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It has been shown by Boltianskii [7, 2] thal, for a process described by
a differential or discrete inclusion, a point which achieves a minimum of a
given scalar-valued criterion function will satisfy the support principle [7, 2], 1f the
process under consideration has local sections [1, 2]. The case where local
gections do not exist has been studied by the author in [3]. It should be noted
that the papers [1 — 3] deal with scalar minimization problems. [n this paper,
we shall prove the support principle for a discrete inclusion with a vector-
valued criterion function. From the obtained results, it will be easy to derive
the supporl principle for the case where local sections exist as well as for the
case where they do not. Also, the discrete minimax problem [2] is included as
a special case in our theorem. Our proof of the supporl principle is based on a
general theory of inconsislency of a system of inclusions which is presented
(without proofs) in the paragraph §2. It will be easy fo see that our method can
also be applied to discrele time-lag systems, and discrete distributed parameter
systems [3].

§ 1. NOTATIONS AND DEFINITIONS

Let X, Y be lwo vector Lopological spaces; A, B lwo subsets of X; T
set-valued mapping carrying points of A into non-empty subsets of ¥, and k a
p051t1ve integer. The following notations will be used:

R¥: k-dimensional Euclidean space.

Rl_‘i_ ={r = (21, Tpsory &) € Re:rq;>0,i =1, 2,.. I{‘:
nonnegative orlhant in R".

R+ [m = (X1, Ty s T) € R¥:2,> 0,1 = 1, 2,.... k}:

positive orthant in R¥,
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X*: sei of all linear continuous functionals defined on X.
(x*, 2): value of x* € X* at the point = € X,

2%: set of all non-emply subsets of X.
V.. V;, ...: neighborhoods of N € X.

int A: interior of A.
A*B=|zcX:x + A C Bj M.
T(A) = {J T(x): range of T.

TEA
cT(y*, ®) =sup [(y* gy: g € T(x)] W*€V* 2 € A).
graph T = |z, y):x € A, y € T(x)}: graph of T.
intT: mapping x1—inl T'(x) (x € A).

If A =A% Q, the direct product then, for fixed w € Q, T( ,w) is a mapping
defined by x'1—T(x’ .w) ("€ A4°).
k
Given k set-valued mappings T;: D -2Y =1, ... k, we denote by [] T the
i=1
mapping

k
i—=1
Definition 1.1. Given a set I of indices and mappings T, : 4 — oY , 8E1, We
shall say that the family {TE, e/} is uniformly upper semi-continuous (unifor-

mly lower semi-continuous) if for every zc A and every ne]ghborhood Vy
there exisls a neighborhood V_ such that

g T, (@) C Tg(@ + Vy
(T (@) C Ty + Vy)
whenever s €I,  €{(z +V,) N A.
The family {Te, g & I] is said to be uniformly continuous, if it is both

uniformly upper and uniformly lower semi-continuous,

Definition 1.2, A mapping T:4 — 2Y is upper semi-continuous if the
family {T' 1 consisting of a single mapping T', = T is uniformly upper semi-

continuous. Similarly, one can define lower semi-continuity, as Well as
continuity, of 7.

(1) The operation * was first introduced by Pontryagin and plays an important
role in the theory of linear differential games.
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Definition 1.3. A mapping T: A —9Y is closed if the conditions > &
(%,, TE€ D), yy— 4 and gy, € T(@a) imply that y e T'(x).

Definition 1.4. A mapping T. A—2Y is convex if its graph is a convex
get in X X Y. ) '

-

§2. NECESSARY CONDITIONS FOR THE INCONSISTENCY OF A SYSTEM
OF INCLUSIONS. '

Let X, ¥;, i=1-3, be vector topological spaces, D, E subsets in X,
T,: D—2Y, f: E — 2Yi sel-valued mappings. Lel there be given a point %, € X

o

and a single-valued mapping ¢: X ><R_1}_><X—>X.

Definition 2.1. The pair (E, t;) will be called a (g, # )-tangent approxi-

mation at x, of the pair (D, T,) if there exists a posilive number a and map-
pmﬁQ:@aﬂXDXEaﬁkfﬁmﬂﬂaﬁiwmmﬂ
a) The family
{Qcry, & %) €1} RS
with Q. ,, = Q, x..), I =0, ay)XDis uniformly continuous.
by For every & & (0, a1) the mapping Q,...) is closed.
¢) For every (e, %, By e (0, a) X D % E ihe set Q(s, %, E) is convex and

salisfies the condition

Ty®) & (). - 2.2
Qe =, &) C e 1{E). {2.2)

d) For every z € E and every neighborhood VY; there exist a mumber

5 €0, a;) and a neighborhood V, such that
QG z, B NVy F9¢ (2.3)
whenever ‘ N
0<e<b, r€ g, s o +V)nD (2.4)

Example 2.1. Let T1. & be mappinggs defined by
Ty (%) = F(x) +N, i(x) = f(x) + N (2.5)
where F: DY, f: E— Y, are single-valued continuous mappings, N is an
arbitrary cone. :

Assume that for every QGE and every neighborhood VY1 there exist a
number 4> 0 and a neighborhood V, such that

Fa) € & (f@) +Vy) | \ (2.6)
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whenever
6<<e<s, xe[xu+g(§+ VX)]f"\D. 2.7y

Then the pair (K, ;) is a (g:; #)-tangent approximation al , of the pair
(D, Ty), where

gl(E’ €, x) = E+ gx. (2.8)

T -rove this, il suffices {0 take fi(g) =&, Qs x, E) = % F{x) — f(&).

Note that Condition (2.6) holds, provided that X and Y, are Banach
spaces, F(x) = 11\5(93) — 'I‘f:(:co), [(x) = ETO {x), where F: X Y is a Frechet dif-
ferentiable mapping and F:’Do, ils Frechet derivative at x,.

Example 2.2, Let the mappings T, {; be defined as in Example 2.1,
bul lel N be a closed convex set. Assume that for every’:;:eL' and every neigh-
borhood Vy, there exist a number 6 >0 and a neighborhood Vy such that

[”s‘ E@) + (I =Ny = /@) | N Vy + 9 (2.9)

for all (g, x) satis[ying (2.7). Then the assertion in the previous example is true.
To prove this, choose ay =1, fi(g) =¢, (e, x,8) = %(F(x) + (I —g)N)—f(&)
Definition 2.2. A pair (F, {;) will be called a g-langent approximation
at x, of the pair (D, T,) if the following conditions are fulfilled:
a. The mapping T, is closed, and for every x & D the set Tq(x) is convex,
b. There exist a number ¢, >0 and a mapping fz: (0, @) — Io{i such thal

for every z € E and every neighborhood Vy, there exist a number § € (0, aq)
and a neighborhood Vy such that

T, (ﬂ’)
fae)
.for all (e, ) satisfying the conditions (2.4).

f:z(g) C +V Yo

Remark 2.1. Let (£, f;) be a (g, =)-langent approx1mat10n at x, of the
pair (D, Ty). Suppose that T is closed and, for every x & D, the set Tl(x is
convex. Then the pair (E, #;) is also a ¢-tangen! approximation at x, of the
pair (D, T).

Example 2.3, Lel the mappings T and ¢ be defined as in Example 2.2.
Then the pair (E, 1) is a g;-tangent approximation at x, of the pair (D. Ty).

Definition 2.3. (see [1,2]). Given an arbitrary mapping T : X — 2Y, where
X and Y are two normed spaces. we shall say that T has local sections if for
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every pair (x,, yo)ggmph T there exists a smooth (1) function o from &
neighborhood of z, into Y such that o(x,) =Y, and a(x) € T'(x). The function o
will be called a local section of T, corresponding to the pair (x,, Y.)-
Example 2.4. Let X, ¥, be normed spaces, Tp: X —2"2 a closed mapping
such that 3 \
1. For cvéry «x the set T'p(x) is convex .and compact.

2. 0 € Ty(x,).
3. T has local séctions.
Suppose ¢ is a local section of T, corresponding to the pair (%o, 0) and

o), isits Frechel derivative at @,. It can be shown that the pair (X, 1;), where
o
tofx) = T'o®,) + o, (@) is a gi-tangent gppro:;imation at , of the pair (X;Ty)-
(] :
Definition 2.4. A pair (B, 13) will ba called a g-interior approximation
at =, of the pair (D, T3) if for every solution x of the system

&€ E, 0&izx) 240
there exist a number 8 > 0 and a neighborhood V, such that
0 € Ty ' (2.11)

for all (e, o satisfying the conditions (2.4).
Example 2.5. Let X, Y; be Banach spaces, N a sef in Yy, h: XxXY;—>R1
a functional which is Frechet differentiable at (x,.y,) € X X N. Assume that

Mz, , §o) <0, (R, h}) = 0, where h'x and b; are the parlial derivatives of f

at (x,, 4,). Assume further that D == ¢, N &= ¢ where D (Nyis the set of all
x & X(y € Yy) for each of which there exist a number 6 > 0 and a neighborhood
Vs, (VYQ) such that x, + &(x + V) < D (y, + &y + Vyg) ¢ N)whenever 0<e<C8.

Let us set
E=D,
Ts(a) = [y Vet h(z, y)<O0} - N, ' :
t3(x) = ; " L if R@,,y)<0
— N {ye¥s: By@ + R <0} i R, yo) =0.
Under these assumptions it is readily verified that the pair (E, f3) s a
-gi-interior approximation at x, of the pair (D, Tj). -
‘Example 2.6. Let X, Yg be normed spaces, Ty: D— 9¥3 3 lower semi-
continuous mapping such thal :
1. For every «, T3(x) is a convex set with a non-empty interior.
2, 0T (x,)- ' '
3, Ty has a local section o, corresponding to the pair (x,, 0).

(1) i. e O is conlinuous together with its Frechet derivative ina neighborhood of x,.
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Let us set
to() = int Ty(z,) + cr;o(a:) if 0€ int Ty(x,).
Yq if 0 intTg(x,),
where o is the Frechet derivative of o al x,. One can show that the pair
(X, 1) is a gi-interior approximation at x, of the pair (D, Ts).
Definition 2.5. The pair (E, t3) will be called a g-quasiinterior approxima-

tion at x, of the pair (D, T;) if for every solution % of the system (2.10) and
every neighborhood Vy_ there exist numbers &, a;>>0 (5 < ag), a mapping

ol
fa: (0, a3)—=R, and a neighborhood V such that
1 ~
f3(e) - ¥ '
for all (e, ) satisfying conditions (2.4).
Example 2.7. Suppose that- the pair (E, %) is a g-quastinterior approxi-

mation at x, of the pair (D, T's). Suppose further that in? f3(x) < ¢ for all x€E.
Then the pair (E, int t3) is a g-interior approximation at x, of the pair (D, Tg).

Example 2.8. Let there be given a number a € (0, 1], a twice differen-
tiable mapping F: R* — R™ a convex sel E ¢ R* and a convex cone N C R™
Denote by dF(z,, ¥) and d*F(x,, T, ) the first and second differentials of
F at x,.

Assume that

— F(z,) € NN, —dF(z,, %) € NN,

Then
1. The pair (X, )/’\(.. a)) is a (g -+ )-tangent approximation at z, of the
pair (X, ), where - o
flg, @) = f(z, «) + N, . :
(@, &) = 2F(x,) + dF(x,, )] + «*[PF(z,, T, )+ dF(z,, D],

g & @) =& + ehgw.
Fx) = F(z) + N.

2, The pair (X,?(.,- «)) is a g-tangent approximation at x, of the pair
(X, F) provided the cone N is closed.

3. The pair (X, int ?(.. )) is a g-interior approximation at x, of the pair
(X, int F)if int N+ ¢, 0 € int F,), 0 € int (dF (x,, T) + N).

Definition 2.6. A 4-fuple

(E; tI 4 tg, tg) (2-12)
will be called a_g-approximation at x, of the 4-tuple
| ' (D, Ty, Ty, Ty) _ (2.13)
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if the pair (E, 1;) is a (g, _)-tangent approximation al z, of the pair (D, T),
the pair (E, 1) is a g-tangent approximation at x, of the pair (D, Ty), and the
pair (F, f3) is a g-interior approximation at x, of the pair (D, Ta).
Definition 2.7. We shall say that a g-approximalion (2.12) is convex, if
all the mappings t;, i = 1—3, arc convex.
Lel us set
Yy = YiXYy, 11 = 1 Xl

Definition 2.8. We shall say that a g-approximation (2.12) is regular, if
there exist a neighborhood Vy,, and a continuous mapping h: Vy,  — £ such thal

a. For all o € VY12 we have
o 6 ilQ('h(G))l
0 € i3(h(0)).

b. For every number 6>>0 and every neighborhood V, there exist a
number & € (0, 8) and a continuous mapping Ge: Vyy,— D such that

Le (0) € ¢(%o, & h(o) + V)
forali s € Vng-

Throughout the subsequenl part of this paragraph, we shall assume that
X, Yq are vector topological spaces, and Y; = R¥, i=1,2

The following theorem gives necessary conditions for the inconsistency
of a giveun system of inclusions.

Theorem 2.1. Assume that the 4-tuple (2.12) is a regular g-approximalion
at x, of the 4-tuple (2.13). Then if the system

ze&D 0€Tin), i=1-3 ) (2.14)

is inconsistent (i.e. has no solutions), so is the system:
z€E, 0€&€lix), i=1-=3. (2.15)
Put k= ki + k. !

Definition 2.9. A set E ¢ X is said to be (g, k + 1)-contingent to a set
D ¢ X at a given point x, € X if for every system of (k+1) elements %, Tz,..
Ty of E, every number & > 0 and every neighborhood V, there exist a number
g € (0, 6) and a continuous mapping We: P¥ — D such that

k1
e (A) € (&g, 8 = AT+ Vi)
i=1

for all A = (A1, Agsoer Akgt) € P¥, where

N . E+1
sz{?\ = (7\1, 7\.2,.... ?Lk+1):7\.1,>/0, i-—‘—-l', 2,..., k—l—:l; 2 7\1 = 1}.

i=1
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_Example 2.9. Suppose that X, ¥ are normed spaces and F:X -2V is a
set-valued mapping. Suppose further that F has local sections, and that for
every © € X the sel F(x) is convex. Consider a point (@, ¥,) € graphF and define
a mapping f:X—2Y by the formula f(x) =F(:t°)-—y°—-c;,n(x). where gy, is the
Frechet derivalive of the local section @ of F corresponding Lo the pair (x,, ¥,).
If Ec X is {g:, k-+1)-contingent to DcX at x,, then graph 'f is also (g1, £-+1)

-contingent lo graph F at (%,, y,)- Here T and F are the restrictions of fand
F to E and D respectively.

Proof. Let (x;, yy) € graph F, i=1,2.. k41, Vx,Vyand 6>0 be
given. Select a ball V' such that (k--3) Vy € Vy. Let oy be a local section of

F, corresponding to the pair (%, ;i) with Ei = i+ Y, — d;io (z,) and let o} be
{he Frechel derivalive of o; at x,. We can find a positive number &’ such that
k41 k-1
e 2 li[—c; (x;) + o} (2 ?\nxn)] € Vy
i=1 ° n—1
whenever f
0<Te<C8, A= (hyy Agyees Ary) € PX,
It follows from Definition 2.3. Lhat there exist a positive number 6" and

a neighborhood V? ¢ Vg such that

k1
o; (%) € oi(x,)—¢€ [o‘; (2 lna:n)] - Vir]
n=1
for all i = 0,L,...k+ 1,
0<e<<6”y A= (his Agpesr Appn) € P¥3
k-1
x e x°+s(2 M - Vk)
f=1
where o, =0, oj, = 6% .
Since E is (g1, k-+ 1)-contingent io D al x,, we can find a positive

>

number &< min (6, §°, 8", 1) and a mapping mi: P* — D such thal

k-1
2 ?\.jxi + ‘I;()

nM)Ex, +5 (
i=1
for all A € PX. Now define a mapping Ne ¢ P¥ — graph F by seiting ms(A) =

= (ni(A), 1}(A)) Where

. k+1
M) = (-8 o @m M) +& X ko (ny (M)
1=

It is clear that the number & and the mapping 7, have the properlies required
in Definition 2.9, ‘
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Corollary 2.1, Assume that the 4-tuple (2.12) is a g-approximation at x,
of the 4-tuple (2.13), where

1. Eis (9. k -+ 1)-contingent to D at x,.

2, The mappings #; i =12, are convex and satisly the condition
0 6 int 112 (E).

3. For cvery x € E, l3(x) is a convex set with a non-empty interior.
Assume further Lhal at least one of the following conditions is fulfilled.
1. The mapping I3 is convex,

2. The mapping f; is of the form #3(x) = q(x) + Ny, where N is a cone
in Yg, ¢: E — 2Y, a lower semi-continuous mapping such that, for every x €Y,
g(x) is a bounded set.

3. The mapping f5-is lower semi-continuous, and Yj is a normed space.
Then if the system (2.14) is inconsistent, so is the system
x€E, 0€ir), (=12 0¢cint iy
As an immediate consequence of Corollary 2.1 and Lemma 2.1 stated
below, we have !
Corollary 2.2, Assume that the 4-luple (2.12) is a convex g-approximation
at x, of the 4-tuple (2-13) where.
1. FEis (g, k+ 1)-contingent to D at xz,.
2, Forevery x € E, f3(x) has a non-empty interior.
Then if the system (2.14) is inconsistent, there exist linear conlinuous
functionals y* € Y? ,i= 1—3, not all zero, such that, lor all x € E,
| 3
Y il m<o.

i=1

(2.16)

Remark 2.2. Corollary 2.2 includes as special cases the main results
obtained by IHalkin and Neustadt in [4] and [5] respectively. B

Lemma 2 1. Assume that, for every x € E, #3(x) is a convex set with a non-
empty interior. Assume further that #,5(E) is convex, where ligg=1£;X1, Xint ts
Then, if the system

zc E 0c&liz),i=12, 0cint ty(x)
is inconsistent, there exist linear continuous functionals y* € ¥Y#¥ , i=1—3.
not all zero,. such that, for all x € E, we have the inequglity (1.16).
As a consequence of Corollary 2.2, we shall obtain a multiplier rule for
an oplimization problem with a vector-valued criterion function.

Definition 2.10. Let M be a convex cone in vector topological space Z
(M=+2Z), Q a subsel in X, S a singlevalued mapping from @ into Z. A point
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x, €Q is said to be M- extremal (for S) if, for every x €Q, the inclusion
S(g; ) — S(x) € M implies that S(x) — S(z,) € M.

We shall state necessary condilions that every M-exiremal point must
satisfy provided certain hypotheses are fuifilled. It should be poinled out that
the Theorem 2.2 staled below differs from known resulis (see, for example,
[5-7]) in that the cone M may have an empty interior and the constraints under
consideration can beé given by set-valued mappings.

Assume thatl

(a). Q is the set of all solulions of the system (2.14).

3 3 3
(. ' Z=]"[Zi, Sﬂ”Si R ﬂ/f:n_ﬂ;{i
i=1 i=1 i=1
where
Z; = R™i i=12

Zg is a vector topological space, S;: D - Z;, i =1—23, are single—valued map-
pings, M; C Z;, i=1-3, are convex cones, and M3 has a non-empty interior,
(¢) If My="Z3, then M, == [0} and M, A (M) = j0]
(d) There exist a set E ¢ X and mappings

g XX Rl x XX, t:E—>2", s:EZ, i=1-3,
such that
(di). E is (g, k + 1)-contingent to D at x_,
. where k=ki+ ky+ my -+ mj,
m b if Mi==Z;,
! 0 if M; = Z,,
(d2). The 4-tuple (2.12) is a convex g-approximation at x, of the 4-tuple (2 13).
- (d3). int l3(x)==¢ for every x € E.
(d4) Mappings s;, i=1—3, are (M; % M;)-convex and the 4- luple (E,
51, sg, $3) is a g-approximalion at x, of the 4-tuple (D, S;, Sz, Ss), where the
mappings 5;, S; are defined by the formulae | |

(@) = s.x) + 3,
Si(w) = S—('x') — Six,) + I,

My i=1, Ms=kZy;

( M;\!G; lf i= 1, M3 = Z3;
i=" if i1=2,
( ntM3 if i=3.
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Recall Lthat a single-valued mappings {Tom a sel E¢ X inlo alinear space
Y is called N-convex if E is convex and if, also,

as(zy) + (I ~ «) s(xe) € s(aZy + (1 — a)xp) + N
tor all « € [0, 1] and =; € K, i = 1. 2. Here N is a given convex conme in Y.
Theorem 2.2. Assume thal conditions (a) — (d) hold. If x,is an M-extremal

point, then there exist linear continuous functionals y*< Y:‘ L, EMT,i=1-3,
not all zero, such that '

3 .
E | ct (y’;", xY + (z?, si{a)y} <0 (2.17)
i=1

for all z € E. Furthermore, we have
cTi(gi*, x,) =10, i ==1-=3,

if we can find a point g, € E such that
t:iE,) = Ti(x,) si(E,) =0, i=1-3.
Recall that
Mi_= {z:* &« Z':: (z*, 2) L 0forallz € Mi.

Theorem 2.3. Assume thal condilions (a)—(c) hold, Assume further that
there are an arbitrary set @ and mappings E ExQ — 2Yi, si; E X Q—7Yy,
i =1-3, such that %

1. 0 € int qu(E, w) for every fixed o € Q where

2
g2 (@ ©) = [] 4@, @)

jol
i@, o) X {5, o) + M} if MiZi,
¢i(x, w) =
- { T, ) if M; = Z.
2. gq(ExQ) is a convex set, where
q = q1X g Xint gs. .
3, For every fixed o € & we can find a mapping ge: X X ﬁ.ﬁ XX =X
such that the conditions (d1)—(d4) hold if g, & and s; are replaced by, go
#(.. ») and §;(., ), respectively.

Finally, assume that x, is an M-exiremal point. Then there exist linear

continuous functionals yf € YL 2FeMI, i= 1—3, not all zero, such that

3 ~
- T felicyr, B+ s@n] <0

i=1 .
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for all £ = (z, w) € ExQ. Furthermore, condilions (2.17) are also fulfilled, if
we can find a point &,, w,) € Ex§ such that

TE, . w) = To(x), 51 (6, w) = 0. i=1=3.

§3. A MULTIPLIER RULE FOR CONSTRAINED OPTIMIZATION PROBLEMS
WITH VECTOR-VALUED CRITERIA IN FINITE-DIMENSIONAL SPACES,

The purpose of this paragraph is to prove a maltiplier rule fora conirained
oplimization problem, from which the support principle in discrete inclusions
follows direcily.

Assume that
Q=jzeX:0€F@. 1= 1, 2},
where F, i = 1, 2, are set-valued mappings from X = R" into R,
Assume further that
(1) The mapping Fy is such that:

(a) For every x € X, F\(%) is a convex compact subset with a non-empty
interior. |

(b) Funclions eF1(y, o) and 2 cFiqy, o) are continuous in all of their
LB

variables.

(2) The mapping Fo has local sections, and, for every x < X, the set
F,(x) is convex. :

(3) M=M' XM, where M’C R™1isan arbitrary convex cone, and M= R‘_“*} .
(4) §=(5, $"), where §": X — R™i: ig a differentiable mapping, and S"':
X — R™M2 js defined by the formulae
52 = (87 (@), S5 (T)seens S’,;,2 (=,

Sy(x) = max hi(x, &), i = 1, 2,..., Iy
a&h

(A\; is a compact topological space, h(x, o) is a funclion which is defined and
is eontinuous together with ils parlial derivatives a_aa;- hi(x, a), j =1, 2,..., n, On
the direct product X X Ay).
Let '
‘ M~ = jp € R™1:(p, y) <0 forally € M|,

A-.(:ro) = {; < Ai: hi(:no, ;) — INnax hi(:vo, 0!.)},
X | a€A;
It is clear that A(x,) + ¢.
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Theorem 3.1, Assume Lhat the conditions (1) — (4) hold. Let z, be a point
in Q, oy a local! seclion of F, corresponding to the pair (x,., 0), If =, is an

M-e'(tremal point for 8, then there exist vectors 1, € RE =1 2 & M—;
numbers p. £ 0, j=1, 2., n-+ 1, i=1, 2., m,; and points wii € Li(zx,),
J=1, 2,..., n + l1;i=1,2,., my such that

(a) Nol all of the quantilies ¢;, { = 1, 2, Y and y.f J=1, 2,...,n+1,
i=1, 2,.., my; are zero.

(b) ¢t (p;, x) =0,i=1, 2 (3.1)
> _
— H =0, 3.2
c) Py (z,) 3.2)
where
n+1 mg .
H(z) = ¢ (91, T) + (o 00, (@) H (0, S@) + = = wl by (#, o))
i=1 i=1

Proof. By using the separation theorem, we can show thal 0 &€ Fi(x)
if and only if

filw)= mazx |—c"(a,x)} <0
@, €8,
where
=fa€ R*: Jap=1].
‘Denote by D the graph of the mapping F,:

D = graphF, = {1=(x, ) c R* X R*2: z € R*, t€ Fy)].
Itis clear that x € Q if and only if
n=(x, Y €D, 0€Ti(y), i=2 3, ' (3.3)

where Tym=E Tsm)=/1m)+ R,
Let
S1(m) = 8'(x), Ss(m) = 8"(x), S(m)= (Sy(n), Ss(n))-
Then, by the M-extremalily of z,, we see that n, = (x,, 0) is an M-extremal point
for the mapping S(n) subject to the constraints (3.3).

The example 2,9 shows that, whatever the natural k& may be the set E
defined by

E=ly=(x,8: x€R" Eng(wn)Jr—-?—’“fgf-"l

is (g,, & + 1)-contingent to D at point 7, where the function g, is defined by

gl(no’ ﬂ]) = 'no‘i"e'q-
It is easy to verify that the pair (F, 1,), where I,(1) _E is a gl-tangent
approximation at q, of the pair (D, T,) .
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Define a sei-valued mapping 7; as follows!

o oF
{Ri o omar  §— 210 Tod g L ip fim) =0,
t . Oﬁoeao(-‘-’?o) ax
s Lo if fi(z,) <0,
where A (z,) = {&”e AW —cFl(au, x,) = maxr ( —cFl(a,, x N}
' a, €A,

According to Lemma 3.1. to be proved below, lhe pair (E,f3) is a
g1-interior approximation al x, of the pair (D, Tg). Let us set

My= M, Mg=M",

pi(n) = max mi(:—“’a) 2o Al ),
x B
sg() = (P1(M), P (M oeny Pma (M
s = 2 o
e

It is not hard to verify that all the condifions for the applicability of

,p'eM ' —and

Theorem 2.2 are salisfied (}). Hence we can find vectors py € R"?

numbers ]30, B L0, i=1,2,.., my, such that

1, Py 0 By By By 0.
2. For every n € E we have

BS;;:U ) x) + Sup BGT + 2 IBl max . M".—d)x \<\ 0. (3.4)

Tets(n) 21 agbilz,) 0%
From the last inequality it follows that g <0 and thal, furthermore, g; =0

(93, )+ (W,

if fi(z,) <0, Hence, the inequalily (3.4) can be rewritlen in ‘the form

gz, B <0 3.5
‘where
. act1(a, x)
0.9 = (9,8) + b mg 0)) 1Ty
+(1JJ aS (m) >+ ZB mae &)
i=1 agcAi(x,) 9T

Since the inequality (3.4) is fulfilled for all (x, &) € E, the system

299(%o) .

(:]J,E)G-R“XRI{B, OGQ(CUsE)—RIa OE_E—l'F?(x)_}_ -

(1) In this case T1, Sz, Mg are absent.
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is inconsistent. Therefore, by the separation theorem, there exist a scalar ¢2 0
and a vector ¢ € R¥2 nol bolh zero, such that

uq(®, §) — (P, E>+CF2(¢,xn)+<m,fiz(%lm><0 (3.6)
for all (x. &) € R® X R*¥ . Il follows from (3.6) that
Hipg = O (3.7)

Setting (x, &) =0 in (3.6) and laking into account the lact thal 0 € Fy(x,)
we obtain

cfz (uipy, o) =0 (3.8)

From (3.6) — (3.8), we have
(q, ) + min (ba), T) < 0 o
0 Alzy) (3.9
for all x € R* where
acF1 (o, X,) my . ah;(x,, %)
b — — y oo NTer T ol + R Ao T .
() wpy - Ei HB; g

o = (Ctos Eppeers Em2) s
Ax,) = Dg(Te) X Bil®e) X oo X Bl ®o),
: " [aog(:-cn) ]t L“P'z N [ a8’ (x,) ]T ),
T AT
From (3.9) it is not difficult to show thal
—a eco[b(a):aeA(a:.,)}.

Hence, we can find points al = (af,, af ey oninz) < A(:co),' j=12,.., n+1

n+1
and nonnegative scalars vj, j= 1,200, 04 1, With X vj=1, such ihat
=t
n+1 .
a=— = v; ba),
=1
ie.
acy(x,) 1T aS'(x,) 1 nt1l . acFi(el ,
[—i—)—] ¢,+[—(-—’] bt S w2 0T
mg 0+l g ahi(a:,,, ag')
+ > = m —_=0 (3.10)
= 2T
i=1 j=1 .
where

Po == Wiy, V= py,
wh = — By V. pl=uppl, j=12. o+ 1 i=12,.. my.

(1) If A isa matrix, then ils transpose is denoted by AT
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et us note that not all of the quantities 1, Yy ‘pﬂ;] and y,%, F=12 ..,
n+1; i=1,2,.., m, are Zero.

Furthermore, we have
—pd cF1(ad, 2y =0 (3.11)
for every j=1,2, .., n+ 1.

Putting
n+1

I
P = Z By %o
1

we oblain from (3.11) that cFl(q:l s T, = 0.

Lemma 3.2. to be proved below and the inequality (3.10) show that the
relation (3.2) holds.

To conclude the proof of our thcorem it remains to verify thal condition
(a) is also fulfilled. To this end, it suffices to prove that relation 1; == 0 implies
that p{;x 0 for every j=1, 2, .., n+ 1. Indeed, by hypothesis and from
relation (3.11), we have

et {— y,J;) ovf), :130)=|L‘F1 ( E y.f) ai, :cu) =0
i=1,2, .., n+l
i==j
for all j= 1,2, ..., n + 1. Consequently, for every fixed j the linear function

(p,{') az), y) of the variable y is constant on the set Fi(=,). Hénce, ul;) ch;).—_-O sin-
ce Fy(x,) has a non-empty intérior. From the last relation and the fact that
“‘3: == 0, we havé y%=0, j=1, 2,..., n+1. This completes the proof of the Theorem.

Remark 3.1. Let ch (¥, ) be a differentiable function, where v, is the
vector mentjioned in Theorem 3.1. Then, as in [1, 2] we can show lhat '

302(,) r Py = ac™® (s, )
ax ? ox

In facl, from the definition of a local section and the condition (b) of Theorem 3.1
we conclude that

L) <iz,) =0
for all x in the domain of function ¢, where
F
Ux) = (Ya, 0o(2)) — € * (s, T).
So, th¢ element x, achieves a local maximum for g, hence (he desired relation
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- Remark 3.2. As in [2], we shall say that the family of functions
lhi(x' &), o < Aiv = 19 2, mg’ (3.12j
is nondegenerate at z, if there is a point @ in X such thal

~dhix,, a)
ax

X <0
for all a; € Az}, i=1, 2,..., m,. It is easy to see from condilions (a) and (¢)

of Theorem 3.1 that if the family (3.12) is nondegenerate, then (P, g, V) 0.

Let us now assurne that

3N M =M x M’ XN where M’ and M" are the same cones as in

condition (3), and M = RI_:a.

(4" S = (8, §7, 87"y where 8§’ and $" are the same mappings as in con-
dition (4), and §" is a mapping defined by the formulae

§7(@) = (i), Lp(@),enn Iy, (2)),
1 2 Nt .
fi(x) = max ( Ii(x), li(a:),..., li (a:)) Li=1, 2,... ms.
Here IJ:R®—>R!is agiven smooth function.

Theorem 3.2. Assume lhat conditions (1), (2), (3") and (4") bhold. Let x,
be a point in Q, o, a local section of F,, corresponding to the pair (x,, 0). If
x, is an M-exiremal point for the mapping S, then there exist vectors, ¥; ¢ R¥,

i=1, 2; wed’-,jnumbersu <0,j=12,..,n4+1;i=1,2,. .rj!tg,miJ < 0,

i=1, 2. qiii==1, 2,.. my and points af € Ai(x,),J = 1,2,..., 0415 i=1,2,.,
m, such that .

V(a) Not all of the quantities ¢;, i = 1, 2; P; yuii. =1, 2., n <4 1;

i=1, 2,..., my and viJ, i=1,2,..,q;:i=1, 2. mg, are zero,

by cfi (bip Ta) =0, 1=1, 2.
(c} H&,) _ 0,
3T
where

H(x) = ¢y (91, )+ (9, S'@) ) + { or 0(2) ) +

N1 my mg 9 . .
+ =2 = uh (xo, o) + = =)
j=1 i=l i=1 j=1

(@) ¥ [Il(x°)~—l(x )] =0, j=1, 2 iy i=1, 2, m

30
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" Proof. We introduce the space Ru+M3 of the variable 1 = (x. & where
Ea RN E =G e tmg) € RM3. Let us set

e == () () — &L () = By 18@) — B, E = 1, 20 my,

my )
Fym =TT (&m) + R

i=1

No!~ that mapping Fj has local seclions. Indeed, let (1, T)be an arbitrary point
in its graph. Choose o(x) = (W) +T — () with I'(n) = 3. L., l;na(n)).

[t is obvious [(hal o is a local section of F} corresponding to the given pair.

Consider now the ma[ipings
Fim) = Fu@), Fon) = Fo(@ X F3 (),

Sm = (@, &0 G ) S = 57@

Stmy = (), S,

and the cone M = M’ x M’ where M =M’ x M, " = M”. Tt is easy to see
thal @, 15 & M-extremal point for the mapping 3 subject to conslraints (3.1) if
and oniv\: ifn,=(r,, &)is a M-extremal point for the mapping § subject to
0€ Fm, =12
where & is the vector with coordinates /((x,), {(x,)...., lma (2e).
Applying Theorem 3.1 to the point m,, we obtain Theorem 3.2.
el h: XxA—=R'bea function, which is defined and is continuous

together with its partial derivatives 2 Mz, ). i =1, 2,..., n, on the direct
s}

product X X A where X = R" and A is a compact topological space. Let

H(x) = max hizx, ), H(z,) < 0. Denote by A(w,) the set of all points « € A,

- ae .

which achieve a maximum for the function A(x,, «) of the variable a € A, It

is easy to verify thal the funetion

c(x) = max ﬂ‘feﬁ)__ .
aEA(x,) o
is convex and conlinuous. Lel us set
C; i 01 F o
Hx) ~ {3 - R+ if H(x)) == 0,
. R if H(xo) <0,

81
T(®)=H(®) + R .
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Lemma 3.1. The pair (X, #) is a gi-interior approximation at z, of the
pair (X, T) where g; is defined by the [ormula g((§, &, ) =& -+ =x.

Proof, If H(x,) <0, then the assertion of the Lemma follows from the
continuily of the furction H(®). Now suppose that H(z;)=0. Letz be an arbitrary

point satisfying the condition 0 & c(:a + B?j_ i.e.,

h{x,, -~
Mo D) 2cg <) L GBI
ox
for all a « A(x,). Since the function i(;:iﬂ of the variable a <A is conti-
x

nuous, we can find an open set A ¢ A such that A(z,) ¢ A and, forall ac 4,

the inequality (3.13) is satisfied. In view of the continuity of the function

K(x) = max A(x, «) and the condition K(x,) < H(x,) = 0, thereis a neighbor-
ae AN A4

hood (a” ball) V. such that

K(z) <0 : (3.14)

whenever © € x, + Vi

Consider now the funeclion

te, o, *) = Ah(w,, @) x + [ ah(z, + eb(x + 2), @)  alx,, a) G+ )
REY ox ‘ oz

where 0 = 0(g, «, x)is a function with the range conlained in the interval [0, 1].
Tt is clear that {(, o «) converges to zero uniformly in o & A when & and ©
converge to zero. Taking into account this fact and the relation

ah(x,, o) —

—i— [h(a:o -4 a(;,t:\—i— x), ) — h(z, ,2) ]— - x + f(e, o, ),

we see that there exist a real positive number 6 and a neighborhood V, such that

q

h(z, + s(* +x), «) < hix,. o) — 8 (3.15).. "

whenever a < 4, 0<{g<(s, & ¢ V. Without loss of generality, we may assume

that ea:' + V) C Vi for all ¢ € (0, 8). Conditions '(3.14) and (3.15) show that,
for 0<<e<(b, X< X, e, % -+ V) we have. H(x) <0, i. e. 0 € T(x). This
completes the proof of the l.emma. -

. Lemma 3.2, Let T be a set-valued mapping from R* into R™ such that,
for every ¢ € R™, the funclion

.CT(ws x) = sup {1, ‘J)
. yeT(x).

has partial derivatives with respect to x.
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Furthermore, let I be a finite set of indices. %;, €I, nonnegative real numbers, and
p; € R™, i €1, vectors such that the maxium of the linear functions (y;, y),

ie I, and ¢ E Ai i, y) of the variable yGT(a:o) is equal to zero. Then we have
i<r

_— CT(E ;t.;’ljjl, ) = 2 }.iiCT(’LP[, :cﬂ).
ar i€l ) G

Proof. Denote by i the j-th coordinale of lhe vector & & R® and by e
Lhe j-th unit vector, i.e.

ei = (0,-.., 09 1! O;---: 0)-
‘ (/)
Obviously, . _
= AeT (i, ) = T (2 A, -’Eo)‘
i€l i<l

Hence, for all & &€ R we have

2 AileT (i, x, + aed) — Ty, 2,)] >

i€1
}CT(E AiP; mo+aei)—cT(§ Ass :no)- (3.16)
i€l &l
Dividing (3.16) by «>0. then making a— +0, we obtain |
. Z ACT("‘UI’ Y ) _CT (Z ?L].w!! n)' (3-17)
0 €T o] i€l

To prove the converse inequality, it suffices to divide (3.16) by a <0 and to
let «a— —0. The proof of the Lemma is complele.

Remark 3.3. Theorem 3.2 is also valid for (he case where the mappings
S’ and $'’ are absent, provided that the cone M’ salisfies the following
conditions:

Al # !0‘, M’ W) (—1‘1,) = !0}.
§4. THE SUPPORT PRINCIPLE FOR A DISCRETE INCLUSION

Consider now an optimal process described by a system of discrete
inclusions

x(k41) € A5(@(k), k=00, K—1, (4.1)
with resiricted phase coordinales
0 € B*(x(k)), k=0,1,., K, (4.2)

where A* and B* are set-valued mappings from R® into R and R"* respectively,
and K is a fixed positive integer.

83



Let Scjz(k)}) be a single-valued mapping from roCG+1) jnto R™, M a cofivek
econe in R™ (M == R"™).
A sequence
fx), k=01, .. K| (4.3

satisfying Lhe constraints (4.1), (£.2) is said (o be an admissible trajeclory. An
admissible trajectory

(%), k=01, ..., K} (4.4)
is said to be oplimal if, for any admissible trajectory (1.3), the condition
6({:1:(1{)]) — S(jz(l}) € M implies thal S({z}y — S({x(k e M.

Assume that
A¥(zm) = Ak(a;) ~ A% o(T),
B¥x) = Bk(a:) N Bz(x)

where Lhe set-valued mappings Ai{ and Bli‘ satisfy the following condilions:

1. The mappings Ag and Bg have local seclions; Ag(a:) and Blé(:v) are

convex sels for every x € R"

2. For every w, 1(:x:) and B 1(x) are convex compact sels with non-empty

interiors,
A} B"
3. The functions ¢ (¥, x), ¢ ' (¢, T) are continuous (in their variables)

together wilh their partial derivatlives (with respect 10 ).
Let A; bé a compact topological space, lg(k, x) a smooth function,
hi(k. =, @) & sealar-valued function, which is defined and is continuous loge-

ther with its partial derivatives i]_ Mk, @, &), j=1, 2, .., n, on the direct
X

product X A

Define the mapping $7: Ruds+1) . g2 gng 5 RMEFD . RM3 by the
formulae

o= (S,l,’ Sy S;;lz) » S7= (S’l’” S0 e S;;:a) ,

K
S;’ ({m(k)}) = max E hi(k, z(k), o),
ACB =y

S (fa(ioh = max E B (k, m(k))
- JE1, 2081

Assume that
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{.§=1(S", S5 S} where
K
Sz = = Qrk. x(k)

(Q(k, x) is a smooth:functio'n from R® into R™M1).
2. M=M X R_lm? X RT_?’ where -M’ is a given convex cone in R™
Denote by Ai([:g (k)}) the set of all poinls ; < A, al which the funclion
% i (k,;: (k), o) of the variable o € A; stlains ils maximum.
i=U-
Theorem4.1 Let 4.49) be an admissible trajectory, o‘l; and C; local
secuons of lhe mappmgs A and B corresponding to the paus (:c k), x(1<+1))

and (:r:(k), 0) respectively. If the trajectory (4.4) is oplimal, then there exist
vectors p(l)cR® (i=1,2 k=0, 1., K—-1), ¢k) i=1,2; k=0, L., K),

v < M'~), numbers uJi <0 (=12.,n+1;i=12,., My), vi L(j=1 2es
qi, i = 1, 2,...,, mg) and points ocg € A, ([.;?(Ic)]) (j=1,2..,n+1;i=1,2..,m),
such that

(2’) Not all of the quanlities yi(k) (=1, 2, k=0 1.., K —1), ¢(k)
G=1,2; k=01, K, . pl G= 1, 20 0 15 0= 1, 2y o), vl (=1, 2.
gi; i==1, 2..., mg) are zero.

k
A, - o |
) (i, T = (k) Bk 1)), =1, 25 k=0, Lo K=
B. o
et (guk), () =0, i=1,2 k=0, 1,.,K

(c) v ( 2 lJ(k (k) — S ({ﬂco(k)}) =0, j=1, 2, qi; i =1, 2,... g

_ aH@p(k). pa(k). 91k}, @a(k), %)

(d) ¢k — 1) + ‘Pg(k — 1) =
Ller x = x(k)

k=0, l,... K, where

M

HOps k), 920k), @i(k)y gatk), @) = Coth). o5(@) ) + (0o, Clz‘(ac) ) +

k k
' A B
e Wik, ) + ¢ Nk, @) + ¢, Qb 1)) -
n—l—l my . .
= = wihik, a J) T 2 Z Vi (k, @).
]—-1 =1 i=1 j=1

(1) We set i) =0 if k=—1, K.

85



Proof. We introduce the space RME+D of (he variable 7 = (@(0)),
x(1),..., x(K) and define the mappings T;, i = 1,2, by the formulae
- K . R . '
Tx) = [] [Aj(x() — ak+1] X [] Bi(xk)).
‘ k=0 ‘ k=0
It is clear that Theorem 4.1 is an immediate consequence of Theorem 3.2.
AS - BS : .
Remark 4.1. Let functions ¢ 2 (y,(k), ) and ¢ 2 (p(k), x) be differenti-
. able (with respect to x), where p,(k) and p,(k) are the vectors mentioned in
Theorem 4.1, Then the condition (d’) can be replaced by

(d") . BH’(wl(k)! wﬁ(k)! fPl(k)- CPZ(k)! x) a —_ wl(k_i) + .lpz(k_j),

axr x=x(k)
’ k =0,1,..., K,
where
o 2 Ak h .
H (py(k)s bolk), 91(k), @a(k), @) = ZF {e ' (§utk), @y + ¢ (pilh), ©)} +
i=1

n+1 mg . s mg g j o
+ W Qo) + S p ik, moa))+ S S vk ).
=t i=1 i=1 j=1

Definition 4.1. We shall say that the trajectory (4.4) satisfies a supporl
principle if there exist vectors (k) (i = 1,2, k = 0,1,..., K—1), @ik) (i = 1,2,
k=01.. Ky &M; numbers pl O = 1,2,..., R+ 15 i = 1.2,..., my),
,vi‘ (J= 12, ., qi; i = 1,2,..., mng); and points ai < Aj([(;(k)l) (j =12,.., n+1;
i = 1,2,...,, my) such that eonditions (a’) — (¢”), (4"") hold.

From Theorem 4.1 and Remark 4.1 we have

Theorem 4.2. Assume, in addition to the already made assumpiions, that

k k
the functions cAz(wz(k), %) and ¢ 2 (gy(k), z) are differentiable with respect to

®, where ,(k) and @u(k) are the vectors mentioned in Theorem 4.1. Then the
vplimal trajectory (4.4) satisfies the support principle.

- Remark 4.2, It follows from Theorem 4.2 that the support- principle holds
for a process wilhout local sections [3] (i.e. for the case where mappings Alg‘

and Bg are absent), as well as for a process with lecal sections [1,2] (i.e. for the
case where mappings Alf and Bll‘ are absenl). It should be noted that the set

Ag(x) and Blz‘ ﬁre not assumed to be compact.
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Remark 4.3. From Theorem 3.2. we can also deduce the support prineiple
for discrete time-lag processes, as well as for discrete disiributed parameter

systems [3].

Remark 4.4, Theorems 4.1 and 4.2 are also valid for the case where the
mappings S and S are absent, provided that the cone M’ is such that
M {0} and ¥'n(—M) = {0l
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