THE LOCALLY MOST POWERFUL SIGNED RANK TESTS

NGUYỄN VĂN HÔ

Polylechnic Institute of Hanoi

I. INTRODUCTION:

In [1] there are two theorems (Th. II. 4. 9 and Th. II. 4.10) on the locally most powerful signed rank tests in testing the symmetry hypothesis $\mathcal H$ against the location shift and the two samples differing in scale respectively. These theorems have been generalized in [2] (see Theorems 1. 1 and 1. 2) for the location and scale alternatives K_1 and K_2 with regression constants of the form

(1)
$$K_1 \{\Delta\} = \{q_{\theta}(x) = \prod_{i=1}^{N} f(x_i - \theta c_i), \theta \in \Delta\},$$

(2)
$$K_2 \{ \Delta \} = \{ q_{\theta}(x) = \prod_{i=1}^{N} e^{-\theta b_i} f(e^{-\theta b_i} x_i - \theta c_i), \theta \in \Delta \},$$

where c_1 , ..., c_N , b_1 ,..., b_N are known constants, θ is a parameter, $\theta \neq 0$, f(.) is a given symmetric density, and $\Delta = (0, +\infty)$ or $\Delta = (-\infty, 0)$.

The aim of this paper is to establish the locally most powerful signed rank tests in testing \mathcal{H} , defined by

(3)
$$\mathcal{H} = \{ p(x) = \prod_{i=1}^{N} g(x_i), g \in \mathfrak{F}_o \},$$

where \mathcal{F}_0 is a family of all symmetric densities g(x), i.e., g(-x) = g(x) a.e., against the alternatives.

$$(4) \ K_1 \ \{\Delta\} = \{q_{\theta} \ (x) = \prod_{i=1}^{N} f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}), \ \theta \in \Delta\},$$

$$(5) K_{2} \{ \Delta \} = \{ q_{\theta}(x) = \int_{i=1}^{N} e^{-\theta b_{i}} f(e^{-\theta b_{i}} x_{i} - \theta c_{i} - h_{1}(\theta) c_{1i} - \dots - h_{k}(\theta) c_{ki}), \theta \in \Delta \},$$

and

(6)
$$K_3\{\Delta\} = \{q_{\theta}(x) = \int_{i=1}^{N} e^{-\theta b_i} f(e^{-\theta b_i} [x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}]), \theta \in \Delta\},$$

which is equivalent of (5), where $f \in \mathcal{F}_0$ is known and $\Delta = (0, +\infty)$ or $\Delta = (-\infty, 0), b_i, c_i, c_{ii}, ..., c_{ki}, 1 \le i \le N$, are known constants and functions h_1 (.),..., h_k (.) are more or less known.

It is shown in the COROLLARY in Section IV that the locally most powerful signed rank tests for \mathcal{H} against \mathcal{K}_2 and \mathcal{K}_3 are the same.

II. NOTATIONS AND DEFINITIONS:

Let $X = (X_1, ..., X_N)$ be N independent continuous random variables. X satisfies \mathcal{H} iff the N-dimensional density of X belongs to \mathcal{H} . Similarly for X satisfying \mathcal{H}_1 , \mathcal{H}_2 , or \mathcal{H}_3 . Let $X_{(.)} = (X_{(1)}, ..., X_{(N)})$ be order statistics based on absolute values of $X = (X_1, ..., X_N)$, i.e., $|X_{(1)}| \leq ... \leq |X_{(N)}|$.

Denote $R^+ = (R_1^+, ..., R_N^+)$ to be the ranks of $\mid X \mid = (\mid X_1 \mid ,..., \mid X_N \mid)$,

i.e.,
$$R_i^{+} = \sum_{i=1}^{N} u(|X_i| - |X_j|)$$
, where

$$u(x) = 1$$
 or 0 if $x \ge 0$ or $x < 0$,

and $V = (V_1, ..., V_N)$ to be the signs of $X = (X_1, ..., X_N)$,

i.e., $V_i = \operatorname{sgn} X_i$, where

$$sgn x = 1, 0, or -1 if x > 0, x = 0, or x < 0.$$

Let $\Re = \{r\}$ be the space of all N! permutations of (1,...,N) and $\mathcal{O} = \{v\}$ of all 2^N sequences of size N from 1's and -1's. It is well known that under \mathcal{H} , $|X_{(.)}| = (|X_{(1)}|,...,|X_{(N)}|)$, R^+ and V are mutually independent and

(7)
$$P(R^+ = r, V = v) = \frac{1}{2^N N!}, r \in \mathbb{R}, v \in \mathcal{D}.$$

Here and throughout the paper P is used to denote the probability measure belonging to \mathcal{H} .

Let f(.) in the definitions of \mathcal{K}_1 , \mathcal{K}_2 and \mathcal{K}_3 is absolutely continuos. Define the scores

$$a(i) = E_f \{ -f'(|X_{(i)}|) / f(|X_{(i)}|) \}, 1 \leqslant i \leqslant N,$$

(8)
$$a^+(i) = E_f \{-1 - |X(i)| f(|X_{(i)}|) / f(|X_{(i)}|) \}, 1 \le i \le N,$$

where E_f denotes the expectation provided X has density $\pi f(x_i)$

Definition 1. A test is defined to be a signed rank test iff it is determined by the statistic of the form $T = T(R^+, V)$.

Definition 2. Consider an indexed set of densities

 $\mathcal{K}^+=\{q_\theta\,(x)=q_\theta\,(x_1,...,\,x_N),\,\theta>0\}$ and assume that $q_0\in\mathcal{H}$. A test will be called locally most powerful for \mathcal{H} against \mathcal{K}^+ at a level $\alpha,0<\alpha<1$, iff it is uniformly most powerful at the level α for \mathcal{H} against $\mathcal{K}^+_\varepsilon=\{q_\theta\,,\,0<\theta<\varepsilon\}$, for some $\varepsilon>0$. If it holds among signed rank tests, we speak of a locally most powerful signed rank test. Similar definitions would formulated for \mathcal{H} against $\mathcal{K}^-=\{q_\theta\,(x),\,\theta<0\}$.

III. LEMMAS:

The following two lemmas will be used to prove Theorems in Section IV. The first is an immediate consequence of Neyman-Pearson Lemma and of (7), while the second is a useful convergence theorem for statistics formulated by Scheffé (1947) [3].

Lemma 1. In testing \mathcal{H} against a simple alternative q(x) at level α , $0 < \alpha < 1$ the most powerful signed rank test is given by critical function

$$\Phi(r, v) = \begin{cases} 1 & \text{if } Q(R^+ = r, V = v) > \lambda, \\ \delta & \text{if } Q(R^+ = r, V = v) = \lambda, \\ 0 & \text{if } Q(R^+ = r, V = v) < \lambda, \end{cases}$$

where dQ = qdx, and the constants λ , δ , $0 < \delta < 1$, can be determined so that $E \{\Phi(R^+, V)\} = \alpha$ under \mathcal{H} .

Lemma 2. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space with σ -finite measure μ and, $\Omega = \{\omega\}$. Let a sequence of \mathcal{A} - measurable functions $h(\omega)$, $h_1(\omega)$, $h_2(\omega)$,... be such that $\lim_{n \to \infty} h_n(\omega) = h(\omega) \pmod{\mu}$,

and $\limsup_{n\to\infty} \int |h_n| d\mu \leqslant \int |h| d\mu < \infty$.

Then for each $A \in \mathcal{A}$

$$\lim_{n\to\infty} \int_A h_n \, d\mu = \int_A h d\mu.$$

IV. THEOREMS:

In this Section there are two Theorems and a Corollary performed, regarding alternatives \mathcal{K}_1 , \mathcal{K}_2 , and \mathcal{K}_3 respectively.

Theorem 1. Let the symmetric density f(x) be absolutely continuous and satisfy

$$(9) \quad \int\limits_{-\infty}^{+\infty} |f'(x)| \, dx < \infty.$$

Let the alternative $\mathcal{K}_1\{\Delta\}$ be defined by (4) with $h_1,...,h_k$ satisfying

(10)
$$h_i(0) = 0$$
, $\lim_{\theta \in \Delta, \ \theta \to 0} (h_i(\theta) / \theta) = d_i$, finite, $1 \leqslant i \leqslant k$.

Let scores a (i), $1 \leqslant i \leqslant N$, be defined by (8). Then the test determined by critical region

(11)
$$\sum_{i=1}^{N} \gamma_i \, a(R_i^+) \, \operatorname{sgn} \, X_i = \sum_{i=1}^{N} \gamma_i a(R_i^+) \, V_i \geqslant \lambda \, (\leqslant \lambda), \text{ for any constant } \lambda, \text{ where }$$

 $\gamma_i = c_i + d_1 c_{1i} + ... + d_k c_{ki}, \ 1 \leqslant i \leqslant N, \text{ is the locally most powerful signed rank test at the respective level in testing <math>\mathcal{H}$ against $\mathcal{K}_1 \{(0, +\infty)\} (\mathcal{K}_1 \{(-\infty, 0\}).$

Proof: Let us prove for the case $\Delta = (0, +\infty)$. (For the case $\Delta = (-\infty, 0)$,

put
$$\theta'=-\theta$$
, $c_i'=-c_i$, $c_{si}'=-c_{si}$, $1\leqslant s\leqslant k$, $1\leqslant i\leqslant N$). Since for arbitrary $a_1,...,a_N'$ and $b_1,...b_N$

$$\frac{N}{\pi} a_{s} - \frac{N}{\pi} b_{s} = \left(\frac{N}{\pi} a_{s} - b_{1} \frac{N}{\pi} a_{s} \right) + \left(b_{1} \frac{N}{\pi} a_{s} - \frac{2}{\pi} b_{j} \frac{N}{\pi} a_{s} \right) + \dots + \left(\frac{i-1}{\pi} b_{j} \frac{N}{\pi} a_{s} - \frac{i}{\pi} b_{j} \frac{N}{\pi} a_{s} \right) + \dots + \left(\frac{N-1}{\pi} b_{j} a_{N} - \frac{N}{\pi} b_{s} \right) = \dots + \left(\frac{N-1}{\pi} b_{j} a_{N} - \frac{N}{\pi} b_{s} \right) = \dots + \sum_{i=1}^{N} \left\{ (a_{i} - b_{i}) \frac{i-1}{\pi} b_{j} \frac{N}{\pi} a_{s} \right\}, \text{ where } b_{0} = a_{N+1} = 0,$$

one has

$$\begin{split} q_{\theta}\left(x\right) &= \prod_{i=1}^{N} f(x_i) + \sum_{i=1}^{N} \left\{ \left[f\left(x_i - \theta c_i - h_1(\theta) \ c_{1i} - \ldots - h_k\left(\theta\right) \ c_{ki}\right) - f\left(x_i\right) \right]. \\ &\cdot \prod_{j=1}^{i-1} f(x_j). \prod_{s=i+1}^{N} f\left(x_s - \theta c_s - h_1\left(\theta\right) c_{1s} - \ldots - h_k\left(\theta\right) c_{ks}\right) \right\}. \end{split}$$

Denote
$$dQ_{\theta} = q_{\theta}dx$$
, $q_{0} = p$, $B(r,v) = \{x : R^{+} = r, V = v\}$, $r \in \Re$, $v \in \mathscr{V}$.
It follows from (7) that
$$(12) \ Q_{\theta} \ (B(r,v)) = Q_{\theta}(r,v), \text{ denote,}$$

$$= \int \dots \int_{B(r,v)} q_{\theta}(x) \ dx$$

$$= 1/(2^{N} N!) + \theta \sum_{i=1}^{N} \int \dots \int_{B(r,v)} (1/\theta \left[f(x_{i} - \theta c_{i} - h_{1}(\theta) c_{1i} - \dots - h_{k}(\theta) c_{ki} \right)$$

$$- f(x_{i}) \right] \prod_{j=1}^{i-1} f(x_{j}) \prod_{s=i+1}^{N} f(x_{s} - \theta c_{s} - h_{1}(\theta) c_{1s} - \dots - h_{k}(\theta) c_{ks}) \ dx$$

In view of (10) and of the absolute continuity of f(x)

(13)
$$\lim_{\theta \to +0} (1/\theta) \left[f(x_{i} - \theta c_{i} - h_{1}(\theta) c_{1i} - \dots - h_{k}(\theta) c_{ki}) - f(x_{i}) \right] \cdot \frac{\pi}{\pi} f(x_{j}).$$

$$\int_{s=i+1}^{N} f(x_{s} - \theta c_{s} - h_{1}(\theta) c_{is} - \dots - h_{k}(\theta) c_{ks}) =$$

$$= -(c_{i} + d_{1}c_{1i} + \dots + d_{k}c_{ki}) f'(x_{i}) \frac{\pi}{j+i} f(x_{j})$$

$$= -\gamma_{i} f'(x_{i}) \frac{\pi}{j+i} f(x_{j}), \text{ a.e., } 1 \leq i \leq N.$$

Moreover for arbitrary $\epsilon > 0$,

$$\int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \left| (1/\theta) \left[f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}) - f(x_i) \right] \right| \int_{j=1}^{i-1} f(x_j) .$$

$$\int_{-\infty}^{N} \left| f(x_s - \theta c_s - h_1(\theta) c_{1s} - \dots - h_k(\theta) c_{ks}) \right| dx$$

$$= (1/|\theta|) \int_{-\infty}^{+\infty} \left| f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}) - f(x_i) \right| dx_i$$

$$= (1/|\theta|) \int_{-\infty}^{+\infty} \left| \int_{0}^{+\infty} \left| f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}) \right| f'(x_i - y) dy dx_i$$

$$= (1/|\theta|) \int_{0}^{+\infty} \left| \int_{0}^{+\infty} \left| f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki} \right| \left\{ \int_{-\infty}^{+\infty} f'(x_i - y) dx_i dx_i dy \right|$$

$$= \left| (1/\theta) \int_{0}^{+\infty} \left| \int_{0}^{+\infty} \left| f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki} \right| \left\{ \int_{-\infty}^{+\infty} \left| f'(x_i - y) dx_i dx_i$$

$$\leq (|\gamma_i| + \varepsilon) \int_{-\infty}^{+\infty} f'(x_i) | dx_i$$

$$= \int_{-\infty}^{+\infty} (|\gamma_i| + \varepsilon) f'(x_i) | dx_i, 1 \leq i \leq N,$$

if θ is sufficiently small, by (10).

Consequently, since $\varepsilon > 0$ is arbitrary,

(14)
$$\limsup_{\theta \to +0} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} (1/\theta) \left[f(x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}) - f(x_i) \right].$$

$$\lim_{\theta \to +0} \int_{-\infty}^{+\infty} f(x_j) \int_{s=i+1}^{N} f(x_s - \theta c_s - h_1(\theta) c_{1s} - \dots - h_k(\theta) c_{ks}) \left| dx \right|$$

$$\leq \int_{-\infty}^{+\infty} \left| \gamma_i f'(x_i) \right| dx_i$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \left| \gamma_i f'(x_i) \pi f(x_i) \right| dx.$$

In view of (13) and (14), it follows from Lemma 2 that

(15)
$$\lim_{\theta \to +0} \sum_{i=1}^{N} \int \dots \int_{B(r,v)} (1/\theta) [f(x_{i} - \theta c_{i} - h_{1}(\theta)c_{1i} - \dots - h_{k}(\theta)c_{ki}) - f(x_{i})].$$

$$\lim_{t \to +0} \sum_{i=1}^{N} \int_{B(r,v)} \dots \int_{s=i+1}^{N} f(x_{s} - \theta c_{s} - h_{1}(\theta)c_{1s} - \dots - h_{k}(\theta)c_{ks}) dx =$$

$$= \sum_{i=1}^{N} \gamma_{i} \int \dots \int_{B(r,v)} - f'(x_{i}). \text{ } \pi f(x_{j}) dx$$

$$= \sum_{i=1}^{N} \gamma_{i} \int \dots \int_{B(r,v)} (-v_{i}f'(|x_{i}|)/f(|x_{i}|)) p(x) dx, \text{ by the symmetry of } f(x_{i})$$

$$= (1/2^{N}N!) \sum_{i=1}^{N} \gamma_{i} \int_{-\infty}^{+\infty} \dots \int_{\infty}^{+\infty} (-v_{i}f'(|x_{i}|)/f(|x_{i}|)) p(x) dx, \text{ by } (7),$$

$$= (1/2^{N}N!) \sum_{i=1}^{N} \gamma_{i} E_{f} \{-V_{i}f'(|X_{i}|)/f(|X_{i}|) | R^{+} = r, V = v\}$$

$$= (1/2^{N}N!) \sum_{i=1}^{N} \gamma_{i} v_{i} E_{f} \{-f'(|X_{(r_{i})}|)/f(|X_{(r_{i})}|)|$$

$$= (1/2^{N}N!) \sum_{i=1}^{N} \gamma_{i} v_{i} E_{f} \{-f'(|X_{(r_{i})}|)/f(|X_{(r_{i})}|)|$$

$$= (1/2^{N}N!) \sum_{i=1}^{N} \gamma_{i} a(r_{i}) v_{i}.$$

It follows from (12) and (15) that for any $\varepsilon > 0$ there exists $\delta(\varepsilon, r, v) > 0$ such that

$$(16) \left| (1/\theta) \left[Q_{\theta}(r, v) - (1/2^{N}N!) \right] - (1/2^{N}N!) \sum_{i=1}^{N} \gamma_{i} a(r_{i}) v_{i} \right| < \varepsilon/2 \text{ for } \theta, 0 < \theta < \delta.$$

Let $\mathcal{C} = \{t_1, ..., t_m\}$ be a set of all distinct values of

$$(1/2^N N!) \sum_{i=1}^N \gamma_i a(r_i) v_i, r \in \mathbb{R}, v \in \mathcal{V}.$$
 Obviously, $1 \leqslant m \leqslant 2^N N!$.

Denote $\varepsilon_0 = \min \{ |t_i - t_j|, i \neq j = 1,..., m |, (\varepsilon_0 > 0),$ and $\delta_0 = \min \{ \delta(\varepsilon_0, r, v), r \in \mathbb{R}, v \in \mathcal{U} \}, (\delta_0 > 0).$

In view of (16) one finds easily that the inequality

$$\sum_{i=1}^{N} \gamma_i a(r_i) v_i > \sum_{i=1}^{N} \gamma_i a(r_i') v_i', r, r' \in \mathbb{R}, \quad v, v' \in \mathcal{V},$$

implies

$$Q_{\theta}(r,v) > Q_{\theta}(\mathbf{r}',v')$$
 for all θ , $0 < \theta < \delta_{0}$.

Hence the critical region defined by

$$\sum_{i=1}^{N} \gamma_i a(R_i^+) V_i > \lambda, \text{ for a given constant } \lambda,$$

is equivalent to the one by

$$Q_{\theta}(R^+, V) \geqslant \lambda^* \mbox{ for all } \theta$$
 , $0 < \theta < \delta_0$,

where λ^* is a constant compatible with λ and independent of θ , $0 < \theta < \delta_0$. Now Theorem 1 follows from Lemma 1. Q.E.D.

Remark 1. If $h_i(\theta) = 0(\theta)$ as $\theta \to 0$, $1 \leqslant i \leqslant k$, the locally most powerful signed rank test for \mathcal{H} against $\mathcal{H}_1\{\Delta\}$ defined by (4) is the same as the one for \mathcal{H} against K_1 defined by (1), and it is given in Theorem 11 of [2]. Especially, it is the case if

$$\mathcal{K}_{1}\{\Delta\} = \left\{q_{\theta}(x) = \underset{i=1}{\overset{N}{\pi}} f(x_{i} - \theta c_{i} - \theta^{2} c_{1i} - \ldots - \theta^{k+1} c_{ki}), \ \theta \in \Delta\right\}.$$

Theorem 2. Let f be a symmetric and absolutely/continuous density satisfying

$$(17) \qquad \int_{-\infty}^{+\infty} |xf'(x)| dx < \infty.$$

Let $K_2\{\Delta\}$ be defined by (5) with h_i such that

(18)
$$\begin{cases} h_i(0) = 0, & h'_i(\theta) \text{ exists for } \theta \in (-\alpha, \alpha) \land \Delta \text{ for some } \alpha > 0, \\ \lim_{\theta \in \Delta} h'_i(\theta) = \lim_{\theta \in \Delta} h_i(\theta)/\theta = d_i, & \text{finite, } 1 \leqslant i \leqslant k. \\ \lim_{\theta \in \Delta} h_i(\theta) = \lim_{\theta \in \Delta} h_i(\theta)/\theta = d_i, & \text{finite, } 1 \leqslant i \leqslant k. \end{cases}$$

Let the scores a(i) and $a^+(i)$ be defined by (8). Then the test determined by critical region

(19)
$$\sum_{i=1}^{N} \left\{ b_i a^+(R_i^+) + \gamma_i a(R_i^+) V_i \right\} > \lambda \ (\leqslant \lambda)$$

for any constant λ , where $\gamma_i = c_i + d_1 c_{1i} + ... + d_k c_{ki}$, is the locally most powerful signed rank test at the respective level in testing \mathcal{H} against

$$\mathcal{K}_{2}\{(0,+\infty)\}\ (\mathcal{K}_{2}\{(-\infty,0)\}).$$

Proof: It this quite the same as the proof of Theorem 1. Therefore we shall leave out all detail explainations. Note first that (17) implies (9).

We have successively

$$\begin{split} Q_{\theta}(r,v) &= \int \dots \int q_{\theta}(x) dx \\ &= (1/2^{'N}N!) + \theta \sum_{i=1}^{N} \int \dots \int (1/\theta) \left[e^{-\theta b}{}^{i} f(e^{-\theta b}{}^{i} x_{i} - \theta c_{i} - h_{1}(\theta) c_{1i} - \dots \right. \\ &- \dots - h_{k}(\theta) c_{ki}) - f(x_{i}) \right] \cdot \prod_{j=1}^{i-1} f(x_{j}). \\ & \prod_{s=i+1}^{N} e^{-\theta b}{}^{s} f(e^{-\theta b}{}^{s} x_{s} - \theta c_{s} - h_{1}(\theta) c_{1s} - \dots - h_{k}(\theta) c_{ks}) dx, \end{split}$$

$$\lim_{\theta \to +0} (1/\theta) [e^{-\theta b_i} f(e^{-\theta b_i} x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}) - f(x_i)].$$

$$\begin{split} & \stackrel{i-1}{\cdot \pi} f(x_j), \\ & \stackrel{j=1}{\cdot \pi} f(x_j), \\ & \stackrel{N}{\cdot \pi} e^{-\theta b_s} f(e^{-\theta b_s} x_s - \theta c_s - h_1(\theta) c_{1s} - \dots - h_k(\theta) c_{ks}) \\ & = [-b_i f(x_i) - (b_i x_i + c_i + d_1 c_{1i} + \dots + d_k c_{ki}) f(x_i)] \underset{j \neq i}{\pi} f(x_j) \\ & = [-b_i (f(x_i) + x_i f(x_i)) - \gamma_i f(x_i)] \underset{j \neq i}{\pi} f(x_j), \ 1 \leqslant i \leqslant N, \end{split}$$

and for any $\varepsilon > 0$,

$$\int_{-\infty}^{+\infty} \cdot \int_{-\infty}^{+\infty} \left| \frac{1}{\theta} \left[e^{-\theta b_i} f\left(e^{-\theta b_i} x_i - \theta c_i - h_1(\theta) c_{1i} \dots - h_k(\theta) c_{ki} \right) - f\left(x_i \right) \right].$$

$$\frac{i_{-1}}{s} f(x_j) \cdot \frac{n}{s} e^{-\theta b_s} f(e^{-\theta b_s} x_s - \theta c_s - h_1(\theta) c_{1s} - \dots - h_k(\theta) c_{ks}) dx$$

$$\begin{split} &= \int\limits_{-\infty}^{+\infty} \left| \frac{1}{\theta} \left[e^{-\theta b_i} \, f(e^{-\theta b_i} \, x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki} \, \right) - f(x_i) \right] \right| dx_i \\ &= \int\limits_{-\infty}^{+\infty} \left| \frac{1}{\theta} \int\limits_{0}^{\theta} \left[-b_i \, e^{-\theta b_i} \, f(e^{-\theta b_i} \, x_i - \theta c_i - h_1(\theta) \, c_{1i} - \dots - h_k(\theta) c_{ki} \right] - h_1(\theta) c_{ki} - h_1(\theta) c_{1i} + \dots + h_k(\theta) c_{ki} \right] d\theta \right| dx_i \\ &= \left| -b_i \int\limits_{0}^{\theta} d\theta \, \left\{ \int\limits_{-\infty}^{+\infty} \left| -b_i \, e^{-\theta b_i} \, f(e^{-\theta b_i} \, x_i - \theta \, c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) \, c_{ki} \right) - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki} \right\} - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki} - h_1(\theta) c_{1i} - \dots - h_k$$

 $\leq \int_{-\infty}^{+\infty} |-b_i[f(x_i)+x_if'(x_i)]-\gamma_if'(x_i)|dx_i+\varepsilon$ if θ is sufficiently small, by (17) and (18).

Hence

$$\begin{split} \limsup_{\theta \to +0} & \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \left| \frac{1}{\theta} \left[e^{-\theta b_i} f \left(e^{-\theta b_i} \ x_i - \theta \ c_i - h_1 \left(\theta \right) c_{1i} - \dots - h_k (\theta) \ c_{ki} \right) - f(x_i) \right]. \\ & \lim_{t \to +0} \int_{-\infty}^{t} \dots \int_{-\infty}^{N} \left| f \left(e^{-\theta b} s x_s - \theta \ c_s - h_1 \left(\theta \right) c_{1s} - \dots - h_k \left(\theta \right) c_{ks} \right| dx \\ & \int_{-\infty}^{+\infty} \left| -b_i [f(x_i) + x_i f'(x_i)] - \gamma_i f'(x_i) \right| \, dx_i \\ & = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \left| \left\{ -b_i [f(x_i) + x_i f'(x_i)] - \gamma_i f'(x_i) \right\} \pi f(x_i) \, dx \end{split}$$

Consequently, by Lemma 2,

$$\begin{split} &\lim_{\theta \to +0} \sum_{i=1}^{N} \int \dots \int_{B(r,v)} \frac{1}{\theta} [e^{-\theta b_i} f(e^{-\theta b_i} x_i - \theta c_i - h_1(\theta) c_{1i} - \dots - h_k(\theta) c_{ki}) - f(x_i)] \\ &\lim_{\theta \to +0} \sum_{i=1}^{N} \int \int_{B(r,v)} \frac{\pi}{\pi} e^{-\theta b_s} f(e^{\theta - b_s} x_s - \theta c_s - h_1(\theta) c_{1s} - \dots - h_k(\theta) c_{ks}) \, dx \\ &= \sum_{i=1}^{N} \int \int \int_{B(r,v)} \{-b_i [f(x_i) + x_i f'(x_i)] - \gamma_i f'(x_i)\} \pi f(x_j) \, dx \\ &= \sum_{i=1}^{N} \int \int \int_{B(r,v)} \{b_i [-1 - x_i f'(x_i) / f(x_i)] + \gamma_i [-f'(x_i) / f(x_i)]\} p(x) dx \\ &= \sum_{i=1}^{N} \int \int \int_{B(r,v)} \{b_i [-1 - x_i f'(x_i) / f(x_i)] + \gamma_i [-v_i f'(+x_i +) / f(+x_i +)]\} p(x) dx \\ &= (1/2^N N!) \sum_{i=1}^{N} \{b_i E_f [-1 - + X_{(r_i)} + f'(+X_{(r_i)} +) / f(+X_{(r_i)} +)]\} \\ &= (1/2^N N!) \sum_{i=1}^{N} \{b_i a^+(r_i) + \gamma_i a(r_i) v_i\}. \end{split}$$

The proof wil be fulfilled as in the proof of Theorem 1.

Corollary: Theorem 2 remains true when \mathcal{K}_2 $\{\Delta\}$ replaced by \mathcal{K}_3 $\{\Delta\}$ defined in (6).

Proof:

Put $h_i^*(\theta) = e^{-\theta b} i h_i(\theta)$, $1 \leqslant i \leqslant k$. If $h_i(\theta)$, $1 \leqslant i \leqslant k$, satisfy (18) then $h_i^*(\theta)$, $1 \leqslant i \leqslant k$, do also.

Remark 2. Theorem 1 is not a consequence of Theorem 2, as Conditions (9) and (10) are weaker than (17) and (18) respectively,

. Received April 18, 1977.

REFERENCES

- [1] HÁJEK.J. and SIDÁK, Z. Theory of Rank Tests. (Academia, Praha. 1967)
- [2] NGUYÊN VĂN HỘ. Probabilities of large deviations and asymptotic Efficiency in the Bahadur sense for the signed rank tests. (PhD. Dissertation, Charles Univ., Prague, 1971)
- [3] SCHEFFÉ,H. A useful convergence theorem for probability distributions. (Ann. Math. Stat., V. 18 (1947) pp. 434-438)