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CARTAN-NOCHKA THEOREM WITH TRUNCATED

COUNTING FUNCTIONS FOR MOVING TARGETS

DO DUC THAI AND SI DUC QUANG

Abstract. The purpose of this article is twofold. The first is to show the
explicit truncations in the Cartan-Nochka theorem for nonconstant meromor-
phic mappings of C

m into P
n(C) and moving targets. The second is to show

the above type theorem over function fields.
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1. Introduction

Let {Hj}q
j=1 be hyperplanes of Pn(C). Set the index set Q = {1, 2, · · · , q}.

Let N ≥ n and q ≥ N + 1. We say that the family {Hj}q
j=1 are in N -subgeneral

position if for every subset R ⊂ Q with the cardinality ]R = N + 1
⋂

j∈R

Hj = ∅.

If they are in n-subgeneral position, we simply say that they are in general posi-
tion.
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Let f : Cm → Pn(C) be a linearly nondegenerate meromorphic mapping and
{Hj}q

j=1 be hyperplanes in N -subgeneral position in Pn(C). Then the Cartan-

Nochka theorem (see [4, 5, 6, 9]) stated that

|| (q − 2N + n − 1)T (r, f) 6

q
∑

i=1

N (n)(r,div(f,Hi)) + o(T (r, f)).

The above Cartan-Nochka theorem plays an extremely important role in Nevan-
linna theory, with many applications to Algebraic or Analytic geometry. Thus,
much attention has been given to generalizing this theorem to abstract objects.
For instance, motivated by the accomplishment of the second main theorem of
meromorphic function for moving targets, Ru and Stoll [11], [12] gave a remark-
able generalization of the Cartan-Nochka theorem to a finite set of moving hy-
perplanes (i.e, moving targets) in Pn(C).

Theorem A Let f : Cm −→ Pn(C) be a non-constant meromorphic map-
ping. Let {ai}q

i=1 be meromorphic mappings of Cm into Pn(C)∗ in N -subgeneral
position such that ai are small with respect to f and f is linearly nondegenerate
over F({ai}q

i=1). Then for an arbitrary 0 < ε < 1,

|| (q − 2N + n − 1 − ε)T (r, f) 6

q
∑

i=1

N(r,div(f, ai)) + o(T (r, f)).

We see immediately a natural question from the Ru-Stoll theorem: Does there
exist a truncated counting function which does not depend on ε? Precisely, we
consider the following problem.

Problem Let f : Cm −→ Pn(C) be a nonconstant meromorphic mapping. Let
{ai}q

i=1 be meromorphic mappings of Cm into Pn(C)∗ in N -subgeneral position.
Assume that ai are small with respect to f and f is linearly nondegenerate over
F({ai}q

i=1). Is there a positive integer N0 such that for an arbitrary 0 < ε < 1,

|| (q − 2N + n − 1 − ε)T (r, f) 6

q
∑

i=1

N (N0)(r,div(f, ai)) + o(T (r, f))?

Unfortunately, this problem is extremely difficult. We would like to explain
the reason. It is well-known to the experts that the Ru-Stoll method which is
the best available at present will lead truncations. However, the truncation level
depends on the given ε and is big enough and, when ε goes to zero, the truncation
level goes to infinite (so the truncation is totally lost).

Motivated by the establishment of the unicity theorems for moving targets, we
would like to show the explicit truncations even though they still depend on the
given ε. As far as we know, there has been no literature of such results. In the
first part of this paper, the explicit truncations which depend on the given ε are
given in Theorems 3.5 and 3.8. However, these are still weak and are far from
sharp ones.
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Nevanlinna theory is an approximation theory of complex numbers by mero-
morphic functions, as the Diophantine approximation is the approximation of
algebraic numbers by rational or algebraic numbers of a fixed number field (the
inverse of Vojta’s observation). Over algebraic function fields, one may think the
approximation of rational functions by rational functions. From this viewpoint,
some Cartan-Nochka theorem with truncated counting function over function
fields are showed in [15, 16, 7]. The second aim in this paper is to show two
Cartan-Nochka theorems with truncated counting function for moving targets
over function fields (see Theorems 4.3 and 4.5 below). In the proof we use the
method of M. Shirosaki [13].

2. Basic notions and auxiliary results

(a) We set ||z|| =
(

|z1|2 + · · · + |zm|2
)1/2

for z = (z1, . . . , zm) ∈ Cm and

B(r) := {z ∈ Cm : ||z|| < r},
S(r) := {z ∈ Cm : ||z|| = r} (0 < r < ∞).

Define

dc :=
i

4π
(∂̄ − ∂),

vm−1(z) :=
(

ddc||z||2
)m−1

σm(z) := dclog||z||2 ∧
(

ddclog||z||2
)m−1

(z 6= 0).

(b) Let F be a nonzero holomorphic function on a domain Ω in Cm. For a
multi-index α = (α1, . . . , αm) ∈ Zm

+ , we set |α| = α1 + . . . + αm and DαF =

∂|α|F/∂α1z1 · · · ∂αmzm. We define a map divF : Ω → Z by

divF (z) := max {t : DαF (z) = 0 for all α with |α| < t} (z ∈ Ω).

A divisor on a domain Ω in Cm is a map ν : Ω → Z such that, for every a ∈ Ω,
there are nonzero holomorphic functions F and G on a connected neighbourhood
U ⊂ Ω of a such that ν(z) = divF (z) − divG(z) for z ∈ U outside an analytic
subset of dimension 6 m − 2. Two divisors are equal to each other if they have
the same value outside an analytic subset of dimension 6 m − 2. For a divisor ν
on Ω we denote by |ν| the sum of (m− 1)-dimensional irreducible components of

{z : ν(z) 6= 0}.
Take a nonzero meromorphic function ϕ on a domain Ω in Cm. For every

a ∈ Ω, we choose nonzero holomorphic functions F and G in a neighbourhood
U ⊂ Ω such that ϕ = F/G on U and dim(F−1(0) ∩ G−1(0)) 6 m − 2. We define
the divisors

div0ϕ := divF, div∞ϕ := divG,

which are independent of choices of F and G and so globally well-defined on Ω.
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(c) For a divisor ν on Cm and for positive integers k,M or M = ∞, we define
the counting function of ν by

ν(M)(z) = min {M,ν(z)},

n(M)(t, ν) =







∫

|ν| ∩B(t) ν(M)(z)vm−1 if m ≥ 2,
∑

|z|6t

ν(M)(z) if m = 1,

n(t, ν) = n(∞)(t, ν).

Define

N (M)(r, ν) =

r
∫

1

n(M)(t)

t2n−1
dt (1 < r < ∞),

N(r, ν) = N (∞)(r, ν).

(d) Let f : Cm −→ Pn(C) be a meromorphic mapping. For arbitrarily fixed
homogeneous coordinates (w0 : . . . : wn) on Pn(C), we take a reduced represen-
tation f = (f0 : . . . : fn), which means that each fi is a holomorphic function on
Cm and f(z) =

(

f0(z) : . . . : fn(z)
)

outside the analytic set {f0 = . . . = fn = 0}
of codimension ≥ 2. Set ‖f‖ =

(

|f0|2 + · · · + |fn|2
)1/2

.

The characteristic function of f is defined by

T (r, f) =

∫

S(r)

log‖f‖σm −
∫

S(1)

log‖f‖σm.

Let a be a meromorphic mapping of Cm into the dual projective space Pn(C)∗

with reduced representation a = (a0 : . . . : an). The duality is given by (f, a) =
n
∑

i=0
aifi. We call a a moving target to deal with the intersection divisor div(f, a).

Assume that (f, a) 6≡ 0. We define the proximity function of f for a by

m(r, f ; a) =

∫

S(r)

log
||f || · ||a||
|(f, a)| σm −

∫

S(1)

log
||f || · ||a||
|(f, a)| σm,

where ‖a‖ =
(

|a0|2 + · · · + |an|2
)1/2

.

The first main theorem for moving targets in value distribution theory (see
[11]) states that

T (r, f) + T (r, a) = m(r, f ; a) + N(r,div(f, a)), (r > 1).

(e) As usual, by the notation ′′|| P ′′ we mean the assertion P holds for all r ∈
[0,∞) excluding a Borel subset E of the interval [0,∞) with

∫

E dr < ∞.

Let f , a be as above. We say that a is ”small” with respect to f if

||T (r, a) = o(T (r, f)), r → ∞.
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(f) Let ϕ be a nonzero meromorphic function on Cm, which are occasionally
regarded as a meromorphic map into P1(C). The proximity function of ϕ is
defined by

m(r, ϕ) :=

∫

S(r)
log max{|ϕ|, 1}σm.

(g) Let M(Cm) be the field of all meromorphic functions on Cm. Let a1, . . . , aq

(q ≥ n + 1) be q meromorphic mappings of Cm into Pn(C)∗ with reduced repre-

sentations aj = (aj0 : . . . : ajn) (1 6 j 6 q). Denote by F
(

{

aj

}q

j=1

)

⊂ M(Cm)

the smallest subfield which contains C and all ajk/ajl with ajl 6≡ 0, where
1 6 j 6 q, 0 6 k, l 6 n.

We say that that the family {aj}q
j=1 is in N -subgeneral position if and only if

for every subset R ⊂ Q with |R| = N+1 and for an arbitrary (N+1, n+1)-matrix
(ajk)j∈R,06k6n

rankM(Cm) (ajk)j∈R,06k6n = n + 1.

We also denote the rank of the index subset R by

(1) rankR = rankM(Cm) (ajk)j∈R,06k6n

Let f be a meromorphic mapping of Cm into Pn(C) with reduced representa-
tion f = (f0 : . . . : fn). Then f := (f0 : . . . : fn) : Cm → Pn(C) is said to be

k-nondegenerate over F
(

{

aj

}q

j=1

)

if there exist exactly k+1 linearly independent

elements in {f0, . . . , fn} over the field F
(

{

aj

}q

j=1

)

.

3. Cartan-Nochka theorems over complex projective spaces

Put Q = {1, . . . , q} (q ≥ 1). For a finite set R, ]R denotes the cardinality of
R. By Nochka (see [6, 1, 3]) we have the following.

Lemma 3.1. Let {ai}i∈Q be q moving targets in Pn(C)∗ in N -subgeneral posi-
tion, and assume that q > 2N −n + 1. Then there are positive rational constants
ωj, j ∈ Q satisfying the following:

(i) 0 < ωj 6 1, ∀j ∈ Q,
(ii) Setting ω̃ = maxj∈Q ωj, one gets

q
∑

j=1

ωj = ω̃(q − 2N + n − 1) + n + 1.

(iii)
n + 1

2N − n + 1
6 ω̃ 6

n

N
.

(iv) For R ⊂ Q with 0 < ]R 6 N + 1,
∑

j∈R ωj 6 rankF{ai}{ai}i∈R.

The above ωj are called Nochka weights, and ω̃ the Nochka constant.
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Lemma 3.2. Let the notation be as above. Let Ej ≥ 0, j ∈ Q be arbitrarily given
numbers. Then for every subset R ⊂ Q with 0 < ]R 6 N + 1, there is a subset
R◦ ⊂ R such that ]R◦ = rankR◦ = rankR and

∑

i∈R

ωiEi 6
∑

i∈R◦

Ei.

For a subset Φ ⊂ M(Cm) we denote by L(Φ) the C-vector space spanned by
Φ. Assume that q := ]Φ < ∞, and 1 ∈ Φ. Then for a positive integer p, we set
Φ(p) = {ϕ1ϕ2 · · ·ϕk|ϕj ∈ Φ; j = 1, . . . , p}. Then

1 ∈ Φ(p), Φ(p) ⊂ Φ(p + 1), ]Φ(p) =

(

p + q − 1

p

)

=

(

p + q − 1

q − 1

)

.

Let 0 < ε < 1 be arbitrarily given. Then we denote by p(ε, q) the smallest

positive integer p such that
(p+q−1

q−1

)

6 (1 + ε)p. Set

P (ε, q) = ]Φ(p(ε, q) + 1) =

(

p(ε, q) + q − 1

q − 1

)

(

6 (1 + ε)p(ε,q)
)

.

Lemma 3.3. Let the notations be as above. Then there exists an integer p′(ε, q) 6

p(ε, q) such that

dimL(Φ(p′(ε, q) + 1))

dimL(Φ(p′(ε, q)))
6 (1 + ε), dimL(Φ(p′(ε, q) + 1)) 6 P (ε, q).

Proof. Suppose that dimL(Φ(p + 1))/dimL(Φ(p)) > (1+ε) for all 1 6 p 6 p(ε, q).
Then

P (ε, q) ≥ dimL(Φ(p(ε, q) + 1)) ≥
p(ε,q)
∏

i=1

dimL(Φ(i + 1))

dimL(Φ(i))
> (1 + ε)p(ε,q).

Hence

P (ε, q) > (1 + ε)p(ε,q).

This is a contradiction. Thus, there exists a positive integer p′(ε, q) 6 p(ε, q) such
that

dimL(Φ(p′(ε, q) + 1))

dimL(Φ(p′(ε, q)))
6 1 + ε.

Moreover, we have

dimL(Φ(p′(ε, q) + 1)) 6 dimL(Φ(p(ε, q) + 1)) 6 P (ε, q) 6 (1 + ε)p(ε,q).

�

Remark 3.4. We give an evaluation of p(ε, q) for 0 < ε <
√

e− 1. For such an ε,

we will show that
(p+q−1

q−1

)

6 (1 + ε)p for every integer p ≥ q
log2(1+ε)

, which implies

that

p(ε, q) 6
[

(1 + ε)
q

log2(1+ε)
]

+1 (0 < ε <
√

e − 1),

where [•] stands for Gauss’ symbol.
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Since 0 < ε <
√

e − 1, p/q > 16. Note that for x > 16
√

x − 1 − log(1 + x) > 0.

By assumption

p log(1 + ε) ≥ q

√

p

q
,

and hence

p log(1 + ε) ≥ q

(

1 + log(1 +
p

q
)

)

= q + q log(p + q) − q log q

> p log(1 +
q

p
) + q log(p + q) − q log q

= (p + q) log(p + q) − (p + q) − p log p + p − q log q + q

=

∫ p+q

p
(log x − log(x − p))dx >

p+q
∑

i=1

(log(p + i) − log i)

>

p+q−1
∑

i=1

(log(p + i) − log i) = log
(p+q−1

q−1

)

.

Thus, we have
(p+q−1

q−1

)

6 (1 + ε)p.

By the definition of p(ε, q), we have p(ε, q) 6 [ q
log2(1+ε)

] + 1, and hence

P (ε, q) =

(

p(ε, q) + q − 1

q − 1

)

6
[

(1 + ε)
[ q

log2(1+ε)
]+1]

.

Theorem 3.5. Let f : Cm −→ Pn(C) be a non-constant meromorphic mapping.
Let {ai}q

i=1 be meromorphic mappings of Cm into Pn(C)∗ in N -subgeneral posi-
tion such that ai are small with respect to f and f is linearly nondegenerate over
F({ai}q

i=1). Then for an arbitrary 0 < ε < 1

|| (q − 2N + n − 1 − ε)T (r, f) 6

q
∑

i=1

N ((n+1)P (ε,qN)−1)(r,div(f, ai)) + o(T (r, f)).

Proof. Without loss of generality we may assume that ai0 6≡ 0 (1 6 i 6 q). Set
ãij := aij/ai0, ||ãi|| :=

∑n
j=0 |ãij |, Fi :=

∑n
j=0 fj ãij . We put Φ = {ãij}. Then

]Φ = qN + 1, and ]Φ(p) =
(p+qN

qN

)

. Take arbitrarily 0 < ε < 1. By Lemma 3.3

there exists a positive integer p′(ε, qN + 1) 6 p(ε, qN + 1) such that

dimL(Φ(p′(ε, qN + 1) + 1))

dimL(Φ(p′(ε, qN + 1)))
6 (1 + ε),

dimL(Φ(p′(ε, qN + 1) + 1)) 6 P (ε, qN + 1).

Put

s = dimL(Φ(p′(ε, qN + 1))), t = dimL(Φ(p′(ε, qN + 1) + 1)).
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Let {b1, . . . , bs} be a base of L(Φ(p′(ε, qN + 1))) and {b1, . . . , bt} be a base of
L(Φ(p′(ε, qN + 1) + 1)). The followings are satisfied:

(i)
t

s
6 1 + ε, t 6 (1 + ε)P (ε,qN+1).

(ii) {bjfk(1 6 i 6 t, 0 6 k 6 n)} are linearly independent over C.

Claim 3.6. If {ai1 , . . . , ail} are linearly independent over M(Cm), then {bjFik(1 6

j 6 s, 1 6 k 6 l)} are linearly independent over C.

Indeed, assume that
∑

16j6s,16k6l cjkbjFik ≡ 0, where cjk ∈ C. Then

n
∑

v=0





l
∑

k=1





s
∑

j=1

cjkbj



 ãikv



 fv ≡ 0.

Since f is linearly nondegenerate over R{ai}, it implies that

l
∑

k=1

(

s
∑

j=1

cjkbj)ãikv ≡ 0 (0 6 v 6 n).

Hence
s
∑

j=1

cjkbj ≡ 0 (1 6 k 6 l).

This yields

cjk = 0 (1 6 k 6 l, 1 6 j 6 s).

Claim 3.6 is proved.

Set Q := {1, . . . , q}. Let R ⊂ Q be such that ]R = N + 1. Choose R◦ ⊂
R such that {ai}i∈R◦ are linearly independent over M(Cm) and R◦ satisfies
Lemma 3.2. Then {Fi}i∈R◦ are linearly independent over R{aj}. Assume that
R := {r1, . . . , rN+1} and R◦ := {r◦1 , . . . , r◦n+1}.

Since bjFr◦
k
(1 6 j 6 s, 1 6 k 6 n + 1) are linearly independent over C, we can

choose βkl
mj ∈ C such that there is CR◦ ∈ GL((n + 1)t;C) satisfying

det(bjFr◦
k
(1 6 j 6 s, 1 6 k 6 n + 1), hml(s + 1 6 l 6 t, 0 6 m 6 n))

= CR◦ det(bjfk(1 6 j 6 t, 0 6 k 6 n)),

where hmj =
∑

16k6t,06l6n βkl
mjbkfl(s + 1 6 j 6 t, 0 6 m 6 n), and CR◦ is a

matrix of constants.

Let α := (α1, . . . , α(n+1)t) ∈ (Zm
+ )(n+1)t be a minimal multi-index in the lexi-

cographical order such that

W ≡ det
(

Dαwbjfk(1 6 j 6 t, 0 6 k 6 n)
)

16w6(n+1)t
6≡ 0.

By [2], Proposition 4.5, we have |αi| 6 (n + 1)t − 1,∀1 6 i 6 (n + 1)t. Set

WR◦ ≡ det
(

DαwbjFr◦
k
,Dαwhvl

)

,
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where 1 6 j 6 t, 1 6 k 6 n + 1, s + 1 6 l 6 t, 0 6 v 6 n, and 1 6 w 6 (n + 1)t.
It is easy to see that WR◦ = W · det CR◦ .

Let z be a fixed point. Then there exists R ⊂ Q with ]R = N + 1 such that
|Fi(z)| 6 |Fj(z)|, ∀i ∈ R, j 6∈ R. On the other hand, we have

Fr◦
k

:=
n
∑

j=0

ãr◦
k
jfj.

This implies that

fk :=

n+1
∑

j=1

AkjFr◦j
,

where Akj ∈ F({ai}). We put AR :=
∑n+1

j=1

∑n
k=0 |Akj |. Then

||f(z)|| 6 AR(z)|Fj(z)|, ∀j 6∈ R.

Set A :=
∑

R⊂Q AR. Then

||
∫

S(r)
log+ A(z)σn = o(T (r, f)).

We also have

||f(z)||ω̃·s(q−2N+n−1)|W (z)|
|F1(z)|ω1s · · · |Fq(z)|ωqs · ||f(z)||(n+1)(t−s)

(2)

=
||f(z)||s(

∑q
i=1 ωi−n−1)|W (z)|

|F1(z)|ω1s · · · |Fq(z)|ωqs · ||f(z)||(n+1)(t−s)

6
As

∑

i6∈R ωi(z)||f(z)||s
∑

i∈R ωi |W (z)|
∏

i∈R |Fi(z)|ωis||f(z)||(n+1)t

=

(

∏

i∈R

( ||f(z)|| · ||ãi(z)||
|Fi(z)|

)ωi
)s As

∑

i6∈R ωi(z)|W (z)|
∏

i∈R ||ãi(z)||sωi · ||f(z)||(n+1)t

6

(

∏

i∈R◦

||f(z)|| · ||ãi(z)||
|Fi(z)|

)s As
∑

i6∈R ωi(z)|WR◦(z) det CR◦ |
∏

i∈R ||ãi(z)||sωi · ||f(z)||(n+1)t

=

∏

i∈R◦ ||ãi(z)|| · |det CR◦ |
∏

i∈R ||ãi(z)||sωi
· As

∑

i6∈R ωi(z)|WR◦(z)|
∏

i∈R◦ |Fi(z)|s · ||f(z)||(n+1)(t−s)
.

Put

BR :=

∏

i∈R◦ ||ãi|| · det CR◦

∏

i∈R ||ãi||sωi
· As

∑

i6∈R ωi(z)|WR◦ |
∏

i∈R◦ |Fi|s · ||f ||(n+1)(t−s)
.

It follows easily that

||
∫

S(r)
log+ BR(z)σm = o(T (r, f)).
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By (2), we have

log

( ||f(z)||ω̃·s(q−2N+n−1)|W (z)|
|F1(z)|ω1s · · · |Fq(z)|ωqs · ||f(z)||(n+1)(t−s)

)

6
∑

R⊂Q

log+ BR

for z ∈ Cm. Integrating both sides of the above inequality over S(r), we have

|| (q − 2N + n − 1)T (r, f) 6

q
∑

i=1

ωi

ω̃
N(r,div(f, ai))(r)(3)

+
n + 1

ω̃

(

t

s
− 1

)

T (r, f) − 1

ω̃s
N(r,div0W )

+
1

ω̃s
N(r,div∞W ) + o(T (r, f)).

Claim 3.7. || N(r,div∞W ) = o(T (r, f)).

First of all we see that if f and g are non-zero meromorphic functions on Cm,
then the followings are satisfied for α ∈ Zm

+ and z ∈ Cm outside an analytic
subset of dimension 6 n − 2:

(i) div(fg)(z) = divf(z) + divg(z).
(ii) divDα(fg)(z) ≥ divDαf(z) − div∞Dαg(z).
(iii) div∞Dαf(z) 6 (|α| + 1)div∞f(z).
(iv) div0f(z) 6 div0Dαf(z) + |α|.
Put I =

⋃q
i=1 I(ai) ∪ I(f), and

λ =
∑

16j6t
16ω6(n+1)t

(n + 1)div∞(Dαωbj) +
∑

s+16j6t,06v6n
]R=N+1,16ω6(n+1)t

div∞(DαωhR
vj).

By the above properties (i)–(iii) we have that || N(r, λ) = o(T (r, f)). Since
N(r,div∞W ) 6 N(r, λ), Claim 3.7 follows.

We are going to show
q
∑

i=1

ωiN(r,div(f, ai)) −
1

s
N(r,div0W )

6

q
∑

i=1

ωiN
((n+1)t−1)(r,div(f, ai)) + o(T (r, f)).(4)

Assume that z is a zero of some (f, ai). We consider two cases.

Case 1. z is a common zero of at least N + 1 functions in the family {(f, ai)}.
Suppose that (f, ai)(z) = 0 for 1 6 i 6 p with p ≥ N+1, and that (f, ai)(z) 6= 0

for i > p. Without loss of generality one may assume that

div(f, a1)(z) ≥ div(f, a2)(z) ≥ · · · ≥ div(f, ap)(z).

Put R := {1, 2, . . . , N + 1}, Choose R◦ := {r◦1, . . . , r◦n+1} ⊂ R such that
{ai}i∈R◦ are linearly independent over M(Cm) and R◦ satisfies Lemma 3.2. Then
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z either is a zero with multiplicity at least div(f, ar◦n+1
) of det(ar◦i ,j)16i6n+1,06j6n,

or z is in I(f).

In fact, suppose that z /∈ I(f). Without loss of generality we may assume that
f0(z) 6= 0. Then, there exists a neighbourhood U of z such that f0 is non-vanishing
on U. We have

det(ar◦i ,j)16i6n+1,06j6n

= det

∣

∣

∣

∣

∣

∣

∣

ar◦1 ,0 + f1

f0
ar◦1 ,1 + · · · + fn

f0
ar◦1 ,n ar◦1 ,1 · · · ar◦1 ,n

...
...

...

ar◦n+1,0 + f1

f0
ar◦n+1,1 + · · · + fn

f0
ar◦1 ,n ar◦n+1,1 · · · ar◦n+1,n

∣

∣

∣

∣

∣

∣

∣

=
1

fn+1
0

det

∣

∣

∣

∣

∣

∣

∣

(f, ar◦1
) ar◦1 ,1 · · · ar◦1 ,n

...
...

...
(f, ar◦n+1

) ar◦n+1,1 · · · ar◦n+1,n

∣

∣

∣

∣

∣

∣

∣

on U. Hence

div0(det(ar◦i ,j)16i6n+1,06j6n)(z) > div(f, ar◦n+1
)(z).

This implies that
p
∑

i=N+2

div(f, ai)(z) 6 (p − N − 1)div(f, ar◦n+1
)(z)

6 (q − N − 1)div0det(ar◦i ,j)16i6n+1,06j6n(z).

Moreover, we have

N+1
∑

i=1

ωi(div(f, ai)(z) − min{div(f, ai)(z), (n + 1)t − 1})

6

n+1
∑

i=1

(div(f, ar◦i
)(z) − min{div(f, ar◦i

)(z), (n + 1)t − 1})

and

div0W (z) = div0WR◦(z)

≥ min
σ∈S(n+1)t

div

(

∏

16j6s
16k6n+1

Dασ((j−1)(n+1)+k)bjFr◦
k
×

×
∏

s+16j6t
06v6n

Dασ((j−1)(n+1)+v+1)hR
vj

)

(z)

≥ min
σ∈S(n+1)t

(

∑

16j6s
16k6n+1

divDασ((j−1)(n+1)+k)Fr◦
k
(z)
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−
∑

16j6s
16k6n+1

div∞Dασ((j−1)(n+1)+k)bj(z)

−
∑

s+16j6t,06v6n

div∞Dασ((j−1)(n+1)+v+1)hR
vj(z)

)

≥ min
σ∈S(n+1)t

(

∑

16j6s
16k6n+1

(

divDασ((j−1)(n+1)+k)(f, ar◦
k
)(z)

− ndiv∞Dασ((j−1)(n+1)+k)ar◦
k
0(z)

)

−λ(z)

)

≥ min
σ∈S(n+1)t

(

∑

16j6s
16k6n+1

(

div(f, ar◦
k
)(z) − min{div(f, ar◦

k
)(z), |ασ((j−1)(n+1)+k)|}

− n(|ασ((j−1)(n+1)+k)| + 1)div∞ar◦
k
0(z)

)

− λ(z)

)

≥ s

(

∑

16k6n+1

div(f, ar◦
k
)(z) − min{div(f, ar◦

k
)(z), (n + 1)t − 1}

)

−
∑

16k6n+1

n(n + 1)tsdiv∞ar◦
k
0(z) − λ(z),

where S(n+1)t is the (n + 1)t-th symmetric group.

This implies that

N+1
∑

i=1

ωi

(

div(f, ai)(z) − min{div(f, ai)(z), (n + 1)t − 1}
)

6

n+1
∑

i=1

(

div(f, ar◦i
)(z) − min{div(f, ar◦i

)(z), (n + 1)t − 1}
)

6 div0W (z) +
∑

16k6n+1

n(n + 1)tsdiv∞ar◦
k
0(z) + λ(z).

Thus, we have either

q
∑

i=1

ωi

(

div(f, ai)(z) − min{div(f, ai)(z), (n + 1)t − 1}
)

6
1

s
div0W (z) +

∑

16k6n+1

n(n + 1)tdiv∞ar◦
k
0(z)
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+
1

s
λ(z) +

1

s
(q − N − 1)div0 det(ar◦i j)16i6n+1,06j6n(z)

or z ∈ I(f).

Case 2. z is a common zero of at most N functions in the family {(f, ai)}.
Suppose that (f, ai)(z) = 0 for 1 6 i 6 p with p 6 N , and that (f, ai)(z) 6= 0

for i > p. Consider the set R = {1, . . . , N + 1}. Repeating the argument of Case
1, we have

q
∑

i=1

ωi

(

div(f, ai)(z) − min{div(f, ai)(z), (n + 1)t − 1}
)

6
1

s
div0W (z) +

∑

16k6n+1

n(n + 1)tdiv∞ar◦
k
0(z) +

1

s
λ(z).

From the consequence of the above two cases we infer that for z ∈ Cm outside
an analytic subset of dimension 6 n − 2

q
∑

i=1

ωi

(

div(f, ai)(z) − min{div(f, ai)(z), (n + 1)t − 1}
)

6
1

s
div0W (z) +

∑

16k6q

n(n + 1)tdiv∞ak0(z) +
1

s
λ(z)

+
1

s
(q − N − 1)

∑

]R=N+1

div0 det(ar◦i j)16i6n+1,06j6n(z).

Integrating both sides, we have

q
∑

i=1

ωi

(

N(r,div(f, ai)) − N ((n+1)t−1)(r,div(f, ai))
)

6
1

s
N(r,div0W ) +

∑

16k6q

n(n + 1)tN(r,div∞ak0) +
1

s
N(r, λ)

+
1

s
(q − N − 1)

∑

]R=N+1

N(r,div0 det(ar◦i ,j)16i6n+1,06j6n)

=
1

s
N(r,div0W ) + o(T (r, f)).

Hence (4) is proved. Thus, we have

|| (q − 2N + n − 1 − ε)T (r, f) 6

q
∑

i=1

N ((n+1)p(ε)−1)(r,div(f, ai)) + o(T (r, f)).

�

The following is a reformulation of Theorem 3.5:
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Theorem 3.8. Let f : Cm −→ Pn(C) be a nonconstant meromorphic mapping,
and let {ai}q

i=1 be small (with respect to f) meromorphic mappings of Cm into
Pn(C) in general position such that f is k-nondegenerate over F({ai}q

i=1). Let
0 < ε < 1 be arbitrary. Then the following holds

|| (q − 2n + k − 1− ε)T (r, f) 6

q
∑

i=1

N ((k+1)P (ε,kq+3)−1)(r,div(f, ai)) + o(T (r, f)).

4. Cartan-Nochka theorem over function fields

(a) (First Main Theorem over function fields (see [7])) Let k be an algebraically
closed field of characteristic 0 (for simplicity we assume that k = C), let R be
a smooth projective algebraic variety of dimension N over k, and let K denote
the rational function field of R.

We fix a Hodge metric form ω on R. For a divisor D on R, we define the
counting function of D with respect to ω by

N(D;ω) =

∫

D
ωN−1.

Let aj ∈ K, j = 0, . . . ,m, be not all zero; so say, a0 6= 0. We define a divisor
on R by

((aj))∞ = −min

{

div
aj

a0
; 0 6 j 6 m

}

.

Then the (projective) height ht((aj);ω) of (a0, . . . , am) with respect to ω is
defined by

ht((aj);ω) = N((aj))∞;ω).

By [7], Section 2.1, we have

ht((aj);ω) =

∫

R
ddc log

(

m
∑

j=0

|aj|2
)

∧ωN−1.

There is another interpretation of ht((aj);ω). Let L → R be a line bundle
determined by the divisor ((aj))∞, and σ0 ∈ Γ(R,L) be a global holomorphic
section determining the divisor divσ0 = ((aj))∞. Then N(divσ0;ω) is considered
as a counting function.

Setting σj = (aj/a0)σ0 ∈ Γ(R,L), 0 6 j 6 m, one gets the following reduced
representation of a rational mapping f from R into Pm(C):

f = (σ0 : . . . : σm) : R → Pm(C).

Let Ω denote the Fubini-Study form on Pm(C). We define the characteristic
or orderfunction of f by

T (f ;ω) =

∫

R
f∗Ω ∧ ωN−1.
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Then we have the following First Main Theorem over function fields:

T (f ;ω) = ht((aj);ω) = N(divσj;ω).

Thus we write ht(f ;ω) = T (f ;ω).

(b) (Wronskian) We use the same notations as in Subsection (a). Let z1, . . . , zN

be a transcendental base of K. Then there exists a Zariski open subset U of R
such that the holomorphic vector fields ∂/∂j , 1 6 j 6 N are defined on U and

∂

∂z1
∧ · · · ∧ ∂

∂zN
6= 0

at every point of U . Without loss of generality we may assume that the bundle
L → R is trivial on U . Then the restriction to U of every holomorphic section in
Γ(R,L) can be considered as a holomorphic function on U .

Let {a1, . . . , at} be a subset of Γ(R,L) such that the family {a1, . . . , at} is
linearly independent over C. We set g = (a1 : . . . : at) : R → Pt−1(C). Then g is
a linearly non-degenerate rational mapping. Let r be the rank of the differential
dg at a general point. Then, by [2] and the construction of the Wronskian in [7],
Section 2, we have a generalized Wronskian W ((ai)) = W (a1, . . . , at) as described
below.

For x ∈ U we consider the vectors

(Dαa1(x), . . . ,Dαat(x)) ∈ Ct,

where α = (α1, . . . , αN ) ∈ ZN
+ are non-negative multi-indices and Dα = ∂|α|/∂zα1

1 · · · zαN

N
with |α| = α1 + · · · + αN . We write ordDα = |α|.

We denote Vl(x) by the linear subspace of Ct spanned by

(Dαa1(x), . . . ,Dαat(x))

with |α| 6 l, and set

λl = max
x∈U

dimVl(x).

Starting from (a1(x), . . . , at(x)), we can take (Dα
i a1(x), . . . ,Dα

i at(x)), 1 6 i 6

λ1 − 1, with |αi| = l such that for all x ∈ U outside a thin analytic subset of U ,
the vectors (a1(x), . . . , at(x)) and (Dα

i a1(x), . . . ,Dα
i at(x)), 1 6 i 6 λ1 − 1 form a

maximal linearly independent subset of

{(Dαa1(x), . . . ,Dαat(x)), |α| 6 1}.
Here one notes that λ1 − 1 ≥ r. Similarly, we take (Dα

i a1(x), . . . ,Dα
i at(x)), λ1 6

i 6 λ2 − 1 with |αi| = 2. Thus, we inductively find the family {αi}, 1 6 i 6 t− 1,
and obtain the generalized Wronskian

W ((aj))(x) = W (a1, . . . , at)(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1(x) · · · at(x)
Dα1a1(x) · · · Dα1at(x)

...
...

...
Dαt−1a1(x) · · · Dαt−1at(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6≡ 0
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such that
|αi| = 1, 1 6 i 6 r,

|αi| 6 i − r + 1, r + 1 6 i 6 t − 1.

By the contruction we have W ((ζaj)) = ζtW ((aj)) for all ζ ∈ K.

There exists an effective divisor J on R given by the family of local trivializa-
tions {(Rν , ξν)} such that R = ∪Rν is a Zariski open covering and ξν are holomor-
phic functions on Rν with (ξν) = J |Rν , L|Rν ≡ Rν ×C, and ξν∂/∂zi, 1 6 i 6 N ,
are holomophic on Rν . By [7] §2 we have

W ((aj)) ∈ Γ(R, [pJ ] ⊗ Lt),

4((aj)) =
W ((aj))

a1 · · · at
∈ Γrat(R, [pJ ]),

where Γrat(·) denotes the space of rational sections and p =
∑t

i=1 |αi| 6
m(m + 1)

2
.

(c) (Definition) Being given a family B = {b0, . . . , bq−1} ⊂ (K∗)m+1, where
K∗ = K \ {0} and bi = (bi0 : · · · : bim) (0 6 i 6 q − 1), we say that the family
B is nondegenerate over K if dim(B)K = m + 1 and for every nonempty proper
subset B1 of B

(B1)K ∩ (B \ B1)K ∩ A 6= ∅,
where (B)K is the linear span of a subset B of Km+1 over the field K.

The set L ⊂ Km+1 is said to be minimal (over K) if it is linearly dependent
over K and every proper subset of L is linearly independent over K.

Lemma 4.1. Assume that the family B = {b0, . . . , bq−1} ⊂ (K∗)m+1 is nonde-
generate over K. Then there exist subsets I1, . . . , Ik of B such that

(i) I1 is minimal and Ii is linearly independent over K (2 6 i 6 k),
(ii) for each 2 6 i 6 k, there exist a meromorphic function cα ∈ (K∗)

satisfying

∑

α∈Ii

cαbα ∈
(i−1
⋃

j=1

Ij

)

K

and

( k
⋃

j=1

Ij

)

K

= (B)K .

Proof. Since b0 ∈ (B \ {b0})K , we can choose a set I1 such that I1 is the minimal
subset of B containing {b0}. Assume that I1 = {b0, . . . , bt1}. Then there exist

meromorphic functions ci, 1 6 i 6 t1, and c0 = 1 such that
∑t1

i=0 cibi = 0.

If I1 = B, then the proof is finished.

Otherwise, one of the following two cases holds:

i) There exists b ∈ B\{I1}. We may assume that b = bt1+1 and b ∈ (I1)K . Put
I2 = {bt1+1} and ct1+1 = 1. Then there exist c2j , bj ∈ I1 and c2t1+1 = ct1+1 such

that
∑t1+1

j=0 c2jbj = 0. Moreover, we also may assume that {bj | bj ∈ I1, c2j 6= 0}
is independent over K.

ii) There exists b ∈ {I1}. We may assume that b = bt1 and b ∈ (B \ I1)K . Then
there exists a subset of B \ I1 which is independent over K. We may assume that
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this subset is {bt1+1, . . . , bt2}. On the other hand, there are ci (i 6 t1 + 1 6 t2)

such that bt1 +
∑t2

j=t1+1 cjbj = 0. Set I2 = {bt1+1, . . . , bt2}.
If I1 ∪ I2 = B, then the proof is finished; otherwise, by repeating the above

argument, we have the subset I3.

Continuiting this process, there exist the subsets I1, . . . , Ik satisfying the as-
sertions of Lemma 4.1. �

Remark 4.2. Set

ν1 = max{div det
(

aijtj

)

16j,h6m+1
|det

(

aijtj

)

16j,h6m+1
6≡ 0},

ν2 = min{div det
(

aijtj

)

16j,h6m+1
|det

(

aijtj

)

16j,h6m+1
6≡ 0}.

By solving linear equations, for ci and cij as in the above we see that div ci 6

ν1 − ν2 and νcij
6 ν1 − ν2.

(d) (Second Main Theorem over function fields) Denote by R(B) the smallest

subfield of K containing C and all { bil

bik
} with bik 6= 0, 0 6 i 6 q−1, 0 6 k, l 6 m.

By solving linear equations
∑ti+1

j=0 c(i+1)jbj = 0 or bti +
∑ti+1

j=ti+1 cjbj = 0 over the

field R(B), it is easy to see that all elements ci and cij belong to R(B).

Theorem 4.3. Let f = (σ0 : . . . : σm) : R → Pm(C) be a rational mapping
with σj ∈ Γ(R,L). Let B = {b0, . . . , bq−1} ⊂ (K∗)m+1 be a finite family which is
nondegenerate. Assume that f is linearly nondegenerate over R(B), i.e. (f, c) =
∑m

i=0 ciσi 6= 0 for all c = (c0, . . . , cm) ∈ (R(B))m+1 \ {0}. Then

ht(f ;ω) 6

q−1
∑

i=0

N (m)(div(f, bi);ω) +
m(m + 1)

2
N(J ;ω)

+ qN(ν1;ω) + 2(q − 1)N(ν2;ω).

Proof. By Lemma 4.1, we may assume that there exist the subsets Ii =
{bti−1+1, . . . , bti} (1 6 i 6 k), where t0 = −1, which satisfy the assertions of
Lemma 4.1. Since I1 is minimal, there exists a linear relation among I1. That is,
there exist c1j ∈ R(B) such that

t1
∑

j=0

c1j · bj = 0.

Define c1j = 0 for all j > t1. Then
∑tk

j=0 c1j · bj = 0. Since f is linearly

nondegenerate over R(B), it implies that {c1j(f, bj)}t1
j=1 is linearly independent

over C. Hence there exists {α11, . . . , α1t1} ⊂ ZN+1
+ (|α1j | 6 t1 − 1 6 N) such

that

A1 ≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

Dα11(c11(f, b1)) · · · Dα11(c1t1(f, bt1))
Dα12(c11(f, b1)) · · · Dα12(c1t1(f, bt1))

...
...

...
Dα1t1 (c11(f, b1)) · · · Dα1t1 (c1t1(f, bt1))

∣

∣

∣

∣

∣

∣

∣

∣

∣

6≡ 0.
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Now consider i ≥ 2. By the choice of the set Ii there exist meromorphic
mappings cij 6≡ 0, cij ∈ R(B) (ti−1 + 1 6 j 6 ti) such that

∑ti
j=ti−1+1 cij · bj ∈

(

⋃i−1
j=1 Ij

)

K
. Then, there exist meromorphic mappings cij ∈ K (0 6 j 6 ti−1)

such that
∑ti

j=0 cij ·bj = 0. Define cij = 0 for all j > ti. Then
∑tk

j=0 cij ·(f, bj) = 0.

Since
{

cij(f, bj)
}ti

j=ti−1+1
is C-linearly independent, there exists {αij}ti

j=ti−1+1 ⊂
Zn

+ (|αij | 6 ti − ti−1 − 1 6 N) such that

Ai = det

(

Dαij

(

cis(f, ãs)

))ti

j,s=ti−1+1

6≡ 0.

Consider an tk × (tk + 1) minor matrixes T given by

T =



















































Dα11(c10(f, b0)) · · · Dα11(c1tk (f, btk))
Dα12(c10(f, b0)) · · · Dα12(c1tk (f, btk))

...
...

...
Dα1t1 (c10(f, b0)) · · · Dα1t1 (c1tk (f, btk))
Dα2t1+1(c20(f, b0)) · · · Dα2t1+1(c2tk(f, btk))
Dα2t1+2(c20(f, b0)) · · · Dα2t1+2(c2tk(f, btk))

...
...

...
Dα2t2 (c20(f, b0)) · · · Dα2t2 (c2tk (f, btk))

...
...

...
Dαktk−1+1(ck0(f, b0)) · · · Dαktk−1+1(cktk(f, btk))
Dαktk−1+2(ck0(f, b0)) · · · Dαktk−1+2(cktk(f, btk))

...
...

...
Dαktk (ck0(f, b0)) · · · Dαktk (cktk(f, btk))



















































.

Denote by Di the minor of the matrix obtained by deleting the i-th column of
the minor matrix T . Since the sum of each row of T is zero, we actually have

Di = (−1)iD0 = (−1)i
k
∏

i=1

Ai 6≡ 0.

Without loss of generality, we may assume that tk = q − 1. It is easy to see
that Ai ∈ Γrat(R, [(

∑ti
j=ti−1+1 |αij |)J ] ⊗ Lti−ti−1). Hence

Di ∈ Γrat(R, [(
∑

ij

|αij |)J ] ⊗ Lq−1).

This yields

(5)
Di

∏

j 6=i(f, bj)
∈ Γrat(R, [(

∑

i,j

|αij |)J ]), 0 6 ∀i 6 q − 1.
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On the other hand, we have

q−1
∑

i=0

|(f, bi)|2 =





q−1
∑

i=0

∣

∣

∣

∣

∣

Di
∏

j 6=i(f, bj)

∣

∣

∣

∣

∣

2




∏q−1
i=0 |(f, bi)|2
|D0|2

.

By transmiting current equations, it implies that

ddc

[

log

(

q−1
∑

i=0

|(f, bi)|2
)]

= ddc



log





q−1
∑

i=0

∣

∣

∣

∣

∣

Di
∏

j 6=i(f, bj)

∣

∣

∣

∣

∣

2






+ ddc

[

log

(

∏q−1
i=0 |(f, bi)|2
|D0|2

)]

.

By (5) we also have

∫

R
ddc



log





q−1
∑

i=0

∣

∣

∣

∣

∣

Di
∏

j 6=i(f, bj)

∣

∣

∣

∣

∣

2






 ∧ ωN−1 =





∑

i,j

|αij |



N(J ;ω).

Since (f, bi) ∈ Γrat(R,L), it implies that

∫

R
ddc

[

log

(

q−1
∑

i=0

|(f, bi)|2
)]

∧ ωN−1 = N(divσ0;ω) = T (f ;ω).

Denote by ν the divisor given by the section

∏q−1
i=0 (f, bi)

D0
. Then

∫

R
ddc

[

log

(

∏q−1
i=0 |(f, bi)|2
|D0|2

)]

∧ ωN−1 = N(ν;ω).

This yields

T (f ;ω) = N(ν;ω) +





∑

i,j

|αij |



N(J ;ω).

We also see that

∑

i,j

|αij | 6

k
∑

i=1

(ti − ti−1)(ti − ti−1 + 1)

2
6

m(m + 1)

2
.

Now we compute ν. Let z be a fixed point of M . Then there exists a neighbour-
hood U of z in M such that the restriction to U of the section σ0 can be viewed as a
holomorphic function on U . We also assume that there is a meromorphic function
h on U such that νh = −mini,j{νci,j

} on U and there is a unique analytic sub-
set S of pure codimension 1 such that S =

⋃

i supp div(f, bi)
⋃⋃

i,j supp div ci,j.
Without loss of generality we may assume that z is a regular point of S.
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Put mi = div(f, bi)(z) (0 6 i 6 q − 1). Without loss of generality we may
assume that m0 6 m1 6 · · · 6 mq − 1. Then

divDαi,ti−1+j

(

hciv(f, bv)

(f, b0)

)

(z) ≥ max{0,mv − m0 − |αi,ti−1+j|}

≥ max{0,mv − m0 − m}.
On the other hand, we have

∏q−1
i=1 (f, bi)

D0
= hq−1

∏q−1
i=1 ((f, bi)/(f, b0))

( h
(f,b0))

q−1D0

.

Hence

div

∏q−1
i=1 (f, bi)

D0
(z)

6

q−1
∑

i=1

(mi − m0 − max{0,mi − m0 − m}) + (q − 1)div h(z)

6

q−1
∑

i=1

min{mi − m0,m} + (q − 1)div h(z)

6







∑q−1
i=1 min{mi,m} + (q − 1)div h(z) if m0 ≥ 0,

∑q−1
i=1 min{mi,m} − (q − 1)m0 + (q − 1)div h(z) if m0 6 0.

Since (f, bi) does have a multiplicity greater than m0 at z, it implies that
m0 6 ν1(z) − ν2(z) if m0 ≥ 0 and m0 ≥ ν2(z) if m0 6 0. Moreover, since
νcij

≥ ν2 − ν1, we have νh 6 ν1 − ν2. This implies that

div

∏q−1
i=0 (f, bi)

D0
(z) 6

q−1
∑

i=0

min{mi,m} + ν1(z) − (q − 1)ν2(z)

+ (q − 1)(ν1(z) − ν2(z)).

Hence

ν 6

q−1
∑

i=0

min{div(f, bi),m} + ν1 − (q − 1)ν2 + (q − 1)(ν1 − ν2).

Integrating both sides of the above inequality, we have

N(ν;ω) 6

q−1
∑

i=0

N (m)(div(f, bi);ω) + qN(ν1;ω) + 2(q − 1)N(ν2;ω).

Combining the above assertions, we deduce that

ht(f ;ω) 6

q−1
∑

i=0

N (m)(div(f, bi);ω) +
m(m + 1)

2
N(J ;ω)
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+ qN(ν1;ω) + 2(q − 1)N(ν2;ω). �

(e) (Curve case) The following definition is based on J.-T. Wang [16] §3.
Definition 4.4. Let Vi (1 6 i 6 3) be C-vector spaces. Assume that a C-bilinear
homomorphism

(u, v) ∈ V1 × V2 → uv ∈ V3

is given. An element β = (v1, . . . , vl) ∈ V l
2 is said to be nondegenerate for V1 if

∑l
i=1 uivi = 0 with ui ∈ V1 implies ui = 0 (1 6 i 6 l); otherwise, it is said to be

degenerate for V1.

The nondegeneracy of β for V1 is equivalent to that uivj (1 6 i 6 k, 1 6 j 6 l)
are C-linearly independent for all C-linearly independent ui ∈ V1 (1 6 i 6 k).

Let R be a complex algebraic curve of genus g, and let Li, i = 1, 2, be line
bundles on R. The tensor product implies the natural C-bilinear homomorphism

(u, v) ∈ H0(R,L1) × H0(R,L2) → uv ∈ H0(R,L1 ⊗ L2).

Let f = (σ0 : . . . : σn) : R → Pn(C) be a rational mapping with σj ∈
H0(R,L2). We say that f is nondegenerate for H0(R,L1) if (σj) is nondegenerate
for H0(R,L1); this is clearly independent of the choice of the representation of
f .

Let L be a line bundle on R with degree deg L. For an arbitrarily given ε > 0
we set

k1(ε) = max

{[

2N − n + 1

ε
+

g − 1

deg L

]

, 2g − 2

}

+ 1.

We prove the following.

Theorem 4.5. Let Hj , 1 6 j 6 q, be linear forms in N -subgeneral position on
Pn(C) with coefficients in H0(R,L). Let ε > 0 be an arbitrary number. Then
for an arbitrary integer k(ε) ≥ k1(ε) and a holomorphic mapping x : R → Pn(C)

that is nondegenerate for H(R,Lk(ε)+1) we have

(q − 2N + n − 1 − ε)ht(x) 6

q
∑

j=1

N (k2(ε))(divHj(x)) + C(k(ε), g,deg L,N, n),

where k2(ε) = (n + 1)((k(ε) + 1) deg L − g + 1) − 1 and C(k(ε), g,deg L,N, n) is
a constant depending on k(ε), g,deg L,N and n.

Proof. Let s = dimH0(R,Lk(ε)) and t = dimH0(R,Lk(ε)+1) as in the proof of
Theorem 3.5. Then the Riemann-Roch theorem implies

s = k(ε) deg L − g + 1,

t = s + deg L.

We fix a global section σ0 ∈ H0(R,L) \ {0}. Let (b1, . . . , bs) be bases of

H0(R,Lk(ε)) over C. We take bases

c1 = (σ0b1, . . . , cs) = (σ0bs, cs+1, . . . , ct)
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of H0(R,Lk(ε)+1) over C.

Let x = (x0 : . . . : xn) be a reduced representation with xj ∈ H0(R,H), where
H is a line bundle over R. Set the Wronskian

W =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1x0 · · · c1xn c2x0 · · · ctxn

d(c1x0) · · · d(c1xn) d(c2x0) · · · d(ctxn)
...

...
...

...

d(n+1)t−1(c1x0) · · · · · · · · d(n+1)t−1(ctxn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then the nondegeneracy condition for x gives

(6) W ∈ H0(R,L(k(ε)+1)(n+1)t ⊗ H(n+1)t ⊗ K
(n+1)t((n+1)t−1)/2
R ) \ {0}.

For Hj1, . . . ,Hjn+1 in general position, biHjk
(x) ∈ H0(R,Lk(ε)+1⊗H), 1 6 i 6

s, 1 6 k 6 n + 1, are C-linearly independent. Adding (n + 1)(t − s) elements

hm =
∑

16k6t
06l6n

βkl
mckxl, βkl

m ∈ C,

we get bases (biHjk
(x), hm) of H0(R,Lk(ε)+1)⊗C (

∑

l C · xl) considered as a sub-

space of H0(R,Lk(ε)+1 ⊗H). Let W̃ be the Wronskian formed by those biHjk
(x)

and hm. Then there is a constant C ∈ C∗ such that

W̃ = CW.

Therefore, if Hjk
(x) vanishes at a point a ∈ R with order νk ≥ (n + 1)t− 1 for

some k, then

(7) div W (a) ≥ s
∑

those k

(νk − (n + 1)t + 1).

Since Hjk
are in general position, the determinant ∆ of the coefficients gives

rise to a non-zero holomorphic section of Ln+1. Thus

(8) deg ∆ = (n + 1) deg L.

We claim the following estimate:

(9) s

q
∑

i=1

ωi(divHi(x)(a) − (n + 1)t + 1)+ 6 div W (a), a ∈ R,

where (·)+ denotes the positive part. Set

Q = {1, . . . , q}.
Take a point a ∈ R and set

S(a) = {i ∈ Q; divHi(x)(a) ≥ (n + 1)t − 1}.

Suppose that ]S(a) ≥ N + 1. Then there is a subset S(a)◦ ⊂ S(a) such that
]S(a)◦ = n + 1 and Hi, i ∈ S(a)◦, are in general position. Then the order of
zero of the determinant formed by the coefficients of Hi, i ∈ S(a)◦ is at most
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(n + 1) deg L by (8). Since (n + 1)t− 1 > (n + 1) deg L, all xi(a) must be zero by
Cramer’s formula. This is a contradiction. Therefore we deduce ]S(a) 6 N .

By making use of Lemma 3.2 and (7) we have a subset S(a)◦ of S(a) such that
]S(a)◦ = rankS(a)◦ = rankS(a), and deduce that

s
∑

j∈Q

ωj(divHj(x)(a) − (n + 1)t + 1)+

= s
∑

j∈S(a)

ωj(divHj(x)(a) − (n + 1)t + 1)

6 s
∑

j∈S(a)◦

(divHj(x)(a) − (n + 1)t + 1)

6 div W (a).(10)

Thus we proved (9). Note that

min{div Hj(x)(a), (n + 1)t − 1} + (div Hj(x)(a) − (n + 1)t + 1)+ = div Hj(x)(a).

It follows from this and (9) that

s
∑

j∈Q

ωjdivHj(x)(a) − divW (a)

5 s
∑

j∈Q

ωj min{divHj(x)(a), (n + 1)t − 1}.(11)

We write ‖x(a)‖ =
√
∑

i |xi(a)|2, which defines a hermitian metric in H. Using
the notation in Lemma 3.2, we set

φ(a) =
‖x(a)‖ω̃(q−2N+n−1)s−(n+1)(t−s)|W (a)|

|H1(a)|ω1s · · · |Hq(a)|ωqs
,

which defines a singular hermitian metric in Lk(ε)(n+1)t⊗K
(n+1)t((n+1)t−1)/2
R . Tak-

ing the differential as current, one gets
∫

R
ddc[log |φ|2] = k(ε)(n + 1)t deg L + (n + 1)t((n + 1)t − 1)(g − 1).

It follows from this and (11) that

(ω̃(q − 2N + n − 1)s − (n + 1)(t − s))ht(x)

=
∑

a∈R







s
∑

j∈Q

ωidivHi(x)(a) − divW (a)







+ k(ε)(n + 1)t deg L + (n + 1)t((n + 1)t − 1)(g − 1)

6 s
∑

a∈R

∑

j∈Q

ωj min{divHj(x)(a), (n + 1)t − 1}

+ k(ε)(n + 1)t deg L + (n + 1)t((n + 1)t − 1)(g − 1)
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6 sω̃
∑

j∈Q

N ((n+1)t−1)(divHj(x))

+ k(ε)(n + 1)t deg L + (n + 1)t((n + 1)t − 1)(g − 1).

Thus we have
{

q − 2N + n − 1 − (2N − n + 1) deg L

s

}

ht(x)

6
∑

j∈Q

N ((n+1)t−1)(divHj(x)) +

(

1 +
deg L

s

)

k(ε)(2N − n + 1) deg L

+

(

1 +
deg L

s

)

(2N − n + 1)((n + 1)(s + deg L) − 1)(g − 1).

With the choices of s and t we have

ε >
(2N − n + 1) deg L

s
,

k2(ε) = (n + 1)t − 1.

Set

C(k(ε), g,deg L,N, n)

=

(

1 +
deg L

s

)

k(ε)(2N − n + 1) deg L

+

(

1 +
deg L

s

)

(2N − n + 1)((n + 1)(s + deg L) − 1)(g − 1).

We have

(q − 2N + n − 1 − ε)ht(x) 6
∑

j∈Q

N (k2(ε))(divHj(x)) + C(k(ε), g,deg L,N, n).

This finishes the proof of our theorem. �

Remark 4.6. A reformulation of Theorem 4.5 with a weaker estimate was an-
nounced in [8], Theorem 4.1, where the nondegeneracy condition for x as in
Theorem 4.5 must be added.
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