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PUSHDOWN AUTOMATA WITH MANY PUSHDOWN
STORE TAPES

B0 LONG VAN and PHAN BiNH DIEU

Institute of Mathematics, Hanoi

§1." INTRODUCTION

As is well-known, the notion of pushdown'store was introduced since 1954 in
{11] by Burks, Warren and Wright, and then it was used in machine translation,
Some years later, this notion was formalized in pushdown acceptors by Chomsky
[1] in finding the machine model of context-free languages. From that time, the
pushdown automata (with one pushdown store tape) were investigated extensively
by many authors, either as a subject of automata theory or a means of mathemati-
cal theory of languages (see {1]-[10]). -

The conception of pushdown stores is used widely in many theoretical and
practical domains of computer science. And in many cases, it is useful {0 organize
such memory that consists of not only a single pushdown store tape but many
ones together, Therefore, it is of interest to study a mathematical model of pushdown
automata with some pushdown store tapes. In this paper, such a model is consi-
dered, and its capability and properties are investigated. The definitions and
necessary notions are introduced in §2. In §3 we shall examine some closure
properties of classes of languages under consideration. In §4 a necessary condition
for languages recognizable by deterministic pushdown automata with many push-
down slore tapes in real time will be formulated. Relations between classes of
languages under consideration will be established in §5. Finally, §6 is devoted to
proving the unsolvability of some algorithmic problems.

§2. DEFINITIONS AND NECESSARY NOTIONS

2.1. We recall some notions. Let % be a finite alphabet. We denote the
set of all words in the alphabet £ by x¥ the empty word by A and
t = 2* N\ A} Every subset L C xz* is called a language over the alphabet



Y. For any word u e =% [(u) denotes the length of u, I is the. word
obtained from « by writing the letters of u in reverse order, e.g., if
U=0,0,... 06, then 1= GO 10y, /I\\ = A Let Abe a set the elements of
which are some letters or some words over some alphabet z. In the sequel we
shall use the notation A" to denote ejther Cartesian product of A with 1tself n
times, then the members of A" will be the n-tuples of elements of A - or concate-
nation of language A with itself n times - then the members of A" will be words
over the alphabet ¥. Which meaning this notation has in every case will be

clear by context. The cardinality of a set A is denoted by | A I,

292 4 (nondetermmlstlc) pushdown automata with n pushdown store tapes
(abbreviated pP) is a 7-tuple :

A == (S,E, rgasso’ ZO’F>

where

is a nonempty finite set of stafes,

is a nonempty finite set of input symbols (the input alphabet),

- M n

is a nonempty finite set of pushdown symbols,

e § is the initial state,

L

— n \
Zy=(Zy ... 2, )EeT ,where Z, (i=1,...,n) is called the

initial pushdown symbol of the i-th pushdown store tape,

Fc § is the set of final stafes,

3 is a map from Sx 3 x r into the family of the finite subsets of
S x (I‘*)n and called the transition function. Moreover, in order that the
pushdown store tapes never become empty during working process, the
transition function & must satisfy this éondition: if (,Y) €3(s,6,7), then
W) A<ISMW= Z,~Y;€{Z,} 1, where T=(Y, ,..., V) .
Y=(¥,..., 7). '

Every member of S x z* x ( r*)" is called a configuration of automaton A.



4

In the set of configurations of A, we introduce the binary relation
I—I called corfiguration transition which is defined as follows: for any s,s' € S ;

sy, we z*; T, T e(rs); Yer if(s,Y)ea(s, 0,Y), then’

(s,0w,a 'Y_)l-—A (s', w, = Y), where a § = (B serer @) Byyenn, B)=eyBy, .o, B0

The reflexive and transitive closure of relation I—_A: is denoted by I—-i

We say that the word w e z*is accepled (in reaitime) by A if there exist

ac ( I"")n and s e F such that
(sos w, Zo) I—} (s, A9

The set of all words accepted by 4 is called the language recognizable by A
and denoted by L(4).

A pushdown automaton with n pushdown store tapes 4 is called a

deterministic one {abbreviated nDP) if for ‘any seHesSxsx I‘n, the set

6(8,6,?) consists of one and only one element.

In the sequel we shall need the following notations :

For any natural number nz 1, o4 ,[z]denotes the class of all nP's with
the alphabet z.
£, 2] = 3L C z* }gAe A.p(2]: L(A):L-g

°4RP= U c"41113 (=1 °4P= U "4nP
T ,

It

N
5
o

Lp=U £L,p 215 £p
£

The nOtationS JRDP[E] ] ERDP[EJ ,G4nDP [ G4DP ’ EHDP" £DP are

introduced similarly.

The following inclusions are immediate from the definitions :

Lypp S Linpp @0
Lap S Lainp 22)

L.pp < £p (2.3)



§ 3. SOME CLOSURE PROPERTIES
31. THEOREM 1. () If L € £ ;. [z]then L = N\ L € £ pplx) Gi) If

Lie £ p [z]( £ 5 [2]) and L2E L e [):](Emp [z]) then L, N L, , LUL e

£ impp (2] '(-ﬁ(n+m)l’ [2] )

Proof. (i) It is evident thatif A = ¢ S, 3, T, », s ,.'Z'O , F> is in 4, pp [E] such
that L (A) = L then A =< 8,5 I, 3,5,, Z,, § \ F) is also in A, pp [£] and
LA =T.

. (i) Let us have Li=L(4), Ly=1L (4,), where

Ay =S5 T8y s XL Fidand 4, =<8y, 5 Ty 0, T, Fy >

are id A ,pp (2] and o4,.pp [£] respectively. We construct an antomaton 4 —

{8 3T, 31, 20 + F>, where § = S1 e 82 ] ;R},Risanewsymbol callédthe

refusing state of A, T=T, U I, u = (s, .t ), Z =(X

1] o
the {ransition function 3 is defined as follows :

o’ "o

7,9, F=F;x F;;

"D os ((s,t),_o',(Ti,T)), — (s, 0. G B) if Xer;,Yer, and
360, %) = D o N= (.
2) 3 (s, 6, Z) : (R, %) -in all othe'r‘cases.
It is evident that 'A'e:c.4 pp [2]l and L) =L, N ,L2'A , that is
Linle £(n+iﬁ)ﬂp (=}

(R+m)

-The (n + m) DP i'ecognizing the languagé L U L,is constructed similarly,

only now F = F, x 5, U §, x F.

In the case of nondeterministic languéges the proof is made in the same .

way,

7 (1) Here (Xo ' Yo) sténds for (Xm...., Xon’ Ym,...., Yom)



From Theorem 1 we have

corottary. () The class £),[z] and, therefore, the class £, are closed
under union, intersection and complementation.

(ily The class .EP[);] and, therefore, the class EP are closed
: under itnion and mfersectzon
3.9. Haines [12] and Greibach {13} have proved that

£1P =£CF L) ’ (3.1)

where £, denotes the class of all context-free languages. Hence, by (2.3)

Lipp € Lo - (3.2)
We now cons_ider the following languages over the alphabet {a, b{
legam B a |n, m}li
: (3.3)
‘nggaubnam n, m>12

1t is. not difficult to construct the 1DPs recognizing the langnages L, and L,,
that is, L, and L, belong to the class £ ..
Obviously also

L0 Ly= ga“ " a"|n>1 3.4)

L
$

On the other hand, as has been known (see, e.g.,[lO]) the language
L= g " a"

n= 1; is not context-free. Thus the class EIDP is not closed

under intersection. From this and () of Theorem 1 it follows that the class

£wP is not closed under union also. However, as in the case of context-free

languages, i_t is not difficult to prove the following fact :
THEOREM 2. If L e ERDP(EHP) and L, € Ly, where £, is the
class of all regular languages, then L 0O L, , L, UL,, L\ Lye £ pp (ﬁn P)

s.5. It has been shown in [12] that for évery recursively enumerable language

E Cx* there exist two deterministic context-free languages L,L, & ()T and a

homomorphism h : (2)* — £* such that



E=h (L, N L,). | (3.5)

By (3.1), L, Ly e £L,p. and therefore by (i) of Theorem 1, LiNLy€ Ly

Thus, every recursively enumerable language is the homomorphism image of some

language in the class £2P‘

Since any language of the class £, is recursive, from the existence of
recursively enumerable buf not recursive langnages it follows that, for any n 2 2,
the class £ p Is not closed with respect to homomerphisms., However, in the
following we shall show a special class of homomorphisms, under which these
classes are closed.

Iet » and ' be two arbitrary alphabets. Each one-to-one map T from x
into the set (z’)k of all words of length kiny (k> 1) is called a length k-enco-

ding or a k-encoding of- % into ¥'. Note that such k-encoding always exists

provided | =’ [ > 2, It is also clear that each k-encoding of x into ¥ produces

a monoid iAsomorphism from z* into (£')*, which is defined by

TUA) = A
Two) = T(w) T(o),
where weg*, ces. We have

(3.6)

THEOREM 3. If Le‘ﬁnﬂp {z] ( £, P [2]) and T'is an arbitrary k-encoding

of x into ¥, then tLeﬁnDP [z'] (ﬁnP [Z’])
Proof. Let L = L(4), where
| A=<(S.% 1,8 50 Zo F>
We construct the automaton
A’ = <S'r 2', rv 6,: 50’5 th F> .
" where §' =S %  we(z)* |z(w).g k—1 } U { R}, Risamnew symbol, s* — (Se: A\),

Fr=F X-§{ A}, -the transition function & : & x I X 7 X (I"")n is
defined by ' '
D& wo, P =(6 wo), T i L) L k-2
2 ¥ (6w, o, D= (s AL T if L) =k —1
and there éxists 6 & w such_that T (0) = wo’ and (", ¥) = 3 (5, 6, 7).
3) ¥ (5,6, ) = (R V) in all other rasec

5

-



It is evident that 4' € o, (=] and L (4) =T L. SoTLe £, (5]

n the case of nondeterministic languages, the proof is similar,

- REMARK. Note that the proofs of Theorems 1, 2,3 are constructive ones. This
will be used in § 6 when the algorithmic problems are considered.

§ 4. A NECESSARY CONDITION FOR LANGUAGES
IN THE CLASS 2,

4.1. Let L be a language over the alphabet 5. For every ioteger k> 1 we
define an equivalence relation E, (mod L) in s* by

u E, v {moc L)@Vw(l(w}._{k—»(uweLvaeL)) 4.1

" Then, for any k > l,_GL(k) is defined to be the number of equivalence
classes in * determined by the relation Ek (mod L) '

Gy ) = ord E, (mod L) | 42

THEOREM 4. For every language L in the class £ pp there exists a positive
constant ¢ such that '
| Gt < o
Proof. Let L = L (4), where '
A=< Ss z‘} rsa530|.ZOQ F>

is some nDP, I§| = m, [Tl = 1. Without loss of génerality Wwe can assume- that I>1, .
otherwise, 4 will become a finite automaton, L a regular language, and then,
there exists a positive constant ¢ such that Gy (k) < c for any k > 1.

Fof every integer k 2 o we define an equivalence relation ,’5 in (r*)" by _
; f« .B L= (V-'.. = 1,..., ﬂ) ((dl = Bi ) v (L‘l!. = a'i Y! & ﬁ! = 6'1 Yl &1 (Yi)=k)) (4.3)
| k41

kn I _1\n
It is obvious that ord (ﬁ):(l Fl4 e+ )n='( [_11)

Directly from the definition of relation X we have, for any k> 0

Ve Be('yTer" [ TLAE T - yY e (™" EY TIEN] @
Then, for every k 2 0, we denote by = k the equivalence relation in S x (I‘*)n
which is given by ' '



GH=, B e =08& @ LH 4.5)

Obviously, )
' N |
R R ¥ ] n(k+1)
1 <m, !

ord-(zk)=m(

Hence, by choosing ¢= (m l’)2n » we have

ord (ék) < <X

(4.6)
for any k > 1,

Now with every word w e z* we associate a map w from the set

S % ;Zm HI* ..o x § Z, {T* into itself determined by
— — — * —
W (S: “) = (ts ﬁ) L (S’ w, a) ! A (f: A, ﬁ} : (4-7)

Clearly, the map w defined by (4.7) is one-valued because 4 is a determi-
nistic automaton,

It is obvious that
/\ (3! -‘;) = (5’ ;)

For any (s, @ and (f, B) in S x §Z,,4 T*xex {Z

OH} r* we have

(5,9 =, (t, B) = vwez*(l(w) k—~w, 0= w (t,F)) 4.8)

Indeed, for k =0, (4.8) is obviously true, Suppose that k > 0 and (4.8) has been
proved for k& — 1. By the definition, (s, a) = k (t, B) implies s = ¢ and « f $. Then,
since k> 0, = and B can always be presented in the form
‘ ' ; = ? T s B— = BT ?

with Te 1",

Let w be any word in £+ such that ! (w) < k. I w =k, then

AGa=(6d=tLH=AELHD

which implies

Suppose w == A , w=ocw'. Then

w (S,;) =cuw (5:;?-) —_-w' (S',;-' 7)

wEH=ow 6FH=w ©F D, “9

-



where (s, Y) = 4 (s, 6, Y).
By (44),% 5 B implies # ¥ “2'F Y. Hence
&, 7V =,_{ 5 F V).

But then, by the induclive assumption, we have

w (s, & V) =, (" p ¥
Together with (4.9), this gives us
ws, @) =, W AP
Thereby (4.8) has been proved.

As a special case of (4.8) we have

uls ,2,) =, v, ,70) = ywex* (l (Wy<k - uwis, ,2‘0) = vw(so,zo)) (4.10)

Now, if in z* we define the equivalence relation F, by

uF v e uls, ,70') Ekv(so,fo

) 4.11)

and note that, for any u,v € 2% u (s, ,.'ZO) =, v (s, ,"Z_"o )= wel<«+v e Ly,
Then by virtue of (4.10) and (4.1), we have:
quu = uk P (mod L) 4.12)

Finally, by (4.2), (4.12), (4.11), and (4.6), we have
k
GL(R) = ord E, (mod L) < ord Fké__ord(zk) <L ¢,
and the theorem is proved.

4.9. As has been shown in 4.1, the complexity characleristic G L(lc) of every

language L in ‘eDP is limited by some exponential function c*. In the following
we shall show that, for any given exponential function ¢k, there can be

found a language L in £,,, evenin £,,,, such thatits complexiiy characte-

ristic GL(k) exceeds the function ¥,

For every integer n > 1, we consider the following language over the
alphabet 0,1, ¢ |

L,= éaﬂalz“‘ “1n%21 %2 %20 *m1%m2 " Cmn Cw]m>1;ﬂje 101}

A<i<m, 1Li<n; AT ooy 0cnv, =W E (4.13)



LEMMA 1. Forany n> 1, the language L defined by (4.13) belongs o
class Lipp 1061, cl]

Proof. The 1DP A recognizing Ln is constructed as fdllows:

A=<S,2, r,ﬁ,SO,ZO_,F>’
where ‘

S ={sp8. 5} U {0,1]" U {R}

2:{0, 1, C;
n i - -n

I'=§ZO}U U {0,1} U}w]w 6{0,1} }
i=1 - ’

F_-—..gs2¥

8! SXEXT—S xrI* is defined by

l)a(so,c,Zo)=(so,ZoY) if 66{0,1} , Y=o

: . n—1 i
2)a(so.o,w)=(so,Y) if 66{0,1} s WE U {0,1§,Y=w6
X i=1

Bl 6 w) = (s, V) if 6€{0,1f ,wef0,1}"¥,=5,Y,=0

1 2-
Hat,,c,w) = (1", 1y if we{0,1{", Y =
n—1
Do, 0w)=(s,Y) if 6ef0,1} ,weUgOI; Y=wo
L i=1

83 (sy.0,w) = (5, Y, Y,)if 6ef0,1} , wei0,1{ ,Yl_—_w, Y,=0
Dot om=0"1 if we 0,1}, ¥Y=i

Hao,w) =@ A i c€{01}. uswe{01]" and
A comp; u if G = comp, w()

vild<j<n comp; v = {4 if o =#compj w

Nd@ow)=(s,, A if 6e{0,1}, @ w e{0,1}] and
EFNIES RS (6—-C0mp w) & (comp u=1)
10} 3 (s, 6, ) = (R, Y} in all other cases.
It is not difficult to verify that L (d) = L_ , hence L€ pnli0lc 1.

—-——-——
{1 Compj z denotes the j.th letter of word-u (from left to right), e g.; if o = 01011
then compy u =1, compg u = 0.



The lemma is-proved.

LEMMA 2. For any given positive constant c, there exists a nalural number
n such that

G, (& = e

LR
for any k large enough. .

-Proof. Let
k
Qlﬂn:gvg {0,114 l!U[:nz

Obviously,
n -
g | = C 4.14
n o 414

it | s
With every set U = gau Aoy vt Fpr s Byg Fog e By e Xy Gy o+ Fpn S in Q[ﬂn

we associate a word

€= "1 %12 “1n %1 *pp %20 k1 M2 Ykm ©
Clearly
_ v e L we U
£ g w o ‘
Hence,
U, VEQLQ)(U:}-V—»E Frx ; (mod L))
' therefore,'

4 ' -
G, (k.) = ord E, (mod L) ?alfwnl "‘=_C2k 4.15)

~By choosing n 2 logc +1 and k> logn!, we have
nk_.logn!_/(logc+1)k_1ogn.! > klogc.
For gny.k large énough, this impli_es
nlog(z_n) logn! > kloge.

or

k n
2 _n ,

Since

n Fe*_n . @ _ney @
2 ni > n!



by (4.15) and (4.16) we obtain
G, ®) > o
for any k large enough. This proves the lemma.

LemMA 3. If L is any language over the alﬁhabct Tand T is'any l-encoding
of £ into z', then '

GIL (> 6, & (4.17)

for any k > 1.

Proof. Assume u, v € £* and u ﬁ"k v (mod L). Then there must exist some word

w e z* with ! (w) < k such that one and only one of the words mw and vw
belongs to the language L ,e.g., uw € L and vw & L (for the case mw ¢ L. and
vw € L, the proof is similar}. Then we have:

Tuwy=TwWTweTL
T =TPITwW)&TL

4.18)

Since I (Tw)) =L I ) £ L. k, (4.18) implies

T @ #; TW® (modTL)

Thus, the number of equivalence classes in (£)* detérmined by the relation
E, {mod T L) is not less than the number of equivalence classes in £* determined

by E, (mod L). In other words we have

G_CL(UC) P GL(If)

for any k > 1, and thus the lemma is proved.

THEOREM 5; Let £ be any alphabet consisting of at least two letfers,
Then, for any given positive constant ¢, however large it may be, there exists
a language L in the class £,,[2] such that

k
G,k)= ¢
for any k large enough.

Proof. Choose T to be an arbitrary l-encoding of {0, 1, ¢} into x. ByLemma 2,

there exists n such that

=



4+ Dk

Gy ) > ¢ (4.19)

for any natural number k large enough.

By Lemma 1, L & 2,,n[{0,1, ¢}] we take L=TL_. Then, by

Theorem 3 L & £1 D P[z]. By using the Lemma 3, from (4.19) we obtain

e IYE
G, (k) > LD (4.20)

for any natural number k large enough.-’

It is not difficult to note that, for évery natural number I+2 ({+ 1)1,
there exists a natural number k such that )

Ik <h< U+ Dk .21

k
Since the functions G (k) and ¢ are increasing, by virtue of (4.20) and (4.21)
we have

[+ 0k _ &
G > 6,00 > T >

for -any'nétural number h large enough. Theorem is proved.

§5. RELATIONS TO WELL-KNOWN CLASSES OF LANGUAGES

5.1. It is clear that any finite automaton can be stimulated by some 1DP,
Thus the class £, of all regular languages is a subclass of £ pp.

As is. well-known, a language L is regular if and only if there exists a constant
¢ such that G L (k) < ¢ for any k. So, languages satisfying the conditions of Theorem

5 with ¢ > 1 cannot be regular. In other words, over any alphabet = consisting of
at least two letters, there are the language recognizable by deterministic pushdown
automata with one pushdown store tape in real time but not being regular.

52. Let z=1{0,1}. Consider language £*4, where

A :
A=jtwerrlw=w&lw > 3}. It is not difficult to verify that £*A is a
context-free language. On the other hand, in [14] Cole has shown

(k—3)/2
2
GE‘A (ky > 2

Hence, by Theorem 4, z*A cannot belong to £, . Thus, over any alphabet % con-



sisting of at least two letters, there are conlexi-free languages not recognizable by any
deterministic pushdown automaton in real time however large his number of pushdown
store tapes may be, '

5. 3. It has been shown in 3. 2 that language L = f a® b a" | n 21} is inter-

section of two languages in £, ,,,. By (i) of Theorem 1, it must belong to £, ..

Thus, over any alphabet % consisting of af least fwo letters, there are languages
recognizable by deterministic pushdown automata with two pushdown store tapes in
real time but not being context-free.

It is not difficult to show that for any given nDP one can construct a linear
bounded antomaton stimulating the word of this nDP. Therefore, any language in
£y is a context-sensitive one.

5. 4. As a immédiate corollary of 5. 2. and inclusions (2. 1}, (2. 2), (2. 3), 3- 1)
we have: for every n = 1, over any alphabet x consisting of at least two letters,
there are languages recognizable by nPs but not recognizable by nDPs, In other
words, £, pp IS a proper subclass of £ .

Then, by 5.3. and (2.1), (2.2), (2.3), (3.1), we bhave : over any alphabet x
consisting of at least fwo letters, there are languages recognizable by (2DPs)

but not recognizable by 1Ps (1DPs). In other words, £1P (21 DP) is a proper

subclass of £ép (£2D P) .

REMARK. In [13] Aanderaa has proved a fundamental result about the
hierarchy of the classes £ ,,. Namely, he has proved that, for any n> 1,

there are languages recognizable by pushdown automata with pushdown memory
tapes in real time but not recognizable by Turing machines with n memory tapes
in real time. Thereby one obtains the hierarchy : '

Lipp qcE Lopp :c;:: . =)c': ﬁnnp ; e 3.1)

In order to obtain this result Aanderaa has used a rather complicated technique
of overlapping. In section 4.1. we have given a simple necessary condition for
languages in the whole class £, , but it is very difficult to find the simple

necessary conditions for langvages in every class ﬁn pp+ by which one can dis-
tinguish the classes £ ., and E(n 1) DP° It seems that in order to prove the
hierarchy (5.1} one can find the examples of languages, which are simpler than

those of Aanderaa, e. g,, the language

A fiit nglfls .
L, =31701%0.. .01+ 01 )i > 1, 3:}._12
is obviously in £(n +1)DP and it seems .that L, does not belong to 2, butno

proof of this fact is known!



§6. SOME ALGORITHMICAL PROBLEMS

. 'F_oranypair (x, y), where x=— @y seein®)) = (91"“ » Y, ) are two

n-tuples (n2 1) of non-empty words in the alphabet {0,1}, We define the foIlowmg
languages over the alphabet §0.1,c}

L(x,g)=;m'k...o1'z 01t ew| k> 1 1< <n 1K<
M(x,g)_gmk 012 011 cwe 1% 012 0. 1RO k2 1:1<i<n

LEMMA 4. There is no algorithm allowing us, for any pair (x, y), o decide

(i) whether L{z,y) = @ or not,

(ii) whether L(x,y) is finile or nof, -
Proof. It is clear that L(x,y) == @ when and only when the Post’s correspondence
problem for (x,y) has no solutions. Since the Post's correspondence problem is’
undecidable, the empty problem for languages L(x,y) is also 1indecidab1e. Note that
L{z,y) is either empty or infinite that is, L(x,y) is finite when and only when

L (z, ) = @. Therefore, the undecidability of finiteness problem for languages
L (z, y) follows from the undecidability of empty problem for them. Q.E.D.

LEMMA &', Lel 5 be any alphabet .consisting of at least two- letters. Let T be any -
k-encoding of { 0,1, ¢! into %. Then, there is no algorithm allowing us, for any

pair (x, i) o decide
(i) whether T L (x, ) = @ or not,
(ii) whether "C L (x, y) .is finite or not,
(iii) whether =*\T L (z, y) = 3 or not.
Proof. - Note that T is a one-to-one map from’ {0 1, ¢ ;* into }:"‘ Then (i) and (u)

follow from (i) and (ii) of Lemma 4 respectively. ‘The unsolvability of problem (iii)
follows from the unsolvability of problem (;) ' -Q.E.D,

LEMMA 5. For any given pair (i, 1), we can construct
() an automaton A€ oA, [ §0,1,¢} ] such - that

L (A) =L (3:’ y)



(i) an automaton A€ oAyp, [ §0.1,¢ ;l] such that

LA)=Mx 1y

Proof. (i) Instead of constructing in detail the automaton A e Aopp [{0.1, 1]

recognizing L (x, y), we describe the working process of A when it reads an input
word,

If the input word has not the form o1'k 0112 0111 ¢ w, then A goes into

the refusing state at some moment and then it is always in this state, that is, in this
case the input word is refused by 4.

If the input word has the form as shown above, the automaton A works as
follow :
i i i

k 2
(a) While reading the part 01 ... 01" 01 ! of the input word which is a code of

. 4 . ~ ~ ~
sequence of numbers i, ,.., {, , 7,, the automaton A records the words X T T
k 2 1
~ M ~ . . . R
and Y. ... §. y, in his first and second pushdown stores respectively.
k 2 1 '

(b) After the symbol ¢ of the input word is read, A compares the part w of
: Y
the input word simultaneously with two words T, X X =& wo%; x; and
/\
oS

i 2 k k 2 1

~ ~ . .

Y, Y; - Y; =1Y; Y, y, which have been stored in two pushdown stores of A
1 2 k- k 2 1

by the step (a).

wF x, x, ..x orwE yl. yl. o Y; , then 4 goes into’ the refusing
1 2 k k

state at some moment of the compal ison process and then it is always in this state,
, the input word is refused.

If we=z, X, w X = Y; Y; .y, ,then after reading w, A goes into some
1 2 k 1 2 k

final state, i. e., the input word is accepted by A.
Thus we have proved that L (4) = L (z, y).
(ii) Similarly.

LEMMA 5'. Lel 5 be any alphabet consisting of at least two letters. Let T be any
k-encoding of 0,1, ¢ | info . Then, for ury given pair (x, y), we can construct

. (i) an automaton A e Agpp [E] such that

L#A)=T L,y



{11} anl automaton A € ofy,), (2] such that
LiAy=x*—_TL {z, 1)
(tii) an antomaton A € o4,;,, [z] such that
L (A =TM@p
Proof. (i} follows from ti) of Lemma 5 and Theorem 3 (sée remark in the end of § 3).

(i) follows from- (i) and (i) of Theorem 1. (iii} follows from (ii) of Lemma 5 and
Theorem 3. ' '

THEOREM 6. Let £ be any alphabel consisting of at least two letters, Then,
there is no algorithm allowing us, for any A € Aypp (2], to decide
(i) . whether L (A) = & or not,
(ii) whether L (A) is finite or not,
_ (iii) whether L (4) = =* or not.
Proof. If there were an algorithm deciding (i), then, by (i} of Lemma 5’ there would

be aan algorithm ailowing us, for any pair (z, y), to decide, whether TL (x, ) = @ -
or not. But such an algorithm, by (i) of Lemma 4, is impossible.

(ii) and (iii)- can be proved similarly by the help of (i) of Lemmar 5, (i)
of Lemma 4’ and (ii) of Lemma 5, (iii) of Lemma 4 respectively,

As an immediate corollary of Theorem 6 we have

THEOREM 7. Let T be any alphabet consisting of at least fwo letters. Then,
there is no algorithm allowing us, for any 4,4, € Aypp (2}, to decide

(i) whether L(Ai) = L(4,) or not,
(il) whether L{d,) < L(4,) or not,

(ili) whether L(AD ; L(4,) or not.

LEMMA 6. For any given pair (x, y), the language M (x, y) does not contain
any infinile context-free language. : :

Proof. We first note that every word w € M (x, y) has the form

P8

i = 61662661

where el=01z""‘... 012 g1, k> 1, 1 ;§ ij < n (1£Lj L Ic),' and &, =

xT X. . =y

iy Ty y; « y; ~Thusthe word wis completely defined b}-'r his part e,

11 l‘k



Assume that M (#, y) contains some infinite contexi-free language L.

Since L is a context-free language, by the Bar-Hillel's criterion (see, e. g.,
:10]) there are two positive integers p and g such that if w € L and ! (w) > p then
W can be represented in the form w =u, v u, v u,, where l (w 0) 21,1 (nu, V) < ¢

m m
and w, u u, v uy € L for any mz 1

Then since L is an infinite langnage over a finite alphabet, the set
g I () | we L } must be infinite, Hence, as [ &}, l(y Yz 1foranyi(l <i< n),
there must be found a word w = e;Cey ¢ el € L such that ! (w) = p and [ (82)
But then

rat
W=e CCyCe =0 UL, Vi, 6.1)

where [ (uv) > 1, Ifuu V) < g and 1, u™ uz” u, € L for any mz1.

3
Clearly,
L) =21(e;) + Lley) + 2 =1 () + [@uy o) + 1 ()
hence
l(ul) + l(u3}=2l(e1) + 2 +‘I(e2)—-l(uu2v) }21(61) + 2
Thus eilher@{ul) p-3 l‘(ci) +1 or l(ug) > 1 e, ) + 1. Suppose I (u,) >

{ (el) + 1 (for the case l(ug) = l(cl) + 1 the argument is similar).

9 9 -
Since W' = uy u” VT Uy € L, there must be &3 and ey such that

2 2 ~
W= U Uyt Uy =eyCe CCg 6.2)
By Iu,)>1l(e)+ 1 and (6.1), it is clear that e,c is an initial segment of
u . Then, note that neither e, moT g contain ¢, by (6.2), we have e =¢ - But
then w = w', which is impossible because ! (") = [ (W) + { (@ v) > ! (w). This con-

tradiction proves the lemma.

LEﬂMA 6. Let x be any alphabet consisting of at least two letters. Let T

be any k-encoding of § 0,1,¢ | into x. Then, for any given pair (x,y), the language

_— T LN ¥ Lt Bt eaiae Fa i lln acietnand Fnna Liniavrccnn



Proof. As has been known, the class of all context-free languages is closed with
respect to inverse homomorphism. Hence, if T M(x,py) contained some infinite
context-free language L, then Mz, ) =< (t M(x,1)) would contain the infinite
context-free language T 17, that contrad:cts Lemma 6.

THEOREM 8. Let = be any alphabet consisting of at least two letters. Then
there is no algorithm allowing us, for any A € Aypplz] to decide

() whether L(4) e £ g or not,
(ii) whether L{4) e £ php or not,

(iii) whether L(A) € ‘QR or not.

Proof. (i) If there were an algorithm deciding the problem (i), then, by (iii) of
Lemma 5, there would be an algorithm deciding if TM(z,) is context-free. Since

TH(x,y) is either empty or infinite, by Lemma 6, TM(x,y) is context-free when
and only when T M(x,y) = @. Thus there would be an algorithm deciding the
empty problem for languages M(x,y), that contradicts (iii) of Lemma 4’,
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