY 1‘01 1 < v < n satisfying the relation

o 2 Oy

Obvioﬁsly, each point (al;,..‘., ) satisfying this relation delermines a sequence of
integer ry,.., ry with r; = q and 0 <C r, <{ ¢ by the condition

v ¢

a, = a, 1<K o<y - (6.1)
+1 .

f, >a if p, < g

where p, = a — r,. Conversely, given .a sequence of inlegers ry,..., ry with r; = ¢
and 0<r,<(q, we can determine a subset of XR, consisting ol all points (ay,..., &)
n

A



satisfying (6.1). Let o = (rl,,’.r., r,) denote this. subset and let ga the subsel {gP;
- Pea} of XR" for each ¢€&,. Then the collection R(g, ny=[ga; §E€6,, a=(I1...; o),

. Ti=¢. 0 <1y < gf evidently covers XR*. 7

Set [ J={#} and
R m ={{1]vR(n:

<R(q, n)’ is an G,-equivariant [inile covering ol (X R%)" by pairwise disjoirit sub-

n

-~

sels. 'Eve_ry ga in R(g, n) is homeomorphic to a disk of dimension

lgat= 2 1y
. =1

Y

if @ = (ry,... n
dimension i or an i-cell if [gal =1 By the condltlon (6. 1) the houndary of every
i-cell in R(q. n)- is contained in an union of cells, with lower dimensions; it is
homeomorphic to an (i-1)-sphere if i > g, and it is just the pomt % lor any ¢-cell
(¢ == 0). From the above lemarks. we ohserve that

(6.2) R(g, ny is a cell decomposition of (X R as an G,-equivariant CW-
complex. '

Suppose that we are given a cell a = (ry,..., ry)in R(g, n). In order to express
the faces of a, we first introduce some notations. .

Let r be an integer such that 0 < r <{ ¢. Then we define the monotone in-
creasing sequence

V(s Dy s 9 HE)) (6.3)
consisting-of all indices v's such that r, > r. This sequence delines the partition
n(r) = (a(r, D,..., n(r, (1)) ‘ (6.4)

of n by putting n(r, i) = v(r, {) = v(r, i+1) — v, i) where v(r, {(ry + 1) =n+ 1.
~ Here a partition of a non-negative integer n means an ordered sequence (ay, ..., n)
such that n; +... + = n '

Let ¢ = (nl,...,. n) be a partition of n and let % be permutation ol degree {.
Then we deline their associated element g(¢, @) in G, by the formula

: i fiy—1 .
99, n)(zni_m): > ot I<A<n (6.5)
a1 =1

with 1 i <t In particular, we set
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. g.(r, m) = g(n,r), 7).
Note that for each ¢ and @ given above, the signature e(g, m) of g (&, ) is the
integer : -
e(p, ) = I’ mn; , (6.6)
where %’ is the summation running over the set of all couples (i, j) with i<j,
salislfying m(i) > = (j). The sign ol g(¢, @) is sign g(¢, ®) = (— 1)‘3@5: )

Now we consider the boundary of « = (Fi,.e., Fa). II @ is of the least dimen-
sion g (i.e. the cell of the form (g, 0,...,0) then [ ] is the only cell in its boundary-
Hence it has no faces unless g = 1,

Suppose |a| > g. A cell gp is a face of « if and only if it is a connected
component of the set of x RY consisting of all points (y,..., «,) satisfying all rela-

o -

tions in (6.1) except that

Soq 0. .
a o= I<e 1

ap}l+2 # ([pi"+2
u_—-
for a certain index p with p==1 and rp = q —pp > 0, From this remark, the
faces of a can be expressed as follows.

(6.7) Let w be an index such that rp. > 0 and w1 Put r =ry,and let i, u, v, w
denote the integers delined by the relations

b= v(r, i)
wr,i—1) = v(r—1, u)
w(r, 1) = y(r— 1, v)

vr,i+1) = v(r— 1, w)
Then a face gp of o is a cell of the following form:
() g! = g (r — 1, @) where @ €6, ¢ = I(r —1) such that
() < e < AW — 1), AW < e < AW — 1)
and that fixes every &k with 1 <k <<u, w < £ <!

(i) B = (I‘g(l) A I'g(\’) —1,.. I'g(n)) where v is the index such that g(v) = p. o
\ Let us define an orientation of a cell ga with a = (ry,..., I) in R(g, n) for
every g € G, by the coordinate system

S DY q P+l Pn+1 q
a1 = al s ap, d s veey gn paven Qs (%)
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For a face B e (ry, .., y—1,.., 1) of o, we obfain its coordinate sysiem by delee:

-
ting the (1 + 7 ry ) -th coordinate function azp 1 from the coordinate system
A=1 ) ) !

of a. S0, as in the theory of s:mphclal complexes, we defline the incidence relation
[« :B] by the formula

la:p] = (=) A=t

Let gp be a face of o as mentioned in 6.7. By definilion, the coordinate
system (¥%) is areorientation s’ of the cell &’ = (rg(l) - rg(n))’ and we have

-
1+ 2, 1
’ ?\,:j
[a :gBl = (—1)

Further, we have .

[a:gBl = 8[a":gB] = o.(—1)- *=1
To consider

q
611. . an :
= 8
b g Pe(1y a(I ’
g(l) - g(ﬂ)

we set

sr;j =T + ' Z L rl .
, Vi, P<AV I, D
Then, from 6.6, we have

5 = (_I)Z’Smul,j Sral, k

where I’ is the summation running over the sel of all couples (j, k) such that
J <<k and m(j) > w(k).

Summarizing, we have
¢ ' b1 ,
"E'Z TA + 2 Sr—1, i Sr-h k

(i gpl = (—1) H=1 R ©.8)
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8.9, 6.7 and 6.8 determine completely the €.-chain complex € (R(g, n)).
Concerning the structure of this complex we have the following fundamental
- result.

6.9. Theorem {Nakamura). There exists an isomorphism of DG-modules

C.(R(q. 1) g®Z = AN, §)
n
for n, q > 0.

Here €. (R(g, n)) is the kernel of the augmentation & : Cu(R(g; n)) > Z giveén
by &([]) = 1, and ,A(N, ¢) is defined in.4.5. As we have noted in the beginning
of Section §2, SP*SY/SP"-187 == (X RY) /G, . Hence, according to the decomposition

. n
theorem, an important consequence of Therem 6.9 can be found in the following
from which we obfain the assertion of Dold—Thom on the infiniie symmetric
products of the spheres,

6.10. Theorem. The singular chain complex S,(SP(S°, ¢)) of lhe filtered
monoid SP(S°, ¢) (see 4.7) is homolopic to the mDG A-algebra AN, ¢) for ¢ > 0.

For the proof of Theorem 6.9, refer to [26: I1.1], or to the proof of Theorem
7.6 in the next section. '

£ .
§7. THE MDGA—ALGEBRAS ¥V (q)

We have observed in 4.9 that S, (B(X,q)) is homotopic to the mDGA-algebra

S, (B(X,q) = & _§,BX,qn, B q n— 1)) for each X in Cf’. The purpose
>0

A

of this section and the following is to construci an, mDGA-algebra V(M, q)
for each DGA-module M such that V(M,q) = Si B(X,q) by a morphism of mDGA-

algebras if M = S, (X). Here, we deal [irsi with the construction ol the mDGA-alge-
bra V(gq) = V(8°,¢) following the argument used by Nakamura in the proof of Theo-
rem 6.9. ' i

Let T (g,n) denote the G -invariant subcomplex of R(g,)* consisting of-all
cells go with ¢ € Gy, & = [} Or (I1 4uee, Tn) such that there exists an index v== 1
with r, = 0; :

and let F(q,n)-:R(q,n)-/ T(g,n) Remind that we have then F(q,n)" = ([ 11 VY F(q,n)
as sets where F(¢,n) = R(gq.ny’ — T (g,n). Remind further that it ¢ =0, we have
by definition ' _
’ Fhny = ({1 1, (O] ifn=1

L] if n>1,



Obviously T(q.n) s an G,-equivariant CiV-decomposition of the space T(RY,n), ait
F (g,ny is an G,-equivariant CW-decomposition of F (RY, n) (see 2.13).

Now we define the mDGA-algebra v (¢) which will be by definition homo-
topic to S, (B (5% q)). We set
Cu(F(q,n)) n>>1.

Here C, (F(q.n)") == C, (R(q,n)')/(@ (T (g.). First we define Vig) as DGA-module
o be the direct sum of DG-modules :

Tw= & V@ .
n 20
and to be augmented by the projectione : Vi) — () = Z.
For a& :1{7"((1): we let [L(G) = . '

If q=20, we have

V() ={2¢° n=1 . _
@ %0 n>1 - (WD

Here and in what follows, &° denotes the cell (0) €F(0,1)

Suppose g>1. Let & bea cell of the form (ry,...,m) in I'(g.n) Let v(i)=
= v(q, i) and r; = v (i+41) — v(i) for 1 <i=t=1(g) (see 6.3 and 6.4). Then we obtain
the cells '

o = (q— 1, I 63 BN, PRTRY T\.(i'-e-l)—-].)

in F(g—1,nm), Ii<t. Conversely, a such sequence a,..., ¢y determines a cell a.
Note that we have the corresponding formula on dimensions

4

o= 2 (lai|+D).
i=1

Thus we write formally
a=1t{o;|...]lal.

As easily seen, this correspondence yields an isomorphism

V() =~ & Z(6,) ® (mV(g~1)® w@uV(=1) (7.2
. ayt...+tm=n Gy X .. XGny
of G,-modules, In particular, from 7.1, we have
JO=26)07Z8, (7.3)
where we denote 8, =[6° | ... | ¢°1=(L.....1) € F(L,ny

-
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Nexi, we deline the morphism of graded modules Tig) ® V(q)— V(g) by the
morphisms of graded Gi X Gn-modules

V(& wV(G) — l-}-mff(q) i.m=0

given as (ollows. Later, by the boundary formaula, it will be aulomatically verified

that this morphism is a multiplication of V(q)-

Il g =0, it is necessary from 7.1 that (c°)* = 6.

Suppose ¢ = 1. Let a=[ay | ... | i), ©=lag | e | 2paa] be in (V(g) and mff(q)
respectively. Then we define

i Z e‘m(fx;B) ‘ -
of = - ('_1) g(ﬂ) [a‘lt--l(l) | o | Otm:-—l(t+u) i (74)

where the summation runs over the set of all _premutations’
% €64, satisfying (1) < .o <A, q(f4-1) < ... <(t+u); g(m) = g,w) €6um
with ¢= (@(Z1}e W(®izu)) (S€€ 6.5); and e (,8) is the exponent given By

(e B)=2(lai | +D (layl+9)

with & running over the set of all couple§ (i, /y such that 1<i, <t H—I <<
{+u and (i) > x(j)- '

From the incidence relation in R(g, n). given in 6.7 and 6.8, and the above
notion of multiplication, we have the following boundary formula for V):

, t‘ ei—y .
olfog | o |l = —S (=D (el bei] ol (7.5)
i=]1
- t__l . ’
b ST (=10 Ton | e | ity e | o)
i=]1

i
where ¢ = Z (& +1) tor 0<i<t.
jel
" This has the same form as the boundary formula of the bar construction.
The construction of the mDGA-algebra V(g) is completed.

" The mDGA-algebra V(¢ defines the mDG A-algebra V(q) by selting- . |

V(Q') =D nV(q)! nV(q) =7 V(Q) for 1120.
n=0 :

i

Clearly by delinition V(0) ~ &°, and V(@)= BV(g—1) as mDGA—algebras. From
this fact, we have the following

128 _ o

Wagra,:.
e

1}3 ‘
.
L



7.6 Theorem. We have a czmonipai isumorphism ol mDG A-algebras
‘ V(g) = Bid°
for every g>0. In particular, we have V() =,Bd°, n,g=>0.

To determine the homology algebra of V(g), we consider V(1) = BS°. By
use the notation in 7.3, we have )

V()= @ 78, 8, =[0° | .1 0°| € F(1, n)/Gy,
n>0

An easy compulation shois that

, 2 - _
an = 0. 81 = 0, 8182“ = e!n-H ’ Bg[ egm = ( l', m) 92( [+m\) (77)
for I, m, n>>0. Here as usual, ((, m) = ( +m)Yltm!

Let Pgx; 2i) denote the divided polynomial algebra with a generator 2 of

even dimension 2i over Z, and E(y; 2i 4 1) the exterior algebra with a genetator
y of odd dimension 2i+ { over Z. Then, from 7.7, we have’

V(1) = E@0i; ) @ P(8y: 2), (08, =0, n =1, 2)

as mDG A-algebras. Remind here that u(g,) = n. Using the notation given in 4.3,
it.is well known thal, by the method of Cartan’s conslruction, we have the homo-
topy equivalences of mDG A-argebras: '

»

E¢o;; 1) == AN, ) (0 = [a — 1]),
. P(ga: 2) =~ 42N, 2) (8, — [[a — 1]
Consequently, we have V(1) =~ A(N, 1) ® A(2N, 2).
Now, by means of the homotopy equivalence of mDGA- algebras

B(A® Ay~ BA ® BA’ for mDG--algebras A and A’, we reach the following

7.8. Theorem. WWe have the hombtopy equivalence of miG.A—algebras
Vig) == AN, ¢) @ A2N, q 4 D).

~ According to thedecomposiiion theorem, a direct consequence of this theo-
rem is the determination of the homology groups of the spaees F(RY, n)"/6,.

7.9, Corollary. _ ‘
H (F(RY, R)16.); A) == yH (AN, ¢) @ AQN, ¢+ 1): A))

Let B, be the braid group of n strings. Then F(R2,.n)yG, is a space K(By, 1)
as proved in Fox—Neuwirth {12}, Thus we have H (Ba; A) == H (F(R?, n)(Gy); A)-
On the other hand, according to the Poincaré — Lefschetz duality, we have

Hy(F(R%, n)iG,; A) E_ﬁgh‘i(F(Rz, n)i64: A) (see 10.1), Thus, from 7,9, we have the
following

7
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7.06. Theorem. Hi(B,i p) = ( H™ (AN, 2) @ A@N, 3); Ao U< i<an
0 i i >2n,
Remark that Hy(G,;) is trivial for i > n. (This fact is obvious from 10.3 and

the definition ofnﬁ’(z -4+) in (§9). A related result to the homology groups of €,
will be found in §10.

7.11. Remark. By means of the method of Cartan: construetion, the m - al-
gebras H*(V(g); Z,), hence the groups H,(B,; Z,), are casily determined, In 1970,
Fucks [13] has computed labourously H*(F(R?, n)'/G,; %) to determine H(B,; Zy)
by use of -the 6,-equivariant CW-decomposition for (F(R?, n} which is in fact
the decomposition denoted by F(2, n)" here, '

"

8.THE mDGA-ALGEBRAS V (M, q)

Let M be a DGA-module over Z, We define now the mDGA-algebra V (M, q)
for each g 2> 0. Firsl. as a DC-module, it is the direct sum of DC-modules

VM. = o VM, q). . T (M q)=UM) .7 @) n>0.
H/U ’

The unit will be an identification Z =, V(M, ), and the augmentation will be the
:anonical projection v (M, g) > Z. For every a & ,V (7) and = & (IM)*, we write
(0, 2) =(—1) 12121 394

Chen, by definition, we have the boundary formula
0 (a,%) = (30, x) + (— 1) Lo | (a, 2x).
The muttiplication on V (M, q) is given by the relation

(0. 2) By = (=11l 1% (B 2@ y).
\n easy verification shows that V (M. ¢ is an mDGA-algebra with multipliciyt
L (@ 2) = p (o). . |
The mDGA-algebra V (M, ¢) defines the mDG A-algebra V (M, q) with

VM, ) =@V, q), VM, ) =22,V (M, ¢
n>=0 .

n

Since V (0) == J°, we ‘have obviously V M, 0) r-zv <° M. In general, we have
he following

8.1 Theorem. There exists a canonical isomorphism of mBDA-algebras
V (M, q) =~ BY (IS° M) for ¢ > 0.
n particular, we have .,V (M, ¢) ~ ,B? (S° M), ~
30 .
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This theorem is a direet conscquence of our beiqw consideration of the
mbD(GA-algebra Y?(M, ). )

If ¢ = 0, we have already V (M, 0) = <5°M.

Suppose ¢ > 1 Let(a,2) € WV M gy witha=[ayl..le]Jand =2, 2 ..RQ x,
o€ lIM. Il p{e)=n;, | <i<4 we write ’

X =Ty + b+ 18 @ T+ oy I<igL
Then we write

(@, )= (— DI [a, %) .| (a, x1)]

where d(«, ¥) is the signaturc given by the interchanges.af [o] with x; when i >> j:
diz, xy = = (as|+ D Ix;].
1<j<Zi<t , (8'2)_

Here we note that we have the corresponding formula on the dimensions and the
multiplicities as [ollow:

4
[(d,ﬂ:)'m z(lai’xi)l'*'l)

t
(Ct, '-r') == 2.((25' xi)- h
' i=1 '

This correspondence yields an isomorphism of G,—modules
VM) = & ZG) O (T Mg-D®..%n VM, q-1) (83)
mn~+...n=n G

1

IIIX e !'l|_

according to 7.2.
Now we prove the [ollozwing formula for the multiplication,
8.4 Lemma. Lot ¢ = [(«g, x)] ... (@, x| S (VM ) and
b = [(ts1s X101) | oor ] (s, Xizw)] € ¥V (M, ¢). Then we have

ab = I (— 1)ex(aD gy [CHIPI :um_,m) R CREPY .xnﬁ,(H_“))l

k-

Here the summation, g(m) are as in 7.4, and the exponents ey (a,b) are given by
Vo0 @b =2 (a4 x|+ D (gl i D

where I’ is again as in 7.4,
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ﬁrooi;. Lel o= far | ayl. = ta:-i-;l | Bigal and el z = . @2/:,
y = Zt+i{R ... @T 1o Then, by de[nnmon we th(_ (_})IB “’”(a T)(B, P)=(aB, xRy

= Z{—1)exla B (g @) ag_, | L 1R R Tor )

ay =1

— 2(__1)&-,;(0!, B +exlx, y)g(ﬂ) (o

: :Fr"*l(n oo ‘aﬂ—l(t-—{-u)]‘ JSCy ml@xw“))

= E(—l)?“(a' B)+en(x. ""g(:r) (|2

I & ... ®x )

T 1(1) e "-'—1<:+u) —1(1) Fox lergw)

= (= e B, v 1@, B Vg o [ :

w14y “‘1<1))I'"|(a“—1(1+u)’ T~ 14
Here we set
€x(T, ) = 27 IIL': ijiu
(o, B x, y) = ‘2—: (I“gr_ll(i f+'x:n:_.1(i)l+1)(i°"ﬁ_1(.)l+lxn_1(j)[ + 1.
IKiKeKtdn D :
Our purpose is to prove the reclation which implies the lemma:
Bl = | + ex(a, B) + ex(x, .y) + du(o, B; z, y)
= d(a, x) + d(B, y) + exfe, B; 2, ) mod 2 .. (»)
where d(a, x) dnd d(B. x) are as in (8.2). First we obselve

dr(e B 2, g} = (3, + %, +Zs)(la-f+ [T+ Dt + f2] + 1) e
where X, 5, I, are the summations "1

2=

IS <G, > T

2
=,

AR Ot +u, 1>

i

‘ ISTTHOCH 1KY D+u, D, : )
Since m(l) <. << W), m(t -[—. 1) <. <7t + uw), we have de(2, B: x, 1) "‘{
=( 2 + = + 207 ) Uanl @i+ Dol 4+ 21+ 1)
TS \1<t-u o : i‘

i
= d{a, x)+d(p, u)+2'e(m,-l+1)(ra;H-l)!m, {5 I+(|m+1>|x J— (o i+1)lx1lJ A

= d(@, ©)+d(B, y) + ru(a, B) -+ e (e, W+ (wli-‘r—l)ml-l-(lan—l-l)l:t N (#9
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Eurth61', we have
1Bl Il 4+ 2 (el D) 121+ (o) + D 191
s =23 (layl £+ D@+ T (el R TEd A+ D (gt + x| + D
= e (o B; x, y)mod 2 (4*%)

Obviously, from (¥¥) and (***), we obtain (*)."The lemma {ollows.

8.5 Lemma. InV (M, (,;) we have 2 h0undal‘y formula of the same form as-
that on the bar construction, i.e.

2 (&, 1) |.. 0] (s 0]

t €11 ’ .
= =35 (=1 [epz)|...Lo (@ @) S]]

jul

1—1 € 1

— 2 (=1 W @) |..-| (o Z:) (e Tig) || Lt T)]
i=1

where & — dim [(ap @) |...} (@, x)] Tor 1< i < i
We 6mit the prdol" since it is merely a comparision nf the signatures as
in 8.4. The proof of Theorem 8.1 is completed. |
" An important applicalion of the algebras V (M, ¢) can be found in the
following ‘ - '

8.6 Theorem. Let X 'be in (G’ and let €y (X) be & DGA - module such that
'Cy (X) = S, (X). Then the singular chain complex of the filtered monoid B (X.q)
is homotopic to the mDG A - algebra 54 (g°C, (X)) for g > 0.

Proof. According to the definition of the DGA-module V (M, ¢) and the
proef of 3.10, we have ‘

7 (€oX) =8, (B (X 0)= 8 §, (B (Y, g, m B X, gon—1)
. n_~=0

for any X & CG’ and any DGA- module C, tX) o S;,f (X). Thus what we nced to
prove is Jthat the multiplication defined on v (Cy (X), q), is an approximation for
the monoid structure 5 (X, ) X 5 (X, ) = B (X.g)given in 4.9. Again by 3.10, we
have the homotopy equivalence Sk (E (1 S5 ()], @)y = S« (B (X, ¢)) which in obvi-

ously a morphism of m/)GA-algebra. So, without loss of generality, we can assume

that X is a CW - complex. Thus B (X, ¢) becomes then a C} romplex according
to Proposition 2.10, Let C, (4) denote the cellular chain complex of- a CW - complex

A. Then we have Cu( B (x, Q) = ¥ (C, (), ¢) by definition
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Let g: F(RY, [y X F (R, m)" = F(R", | 4+ m) be the based point preserving
nap given by ((@yee ) (@retreens Tizm}) =% ({ay,ees Qigm)): Then we have

l'(:c><cv-,y><B)=(fr’><y,g(a><8))

where a € F(g ly.perl (g, M) and vand yare celis in V! and V™ respeetively.
Hence fin a cellular map.

Because the multiplication oD V (Ce (X), ) 1s given by the formula (o, )

@ y)l= (—1)lBl L& (a8, wy), it remains to shows thal the formula 7.4 lor the delt

nition ol «f can be oblained by af = 9, (2 ®@B) where g, is the induced chain
map of gq.

Lel &, B be as in 7.4, Then we observe thal the cclls having dimension

la] + |B| contained in g (2 X By are just those which appeai’ in the summationz
1

of 7.1. Moreover, the signatures in his summation have been given in concerdence
with respect to the orientation of colls delined interms of coordinate system asin §6.
Thesc laéls show ap = ga (= @ B). The proof of the theorem is completed.

§ 9, THE G —FREE COMPLEX W(g) AND A FREE RESOLUTION FOR FA(IY

In this section we review the structrurc ol the dual complex llVﬂ’ff’(n) of ,lﬁ(q)
which has been formulated in Nakamura [26; 1T § 2}, By definition, it is the
G,-equivariant complex given as follows.

In cach dimension i, the i-chain group of ,W{q) is the (ng-i) - cochain group
of nff(q) = Hom (.J?(q), Z). If we let m: 11\,‘.7_((1)1 = “q((f)j;q—i denote this identifi-
calion, the boundary a of “ﬁ’(q) is given by the relation s =1 &1 wheve 8 is the

coboundary of V), and the action of G, on nT\'(q) is introduced so that 7 is
G.-equivariant. ’ '

For each a& nff“(q). we shall denote by w = w(a) the corresponding element
of ain SV, i.e. o(a) = (a*) with the dual &% ol o in ,W(q). Then we have

w{gx)=guw(a) for getGa, and the incidence relation in n'v;?(q) obtained ecasily by
the formula [w(B): guw(a)} = [a: g 'Bl. |

Suppose that we are given a celle = (I, .0 r,) in Vig). Let us associate
10 w{a) the sequence of integers < Ppseees Pn > with p, =g =Tw L =V < n. We
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~ shall denote- this sequence also by w(e). We note that this notation is compatible

with respect to the dimension of & and w(a) since we have
A

|m(t¥)1=2 = ng — |«|.

i=1

From the structure of ,,ﬂq), ,1\{;((1) is obviously the G,-free module having
a G,-basis consisting of the elements <Tpy, ey P > with'p; =0, 0=<p,<lg (I<<v=n).

The following,is an inductive study on ¢ of the structure of n‘ﬁ;(g). If q=0,
we have from 7.1.
A n=1

W@ = 0 n>1.

Suppose g = 1, Suppose we arc given an element o = w(a) in uﬁ’(q) where
&= (., 'y} = g [.o.] o] With a; € :V(q—-l}, 1<i<t Then » determines and.

is determined uniquely by the sequence @, .., w With oj = w{a) € nW(g—1) for
1<i{<=t{. From this we write formally

!

113 :|< Wy aeey W >'
As easily seen, we have

wi = <, Pe(iy—1 2" Pygia -1 >

for 1 =<i=iif w= < iy ooy P > Where 9(1),..., w(t) is the monotone increasing
sequence consisting of all indices v's such that p, = 0, We have also the relations

Al

Lol = (Joi] + n(w) — 1),

i=1
1 - . . i
w(w) = 2 p(on). . ,
i1
" Here and in what follows we write p(e) = nif w€ ).
The above correspondence yields an isomorphism.

W= @& ZGy & . (V=1 @ - @IV (g—1) (9.1)
ni+...+ni=n Gn1+"‘+Gm .

t €,-modules. This is an induction Formula for ,W(q). -
- To express the boundary formula we define the morphism of DG G,-modules

MNP = B Lm@: W) —> ® Z6x) ® V(g & W) (9.2)
I+m=n [+m=n G XGm
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where 5, »A(g) is a morphism of DG 6,-modules given for each pair of nonnegative
integers (I, m) with/ + m = n as follows, Let © = < WYy ey il o> € nﬁl}(q) with w;
< ﬁ"(q-—l)._ Then we define

bmbg) = 2 (—1yew(0s q)g("‘)<“’rrm" POy B L W ygy e By =
f

Hure.__: (1) the summation runs over the sct of all permutalions « & G, such
that 7t(1) <...<<m(u), w(u4-1), <...<x () for some u satis{ying the conditions

u t .

2, Noy=1 2. gy = M
=1 . i=u--1

(ii) q{:ﬂ:) = - fTT.') with @ = (nlp--.;nl)
(iiy e, (w; ¢) = 2 (]ml) + n (g—1)+1) (Jui+n{g—1) {—1)

where 3’ runs over the sel of all couples (i, jy such that 1 gi<uu + I ] <t 1
and (i} > x()).
For later eonvenicnce, we define
é(Q‘) = €& I, m é(q) k (9,9)

l4+m=n
where

t, m A w= 2= Dg(m) < iy O B < gy )

with e, (w; ¢) is the signature given by

) ex (w3 f]) = C‘I(w " + z (lwg;(!) H ”J-r“) (q—'l) + 1)

P=1
Now, under the above nolations, we have a formula for the boundary
a(q) on ,1V(q) as [ollows )

’ t
6(q) <o .wl> =— 3 (—hi~
1=1

AR P ) T

t _ )
LS = i1 D Ay Dol (9.4) ])
S i=1
W here ew; q) = Z ({wﬂ-{-n; (g—1+ D= Z (nig — | <wi>|) mod 2)

=1 J=1
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The formulatisn of the chain complex 1V(q) is completed. :

Let A (¢) denole the G-module pon which G, operates frivially il ¢ is even,
and by sign if ¢ is odd. Then, from the above boundary [ormula, we observe
that ,W(g) is an DG G,-module augmented by Z(¢). Further, if ¢ and ¢are two
non-negative integers such that ¢ < ¢" and ¢—¢’ is even, then there cxists a
canonical immedding of DG 6,—modules '

“‘j:;(q) C n‘({?(q’)'

Hence we have the limits

*

W(G,, +) = lim ,W(2¢)

q-—bon )

q-;-too
Lel Z, = Z(¢) if ¢ is even, and Z_ = Z(¢) if ¢ is odd, We have the following

9.5 Theorem (Nakamul a): W(G,, +)ina free resolution of Z-- over the group
ring Z(G,).

Preof, By definition we have
® Wk = @ C-I(R(g ny).
o<i<lq o<Ct<{yq

Since H (R(q, ny; Z)=H(8";72) =0 lor 0 <Ci<ng, we have H,(BW(q) A)
for 0 <Ci<Cq— 1. Letting ¢ = oo, we obtain the theorem.

We take this opportunity to derive some consequences of lhis theorem on
the homology groups of the symmetric groups. First we have

9.6 Theorem (Steenrod). if i < ¢, the we have
- Hi(Gys Alg) =2 HM—'(SP"8Y; A).

LY

This result has stated without prool by Steenrod in his lecture note [33 ]
for ¢ even, A prool can be found in Nakaoka {25]. '

- Preef. It 0 i<Cq, we have
H"-(SPrsY ; A) < H™1-1 (SP"S9/SP-18¢ ; A)

according to the Steenrod’s decomposltion theorem 3.1, because H"I—! (SP"~!89;
A) = 0 in this case. Further, by the relation SP*8/SP 189 ~ (X R%)+/6,, and the

isomorphism in the prool ol 1.5, we have



an--J(SPuS‘I ) an-—l ((X Rq)'/Gn H A)

gHi (A ® n{ir(q))‘
G .

if 6 i<<q. On the ‘other hand, lel ¢ = ¢ — 2, we observe then that “nﬁf(q’)
(resp. nﬁ}(q)y is an G,-[rec and acyclic in dimensions < ¢’ (resp. in dimensions

< q). Consequently, in dimensions i < ¢, the canonical imbedding 11.‘ﬁf'(qr) C n\t’(q')
is an €,-equivariant chain equivalence. From this, we have :

*&m:mmzmm§ﬁﬁm, S0 i<y;

according to 9.5. The theorem follows.

Now, combine Theorems 6.10, 9.5 and 9.6 we obtain the Nakamura's formu-
lation an idea due to Steenrod in [33; 22] for the computation of the homology
groups ol symmetric groups in the following

9.7 Theorem, If 0 < i< q, we have
HiG, ; A(g)) == H"~(Z, q; A).

Here H*(Z, ¢ ; A) is the algebia with the multiplicity given via the iso-
morphlsm H*(Z, q;, A) == H*(A(N, q); A) (sse 4.5). In the case where ¢ is even
and A = Z,, we reach casily the resnlt of Nakaoka [22 6.3] on the homology’
groups ol the symmetric groups. ‘

10. THE mDEA-COALGEBRA W (M, q)

Let Z (g, n) denote the graded G,-module with Z (¢, n) ~ 7 {¢) as 6,-mo-
dules gencrated by a single clement of dimension ng. _vamusly we have then

an (( X R(I). ;Z) == Z (q, n).

Considering Z (¢, n) as a LG G, - module with the trivial boundary operator, the
Poincaré —Lefschetz duality theorem applled to the spaces (( >< R T (RY, n)) gives

rise to the cantfmcal isomorphism-of DG G,-modules
Z (g my®@S* (F (R, ny) =8, (F (R, nyb). (10.1)
On the other hand, from the definition 61" W (1), we have
Z@o. W)=z @0 .V @"
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So, via the Gn-equivariani chain equivalence nff(q)"‘ ~ 8% (F (RY, n)"), we obtain
the Gy -equivariant chain equivalence
Z(@)® W () =~ S, (F (RS, m+). (10.2)
For later convenience, instead of % 2 (q) %y W (q), we shall use the DG G, -
module WV (g, +) defined in the follm\ ing

' 10.3 Definition Let Rt (¢) denote the DG 6,-submodule of 1V (g+1)
with a G,-basis consisting of the sequences < py,....pn >, 97 = 0,0 < p; << ¢, Then
we deline:

nﬁﬁm+h=ﬁﬂmﬂmmw(q—ﬁ=ﬁWWHque%m
. W (g, +) = R (¢) and ik (4, =) = Y (q) if ¢ is odd.

i

We prove

104 Lemma. W (g, +) =72 () @ .V () =8, (F (RS, n)).

Proof. The lemma is clear when g is even. We suppose that ¢ is odd. Lel ,V
(y + 1) denote the G, -submodule of ,V (g+ 1) with a 6, - basis consisting of the
sequences (Fypsln), Fp = ¢ + 1 and 1<<ry{ g+ 1. Then, according to 7.5, the map

2 V(@7 (7 + 1) given by o — (— 1)"+! [a] is clearly an Ibomorphmm of DG
G, —modules of degree n. From this and Definition 10.3, we have
W @)=V (O=Z¢+1.me.7 (¢—1)*
= Z(Q) ® (Z (g m) ® 4V ()%
" gmm&ﬁmx
The lemma {ollows.

Remark. We can prove that ,,W(q +) =S, (F (RY, n)) as Iollows Suppose g
odd Let ‘

= Ulges g€6na=(rprd), ri=g+1, 1<r <q+1}-
Then we have I' (RY, n) CF,C( x RY+1), Let p i R — R denote the map
n .

(@,...,a, aq-l-.l)—»(d‘,...a", (1—1) a®*!) for each 0 <#<{ 1. Then we obtain by a
natural way a &, - equivariant retracling deformation of R, onto F(RY, n). Thus
we have S, (Fo) =~ S, (IF (RY, n)). B :

-On the other hand, by use of the Poincaré — Lefschetz duality to the spuces
(X RIHY) -, (¢ RIHY — ) -and a similar argument in proving 10.2. we obtain

the relation n\-i-}‘(q,‘-l—) = 8§, (I'y) if q( is odd. This is what we necd to prove..
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Let 1/ be a DGA-module. The above lemma and the assemon 3 10 lead us
to the DG-module W/, 4, =) delined to be the direct sum of DG-modulces
WL G ) = @ V0L g ), V6T ¢, o) = M) @ SV -5

n}o
For everyw € uﬂ’*'(gr,) and x E (IM)", we write
(0, 2) = (— DIollz] 2 g o,
Then, we have by definition the boundary formula
3w, x) = (ow, ;'c) + (= Div! (o, ax),
Fﬁrlher. we define the]morphism of DG 6,—modules ('10.5)
| DAL G )= & nAB g, 4)

i+m=n )
i

_where, for each pair-of non-negative inlegers (. m) with{ -+ m = o BCH g +)
is the following compesition:

nﬁy(.n{,'q. i) Jd@l,m?(q, i)

IMN)'®(Z(€.) © (W(g +) & wW(g, +))

1X Gy,

I|/

- /(Gn)G @G (M) & Mq, 4 @ (MY & W (g, )
1<

iv

— A(G,,) @ (JV(;U 4. +) ® m“ (M, g, +)).
GIme :

Here, (g, 4): ,,ﬁ’(q, +) = Z(6) @ (;\T"’(q. +) ®u ﬁ"(q, +)) is the G .mor-

IX m

phism of DG Gn—modules obtained from ;nA(g) dei'incd in 9.2,

From the DG-module W (3, ¢, +) and the morphisms l,&(J:’ ¢, +), we define
the mDGA-coalgebra W(M, q, +) with

WM, q, +) = @ ,m M, g4, WAL g, ) = 2 @ Ak (Au 4)
: n/o

as a DG- modulc and \\.Ith the comultiplication A = ¢ id ® A, ¢, —) Further,
n>0 Gn

the coaugmentation of WM, ¢, 4) is an identification Z ~ WV(HM, q,4), the counit

-is the canonical projection W (I, ¢, +) — W/, ¢, +) = #, and the mulliplicity

is given by the relation p,((m, ) = nlor (w, x) € WM, q, ).

We shall use also the notations 1V M, )= W ) and W, ¢)=W(l.q,+)
for the sake of simplicity.
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110.6 Theorem. Trherﬁ cists « canonical isomor phism of mi')(:‘;l—a@efnh&
WM, ) = P IIA
for euch ¢ 2 0.In pafti’cular. we have WA, q) = T I8H.
Of particular importance is the case where M = J° Here we have
TP~ @ WV(+)and WS )= & W +)
n 2o n’ro
From the above theorem, we obtain |

10.7 Corollary. There exists a canonical isomorphism of mDG A-algebras
W (S, q) = Ft J9. Particularly, we have

W +) = 2 (@) @ W (g) == W1
G,
Further, according to the velation 10.4, we have
10.8 Corollary. H, (I (R, n)/G.; A= H, (F1J%: A)

This assertion permits another -method to determine the lionwlogy groups
of the spaces I (RY, n)/G, by the method of the Cartan construction which is effective
in the case where the coeflicients are taken in the lield Z, (comparc with 7.9).

Now e prove Theorem 10.6. This will be a consequence o our below
inductive consideration ol the DG A-modules W@ g4 .

e

-1f q = 0, we have " (M, 0, ) = S° M from the structure ol , W (0). We sui)-
pose g > 1. Let (o, :n)'e’,,\? (M, q,+)whereo = <u;1, vy > withw; € W (g—1, F)
and = 2, ® ... ® %, with @ € IM. Ifp (o) =m LIS L, we write

A T = 37"1 Foe nH_‘H.j[ . & 113“1 R TR 1 ) <£ ”
as in §8. Then we write '

(w, T) = (=130 < (g, Tidyens (w1, T > o (10.9)

 where d (», x) is the signature given by the interchanges of <C w; > with x;, i > J3
don= 3 (ol + -+ Dl

. It

Herc we note that we have the corresponding formula on dimensions and mulli-
plicities as follows. =

1 :
(@, 2) | = = (o &) |+ w (0, T} —-1)
ci=1

/
L]
b (v, ®) = = b o 20))

, i=1
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f'roem the induction formuia for
an isomorphism of G,—modules

N gy S Z(6,)
H1+..‘+nl:n Gni X"'chi

nﬁf (q), the above c01‘resp0ndenée yi'eld‘S

WAL=, Fre.g

WAL g—1,F) (1020
This is an induction I:ormula for nﬁ*’(zlf, q,'—_}—).
Now, by a similar way‘ in proving Lemma 8.4, we have the f'oiloxx;ing

10.11 Lemma. Let c = < ¢, ... ¢. €. W, g, +) with &€ WA, g—1,F)

1<isCt, Then, for every couples of non-negative integers (l, m) with { + m=n,
we have :

l.mA (-AJ!- . i) =3 (—“l)e-ﬁ(c' i)g(ﬂ:) (< qu(l),---, C:‘:(U)-> ® < C.

where the summation, g () are as

tu.H)...., C-‘]—;(t))
in 9.2, and the exponent :

= (6 ) =Z(leil + e (4) ny + 1) el +e () ny + 1)
where 2" is again as in 9.2. Further, here and in what follows, we le g(+) =
= l,e(—)=0.

Now, we define

H_A_(i\'fy q’ i) - @ I!mé(‘l{’ q' i)

l+m=n

(10.12)
)y the formula

m&(. g, f)e = 3(‘"I)E"(c'i)g(“)(<":rm*"" =B e

vhere ¢ and the summation are as in the above lemmma, and the exponent,

" .
el k) =eale, L)+ S (el +e(4)n + 1),
i=1 *
hen we have the following
10.13 Lemma.

The‘boundary formula on Wiy, 4. &) is as follows. Let

=<y OG> E W (3, ¢, ) with C & n_ﬁ/(ﬂf[, 4 —1, 4). Then

i=1 ’

t . ) -
c dic = - Z.('"‘I)Ei—l(c'i)<cll"-l G:}C Cisony C[> + ‘

t « j:) .
+ 2 (—=phte ey () ey, >
i=1

Hlut1) Cqpy=>) .

~

~



where . () = AN, f[—‘1 +) and

a4 ) = Z (Toe |48 ) m+ 1.
k=1

To show Lemma 10.11 and Lemma 10.13, we need only to compare the
signatures as we have done in proving 8.4. we omit the proofs.
Now, we define the isomorphism ol mDGA-coalgebras
Yy : WM, q) — F\’V(c”[ g—1) (16.14)
for q > 1. Here, by the relations

P < Aw1s X)y any (w1, X)) 2> = < (w1, 8Xg)[en| (w00, 8%¢) >
Here s: (IM)* — (JISM)' denotes the map given by

(@ ... ®T,) = &xl Roryn. ® ox, .

Sinee |sx| =x|+ rfor = € (IM)"*, v, is clearly an isomorphism of graded
‘modules according to 10.10 and (ii) 5. 4. Further, it is a morphism of mDGA -
coalgebras by the above lemmata and the definition 5.4 of cobar construction.

Theorem 10.6 follows by induction from this isomorphism.

Recall that the cobar construction is defined to be an DGA:algebra. Via the
isomorphism W(M. q) = FW(ISM, g —1), W(M, ¢) is thus equipped with a DGA -
algebra structure. Clearly it is also an mDGA -algebra with the multiplicity
w(w, T)) = p(w). Explicitely, we have the multiplication foermula on WM, ¢):

< (wlp Xl)!"'! {wlr Xl) > <_(§”l+19 XHI)!-'!» ((LI1+“, Xh_u)> =
= < (0, X1)per, (@100 X)) D> _ (10.15)

Remark that 10.15 introduces also a muitiplica_tinn on W (M, ¢) by which W (M.q)
(particularly, W (¢, +)) becomes an mDG A-algebra.

An important.application of the algebra W (M. ¢) can be found in the
following

10. 16 Theorem. Let X be in GG’ and let €, () be a DGA-module such that

Cy (X) = 84 (X). Then the singular chain complex of the filtered C(X, q) is homotop:c
to the mDGA- algebra F& g1 L (X) for q > 0.

Proof. In lhiS proof, we let Iy = F(RY. n). Then, we have ®: I} ¥ Frn—
Fi the map given in 4.10. By a similar argument in proving Theorem 8.6 we
observe that the thcorem is proved if ‘e can show that 10.15 for W (g, +) gives
rise o an approximation [or the map ¢y : I} X Fo — Fi,m. In the other words,

we need to prove the [ollowing diagram of morphlsms of DG 6, — modules is
homotopically commulative.
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QL) 2l (@) == W (g +)

} o, -

S"(I“I) & Se (Fm) — S"(FI+|11)

where the vertical maps are obtained from Lemma 104. . \
Set §,m=( X R7y and let Ty and T;+m denote the complement of Fyi i

. ltm _ ﬁ

and D(F, X Iy) in élmiesp(,chvely Then we have Si,n/T1.m=1"1,m and Sl,,mlf'l_|_m '
F/\F Thus applying to the naturality of the Pomcare-— Lefschetz duality |
with respeect to the inclasion to the case (Sim Tim) < Sim T \—I- }, the following N

diagram is commnutative

- qy
S, x FH) St )

| s | ‘ :
A l+my® S, (F, A F ) <, 2@+ m)y®S, (F,, o
- 1®1"

Here we have identitied Fix Iy = © (Fy X Fu), and i : Py X Fn < Fi,m Moreover,
let j F]-m —*Il X JFm the map (alv o ahm) - ((ah ’al) (al Lee ahm)) Then J" !d-
Thus i® j* = id*, and the above diagram wilh dotted arrows is-commulative

Now, let us consider the diagram

S*(F;F)®S$(I‘ ——*S (F/\ + --———---——bS o

!+m)‘ i
l | | :
i | 1@44 | A
2, DEFE 6 (20, mOBSF )~ +m)8*(f', N S )

, , _
, i - . 5 :
g D) ® F (@ (Zig, ) @ wV (=B Z(, L+m) @ 1emV (9)"

| 3 l

¢ . -4
V(g ) ® W Wig ) — WV (g, +)

where A* is obtained from the dual of the comultiplication

ATy~ ® V@) © Vg  with

{+m=n

1

oy | oo { = S oy | oo ] @ (i | e [ @]

i=1
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Obviously, fo shéw (hat this diagram is homotopiéaily commulalive, w
niced only to show that so is the middle square. To this end, we observe (hat

j: F;_i_m - Fi/\ Fm isa ‘ceII map. Further, for each ¢ == Iy ons Pim) € Bl m, ),
we have if _ o

Ja(e) = ; (()rp o ) @ Ty s i, er‘))i;z;w:iS eq
In the cher words, we have

-

. e ] @ [ f . o] ‘
Ilar) ] a4]) = if i such that (o | ... | o;]) = |
' 0 otherwise.
‘This shows the commutativity of the middle square. The thedrem follows, .
Let RY be imbedded in R+ by (@,...,a¥) > (', ..., a, 0) as usual. Then
we have the canonical inclusions F(RY, n) C F(RYY, ny and G, q) C C(X, g—+1).
From this, we define o
FR™, n) = lim F(RY, p) ST
. _q" ‘
C(X, =) = lim C(X. ¢)
—
: T
with the topology of union.

By the remark below Lemma 10.4, we can prove easily that the diagram

Wi +) S W+ 1, +)
2 R . (10.27) |
S, (F(RY, n) —. S,,,(F(R'“‘I, n)
is hf)motopicglly éommulative for every g = 0.

On the other hand, by the inclusion Wg, +) ¢ Wg+1, +) W(M, ¢) can

be considered asa mDG A4subalgebra of W@, g+1). Thus, we can define the mDGA-
algebra . ' "

WM, o) = lim W(M, g)
—t

. q - . '

% Further, via the isomorphism W(M, ¢) ~ FidM, we consider FIIIMC FISy,
_and then- define the mDG A-algebra ’

. F ™M = lim Figuy,
. | rs . =
- Now, from 10,16 ang 10.17, we have the following
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10.18 Theorem. Under ike assumption of Theorern 1(}.16, the sfnéular chain
complex of the monoid C(X, =) is homofopic {0 the mDG A-algebra F=d=C(X).

In connection with the resulls on the homology groups of the symmelric
groups and the braid groups given in §7 and §9, Liére ate some immediate con-
sequences of the result in this section. ‘

First from 10.8 and the proofl of 9.6, we have
10.19 Theorem. If (0 <{i<Cq, we have
' Hi(6r; p) =~ H(FIS7; ).
Therefore, we have the isomorphism of groups
H(6,; pA) = H (uF™2% 5 p)
Further, {rom the proof of 7.10 and 10.8, we have
10.20 Theorem. We have the isomorphism of grodps
H By i p) o= HHGIS2 5 ).
Moreover, the-diagram
' Ho(Ba3 A — Ho(Gui p)

U | fi
H:?ec(nF'?'csz . A)'_' Hﬂ:(npmcsw; I\)

is commutative. Here, the upper horizontal arrow is induced from the canonical
epimorphism B, — G, (see e.g. [12)).

Note that the above results is lrue also for n = oo when we define
o U4 = lim oF1d9 via the inclusion ,F9d¢ ¢ naf 9% given by ¢ — c.0® for

—
b

¢ € »FI1d9 where ¢° € FUdY,

¢

_ Bemark. Theorem 10.19 is an explanation for the theorem of Barratf —
Priddy—Quillen (see [4], [27]) relating to the infinile symimetric. group and to

the infinite loop space. i.e. H (G, ; A) == Hy((Q7Z™),; A)- On the other hand, the

first part of Theorem 10.20 is a prool of a Segal’s theorem relating to B_, and
to QP2 Qe. H, (B ; o) = H(Q232),; A). (see [5]).

§11. AN APPLICATION

For every X € €G’ and [ < << oo, let .us denote as usual by Q939 X the
g-iterated loop space on 2% X, and for ¢ = oo, 0= £ X = lim 99 3¢ X via the
¢canonical inelusion Q 39X — Q9 59+ ¥ Then we recall from May [17; 5. 2] that
there exists uniquely (up to a homotopy) a natural map gl fl-spaces o C(X, ) —
9 21X such that the diagram

v
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’- K}.«X
CX, ) = QIZuY

Eq

is commutative. Moreover, the diagram of H-maps

. o8
C(X, q) — QI T9X

} !

C(X, -+ —> QU1 S0 X

Gyl

Is commutative [or ¢ <C o=, and a_ is obtained from the @ by passage to limits,

"We have the following well known theorem.

11.1 Theorem. /f X isa puath-wise connected space in CG’, then ag : C(X, ¢) —>
Q¥29 X is a weak homotopy equivalence for | L g < os -

This theorem has been the object in the works of many authors, For ¢ = [,
it is essentially due to James [15]}. For g = o, it was obtained by Barratt [3], Segal
(see [1]). For all q, it was proved by May [17). Further we have

- _ ‘
11.2 Theorem (May [19], Segal [28]). For every X €06 and I g oo, aq:
C(X, @) > QIZTX is a group cempletion.

_ For the nolion of group completion, we refer to May {18 ; 1.3]. Segal reached
to this theorem by a quite sophiscated appreach. For ¢ = os, May first obtained
it by an extensive homological analysis. Later, F. Cohen has followed May to
prove the theorem for ¢ linite in [7 ; 3.3]. Now, we apply our homological study
- of the space C(X, q) to prove the theorem.

, Proof of Theorem 11, 2. Let BG denote the classifying space of an

H-space G. Then, according to Quillen, the map G — Q BG is a group completion
il'G is an admissible H-space (see e.g. [19], [20]). Apply this resull to.the case of
C(X, g), the map ' ' '

C(X, q) -+ Q BC (X, ¢ ) (%)

is a group completion. On the other hand, we have from Theorem 5., 7 that
BFY 438, (X) =~ Fa-1 S8, (X). This implies that

BC (X, q) > C(EX, g—1)

is a weuk hometopy equivalence according to Theorem 10. 16. Combine this
relation with Theorem 11.1, we have the weak hometopy equivalence

BC(X, ) — Qa1 3ux (s9)
since ZX is connected, Theorem 11.2 now follows {rom () and (aﬁ).
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