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THE MODULI SPACE OF Q-HOMOLOGY PROJECTIVE

PLANES WITH 5 QUOTIENT SINGULAR POINTS

JONGHAE KEUM

Abstract. We describe the moduli space of Q-homology projective planes
with 5 quotient singular points, the maximum possible case. In particular, we
show that the moduli space has dimension 0.

We also present an Enriques surface having two different elliptic fibrations
with a multi-section giving the same configuration of 9 smooth rational curves
of Dynkin type 3A1 ⊕ 2A3.

1. Introduction

Throughout this paper, we work over the field C of complex numbers.
A normal projective complex surface is called a Q-homology projective plane

if it has the same Q-homology groups as the complex projective plane P2, i.e., if
it has Betti numbers b0 = b2 = b4 = 1, b1 = b3 = 0. When a normal projective
complex surface has only quotient singularities, it is a Q-homology projective
plane if and only if its second Betti number b2 is equal to 1 ([13], p. 2). If a Q-
homology projective plane is smooth, then it is isomorphic to either CP2 or a fake
projective plane, a smooth surface of general type with pg = q = 0, K2 = 9 (cf.
[9], [10]). All possible fundamental groups of fake projective planes have been
recently classified by Prasad and Yeung [21], but little has been known about
geometric construction of them.

Q-homology projective planes with nodes(conical double points) only were clas-
sified by Dolgachev, Mendes-Lopes and Pardini ([4], Theorem 3.3, Proposition
4.1, see also [11], Corollary 1.2). A complete list consists of a cone over a conic
curve, P2, and fake projective planes.

It follows from the orbifold Bogomolov-Miyaoka-Yau inequality([22], [16], [15],
[12]) that a Q-homology projective plane with quotient singularities has at most
5 singular points ([6], Corollary 3.4). In a previous paper joint with DongSeon
Hwang [6], we completely settled the classification problem of Q-homology pro-
jective planes with 5 quotient singularities. Namely, we proved that the case
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with 5 quotient singular points does occur, and must come from Enriques sur-
faces with a configuration of 9 smooth rational curves whose Dynkin diagram is of
type 3A1⊕2A3. (By contracting the 9 curves we obtain a Q-homology projective
plane with 5 rational double points of type A1, A1, A1, A3, A3, respectively.)

Theorem 1.1. [6] Let S be a Q-homology projective plane with quotient singular-

ities. Assume that the canonical class KS is nef. Then S has at most 4 singular

points except the following case:

S has 5 rational double points of type A1, A1, A1, A3, A3, and its minimal res-

olution S′ is an Enriques surface.

The case where −KS is ample was settled by G. B. Belousov [2]. He proved
that Del Pezzo surfaces of Picard number 1 with quotient singularities have at
most 4 singular points. Thus, Theorem 1.1 holds true without the nefness of KS .

In this paper, we describe the moduli space of such Enriques surfaces, by using
the description of the period domain for Enriques surfaces due to Horikawa [5].
In particular we prove that the moduli space has dimension 0 (Theorem 4.1).
The moduli space seems to consist of a single point, but we do not know how to
prove it.

We also present an Enriques surface having two different elliptic fibrations (one
of them is given in [6]) with a multi-section which give the same configuration of
9 smooth rational curves of Dynkin type 3A1 ⊕ 2A3 (Example 4.3).

The problem of determining the maximum number of singular points on Q-
homology projective planes with quotient singularities is related to the algebraic
Montgomery-Yang problem ([17], [13]). See [7] and [8] for recent progress on this
problem.

We remark that if a Q-homology projective plane S is allowed to have rational
singularities, then there is no bound for the number of singular points. In fact,
there are examples of Q-homology projective planes with an arbitrary number of
rational singularities (see e.g., [6], Introduction).

Notation

KY the canonical class of Y
bi(Y ) the i-th Betti number of Y
q(X) := dimH1(X,OX ) the irregularity of a smooth surface X
pg(X) := dimH2(X,OX ) the geometric genus of a smooth surface X
|G| the order of a finite group G
A (−m)-curve is a smooth rational curve on a surface with self-intersection

−m.
A (−2)-curve is called a nodal curve.

2. Some basics from lattice theory

By a lattice L we mean a finitely generated free Z-module L equipped with
a symmetric bilinear form 〈· , ·〉 taking values in Z. By det(L) we denote the
determinant of the symmetric matrix corresponding to the bilinear form with
respect to a Z-basis of L. A lattice with |det(L)| = 1 is called unimodular. For
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a lattice L, we denote by L(m) the lattice obtained from L by multiplying its
bilinear form by m. We extend the bilinear form on L to the one on L⊗Q taking
values in Q. Define

L∗ := Hom(L, Z).

Let L be a non-degenerate lattice. Then the canonical embedding

L ⊂ L∗ ⊂ L ⊗ Q

defines a bilinear form on L∗ taking values in Q, and the factor group

disc(L) := L∗/L

is an abelian group of order |det(L)|. We denote by l(L) the minimum number
of generators of disc(L).

An element v of an indefinite lattice is said to be isotropic if it has self-
intersection 0, i.e., v2 = 〈v, v〉 = 0.

If a lattice M has the same rank as L and contains L, then M is called an
over-lattice of L.

Let L be a sublattice of a lattice M . The sublattice L is said to be primitive

if the factor group M/L is torsion free. The minimal primitive sublattice of
M containing L is called the primitive closure of L, and is denoted by L. The
orthogonal complement of L in M is denoted by L⊥

M , or simply by L⊥.
An even lattice is a lattice whose quadratic form induced from its bilinear form

takes values in 2Z.
Let L be a non-degenerate even lattice. We define

qL : disc(L) → Q/2Z, qL(x + L) = x2 + 2Z (x ∈ L∗).

We call qL the discriminant quadratic form of L. A subgroup A of disc(L) is said
to be isotropic if qL|A ≡ 0. The following is well known (see e.g. [19]).

Lemma 2.1. Let L be a non-degenerate even lattice.

(1) If an even lattice M is an over-lattice of L, then the factor group A :=
M/L is an isotropic subgroup of disc(L), and disc(M) ∼= A⊥/A, where

A⊥ is the orthogonal complement of A in disc(L).
(2) Conversely, every isotropic subgroup A of disc(L) defines a unique over-

lattice M ⊂ L∗ with disc(M) ∼= A⊥/A.

(3) If L is primitive in a unimodular even lattice, then

(disc(L⊥), qL⊥) ∼= (disc(L),−qL).

The hyperbolic unimodular lattice of rank 2 is denoted by

H :=

(

0 1
1 0

)

.

An element r of a negative definite even lattice is called a root if r2 = 〈r, r〉 = −2.
A negative definite even lattice is called a root lattice if it is generated by its
roots. By Am (m ≥ 1), Dn (n ≥ 4), Ep (p = 6, 7, 8), we denote the root lattices
defined by the Dynkin diagrams of the corresponding type. Note that E8 is the
negative definite even unimodular lattice of rank 8.
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Consider a root lattice of rank 9

R := A1 ⊕ A1 ⊕ A1 ⊕ A3 ⊕ A3 = 3A1 ⊕ 2A3.

Let r1, r2, r3 be the roots corresponding to the sublattice A1 ⊕ A1 ⊕ A1 of R.
For i = 1, 2, 3, we denote by Mi the orthogonal complement of ri in R,

Mi := r⊥i
∼= A1 ⊕ A1 ⊕ A3 ⊕ A3 = 2A1 ⊕ 2A3.

Lemma 2.2. Let Λ := H ⊕E8 be the even unimodular lattice of signature (1, 9).

(1) There is an embedding of R into Λ.

(2) Given an embedding R ⊂ Λ, regard R, M1,M2,M3 as sublattices of Λ.

Then the following hold true.

(a) R/R ∼= (Z/2) × (Z/4).
(b) M⊥

i is generated by a primitive isotropic element vi and ri with
(

v2
i viri

viri r2
i

)

=

(

0 2
2 −2

)

or

(

0 1
1 −2

)

and Mi/Mi
∼= (Z/4) in the first case, Mi/Mi

∼= (Z/2)× (Z/4) in the

second.

(c) The second case of (b) occurs for some Mi.

(d) R ∼= A1 ⊕ E8.

Proof. (1) One can give an arithmetic proof by writing an explicit embedding of
A1 ⊕A1 ⊕A3 ⊕A3 into E8 (see e.g. [20], p337) and an obvious embedding of A1

into H. Also, a geometric proof is given by the existence of an Enriques surface
yielding a Q-homology projective plane with 5 singular points [6], since for an
Enriques surface the Néron-Severi group modulo torsion has a lattice structure
isomorphic to H ⊕ E8.

(2) Note that

disc(R) =
( 3

⊕
i=1

(Z/2)〈ei〉
)

⊕
(

(Z/4)〈w1〉
)

⊕
(

(Z/4)〈w2〉
)

,

where 〈·〉 is the generator of the group, i.e., ei =
ri

2
with e2

i = −
1

2
and each wi is

a generator of disc(A3) ∼= (Z/4) with w2
i = −

3

4
.

(a) By Lemma 2.1(3),

l(R) = l(R⊥) = rankR⊥ = 1.

Now (a) follows from Lemma 2.1(1)(2).
(b) Since |det(Mi)| is a square number, so is |det(Mi)| = |det(M⊥

i )|. An
integral quadratic form of signature (1, 1) represents 0 if and only if the absolute
value of its determinant is a square number. Thus M⊥

i contains an isotropic
element. Let vi ∈ M⊥

i be a primitive isotropic element. We know ri ∈ M⊥

i . Let
Ni be the sublattice of M⊥

i generated by vi and ri. We omit the subscript i for
simplicity. Let

c := vr.
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We may assume that c > 0 by replacing v by −v if necessary.
Assume that c is odd. We compute disc(N) which is generated by two elements

v∗, r∗ ∈ N∗ satisfying v∗v = r∗r = 1 and v∗r = r∗v = 0. It is easy to see that

v∗ =
2v + cr

c2
and r∗ =

v

c

modulo N . Since v∗ has order c2, the order of the group disc(N), disc(N) is a
cyclic group generated by v∗. (In fact, if c = 2t + 1, then r∗ = −2tr∗ = −tcv∗, a
multiple of v∗.) Since |disc(M)| is a power of 2, so does |disc(M )| = |disc(M⊥)|.
Considering the tower

N ⊂ M⊥ ⊂ (M⊥)∗ ⊂ N∗

we see that c divides the order of M⊥/N . Thus cv∗ ∈ M⊥. Since cv∗ = 2v
c

and v is primitive, we must have c = 1. It follows that N is unimodular, hence
N = M⊥, giving the second case.

Assume that c is even, say c = 2td for some t ≥ 1 and some odd d. In this case
disc(N) is generated by two elements

v∗ =
v + 2t−1dr

22t−1d2
, r∗ =

v

2td

modulo N . Note that v∗ has order 22t−1d2. Since 2tdv∗ = 2r∗, the element
2t−1dv∗ − r∗ = r

2
is of order 2. Thus

disc(N) =< v∗ > ⊕ <
r

2
>=< 22t−1v∗ > ⊕ < d2v∗ > ⊕ <

r

2
> .

The first factor < 22t−1v∗ > is a cyclic group of order d2, so by the same reason
as before

d22t−1v∗ =
v

d
∈ disc(M⊥),

so d = 1 by the primitivity of v. Now

disc(N) =< v∗ > ⊕ <
r

2
>

where the factor < v∗ > is a cyclic group of order 22t−1. If t ≥ 2, then disc(N)
contains an element of order ≥ 8. Since disc(M⊥) contains no element of order
> 4, it follows from the tower above that N 6= M⊥, i.e., 2 divides the order of the
factor group M⊥/N , so the order 2 element 22t−2v∗ ∈ M⊥. Since 22t−2v∗ = v

2
,

this contradicts the primitivity of v. Hence t ≤ 1.
If t = 0, then N is unimodular, hence N = M⊥.
If t = 1, then v∗ = v+r

2
and

disc(N) =<
v + r

2
> ⊕ <

r

2
>∼= (Z/2) ⊕ (Z/2).

This group has a unique isotropic element v
2
. But v

2
/∈ M⊥ by the primitivity of

v. Hence N = M⊥, giving the first case.
It is obvious that in the second case, M⊥ is unimodular, hence Mi/Mi

∼=
(Z/2) × (Z/4). In the first case, det(M⊥) = −4, hence Mi/Mi

∼= (Z/2) × (Z/2)
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or (Z/4). To prove the second assertion of (b) we need to show that

Mi/Mi � (Z/2) × (Z/2)

for any Mi. Suppose that Mj/Mj
∼= (Z/2)×(Z/2) for some Mj . We set M := Mj

and omit the subscript j for simplicity. Let A := M/M ⊂ disc(M). Let

disc(M) ∼= (Z/2) ⊕ (Z/2) ⊕ (Z/4) ⊕ (Z/4)

be generated by e1, e2, w1, w2 with e2
1 = e2

2 = −1
2
, w2

1 = w2
2 = −3

4
. It has a unique

isotropic subgroup isomorphic to (Z/2)2, which is generated by e1 + e2 +2w1 and
e1 + e2 + 2w2. Thus A =< e1 + e2 + 2w1, e1 + e2 + 2w2 >. By Lemma 2.1(1), it
is easy to see that

disc(M ) = A⊥/A =< e1 + w1 + w2 = e2 − w1 + w2, e1 + e2 = 2w1 = 2w2 >,

hence
disc(M ) ∼= disc(H(2)),

the even type quadratic space of dimension 2 over Z/2. Thus disc(M ) is not
isomorphic to

−disc

(

0 2
2 −2

)

,

a contradiction to Lemma 2.1(3).
(c) By (a), R/R ∼= (Z/2) × (Z/4). An isotropic element of order 4 of disc(R)

is of the form ei ± v1 ± v2, hence is unique up to a choice of ei and sign of vj. Let
us assume that

x := e1 + v1 + v2 ∈ R/R.

There are exactly two isotropic subgroups, isomorphic to (Z/2)×(Z/4), of disc(R)
containing x. They are < x, y > and < x, z > where

y := e1 + e2 + 2v1, z := e1 + e3 + 2v1.

We may assume that R/R =< x, y >. Then it follows that M3/M3
∼= (Z/2) ×

(Z/4). This proves (c).
(d) For any Mi satisfying Mi/Mi

∼= (Z/2)× (Z/4), Mi is unimodular, hence is
isomorphic to E8. �

3. Period domain for Enriques surfaces

Let L := LK3 be the K3 lattice, that is,

L = H ⊕ H ⊕ H ⊕ E8 ⊕ E8.

We define an involution θ : L → L by

θ(x1, x2, x3, y, z) = (−x1, x3, x2, z, y).

Its C-linear extension to L ⊗ C is also denoted by θ. The θ-invariant sublattice
and θ-anti-invariant sublattice of L are

L+ = {v ∈ L | θ(v) = v}, L− = {v ∈ L | θ(v) = −v}.

Then
L+ ∼= H(2) ⊕ E8(2), L− ∼= H ⊕ H(2) ⊕ E8(2).
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The unimodular lattice L+(1
2
) is isomorphic to Λ = H ⊕ E8, the cohomology

lattice of an Enriques surface. We put

Ω− = {[ω] ∈ P(L− ⊗ C) |ω2 = 0, ωω > 0}

Γ = {g ∈ O(L) | gθ = θg}, Γ− = Γ |L−

E = Ω−/Γ−.

Lemma 3.1. [5] Let π : X → Y be the universal cover of an Enriques surface

Y , and let τ : X → X be the covering involution. Then there exists an isometry

φ : H2(X, Z) → L

such that

φτ∗ = θφ.

In particular φ induces an isomorphism

φ+ : H2(X, Z)τ
∗

= π∗H2(Y, Z) = π∗Pic(Y ) → L+.

A marked Enriques surface is a pair (Y, φ) with Y an Enriques surface and an
isometry φ : H2(X, Z) → L such that φτ∗ = θφ, as in Lemma 3.1. Let ωX be a
non-zero holomorphic 2-form on X. Then τ∗ωX = −ωX (there is no holomorphic
2-form on Y ). The period point [ωX ] of the marked K3 surface belongs to Ω−.
We call it the period point of (Y, φ).

The choice of φ, as in Lemma 3.1, is unique modulo Γ. Thus the assignment

Y 7−→ [ωX ] ∈ E

is well defined and called the period map for Enriques surfaces. Global Torelli
theorem for Enriques surfaces [5] says that this map is injective. We put

Ω−

0 := {[ω] ∈ Ω− |ωd 6= 0 for any d ∈ L− with d2 = −2}

E0 := Ω−

0 /Γ−.

E. Horikawa [5] showed that every point of E0 is the period point of an Enriques
surface, or equivalently, every point of Ω−

0 is the period point of a marked Enriques
surface.

4. Enriques surfaces with 9 nodal curves of Dynkin type 3A1 ⊕ 2A3

Let Y be an Enriques surface with 9 nodal curves of Dynkin type 3A1 ⊕ 2A3,
and let

C1 C2 C3 C4—C5—C6 C7—C8—C9

be the dual graph of the 9 nodal curves Ci. Let π : X → Y be the universal
cover of Y , τ : X → X be the covering involution, and φ : H2(X, Z) → L be an
isometry such that φτ∗ = θφ. Let

H2(X, Z)+, H2(X, Z)−

be the τ∗-invariant, the τ∗-anti-invariant sublattices of H2(X, Z). These sublat-
tices are isomorphic to L+ and L− respectively.
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Let Ci1 and Ci2 (1 ≤ i ≤ 9) be the two nodal curves on the K3 surface X lying
over Ci. The 9 divisors

Ci1 + Ci2 (1 ≤ i ≤ 9)

generate a sublattice of H2(X, Z)+ isomorphic to 3A1(2)⊕2A3(2), and by Lemma
2.2(2-d) its primitive closure is isomorphic to A1(2)⊕E8(2). Thus the 9 divisors

Ci1 − Ci2 (1 ≤ i ≤ 9)

generate a sublattice of H2(X, Z)− whose primitive closure is isomorphic to
A1(2) ⊕ E8(2) by Lemma 2.2(2-d), and hence its orthogonal complement T in
L− is isomorphic to the rank 3 even lattice H⊕ < 4 >, i.e.

T := H⊕ < 4 >⊂ L− = H ⊕ H(2) ⊕ E8(2),

where the rank one lattice < 4 > is contained in the second factor H(2) of L−

in an obvious way. The period ωX of the K3 surface X is orthogonal to the 18
classes [Cij ]. Thus

ωX ∈ T ⊗ C.

We put

ΩT := {[ω] ∈ P(T ⊗ C) |ω2 = 0, ωω > 0} ⊂ Ω−.

Let

ΩT
0 := ΩT ∩ Ω−

0

and M be the image of ΩT
0 under the map Ω−

0 → E0 = Ω−

0 /Γ−. Then the period
[ωX ] of the marked Enriques surface (Y, φ) belongs to M, i.e.

[ωX ] ∈ M.

We note that M also contains the period point of an Enriques surface with 9
nodal curves of Dynkin type A1 ⊕ E8.

Theorem 4.1. Let M′ be the moduli space of Enriques surfaces with 9 nodal

curves of Dynkin type 3A1 ⊕ 2A3. Then the following hold true.

(1) M′ ⊂ M.

(2) M is irreducible and dimM = 1.
(3) A general point of M corresponds to an Enriques surface with 9 nodal

curves of Dynkin type A1 ⊕ E8.

(4) dimM′ = 0.

Proof. (1) The assertion follows from the above argument.
(2) Since rankT = 3, dim ΩT = 1. The orthogonal complement of T in L− is

isomorphic to A1(2)⊕E8(2), hence contains no (−2)-vector. This means that ΩT

is not contained in the hyperplane in Ω− orthogonal to any (−2)-vector d ∈ L−.
Hence dimΩT

0 = 1 and the second assertion follows.
An explicit calculation shows that ΩT consists of two components obtained by
removing a real plane conic curve (topologically a circle) defined by the condition
ωω ≤ 0 from a plane conic curve (topologically a sphere) defined by the equation
ω2 = 0. The two components are switched by the isometry θ|L− ∈ Γ−. This
proves the first assertion.
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(3) Consider the 1-dimensional family of Enriques surfaces of type I in [14].
These Enriques surfaces have only finitely many automorphisms [3] and have
exactly 12 nodal curves, which contains 9 nodal curves of Dynkin type A1 ⊕ E8.
(These surfaces have an elliptic pencil with a singular fibre of type II∗ = Ẽ8 and
a 2-section.) Thus their period points are contained in M.

(4) By [6], Example 7.3, M is not empty. It is enough to show that none of
the Enriques surfaces considered in (3) contains 9 nodal curves of Dynkin type
3A1 ⊕ 2A3. It is easy to see that the configuration of the 12 nodal curves (Figure
1.4, [14]) on such an Enriques surface contains no configuration of 9 nodal curves
of Dynkin type 3A1 ⊕ 2A3. This proves (4) �

Corollary 4.2. The moduli space of Q-homology projective planes with 5 quotient

singularities has dimension 0.

Proof. Given an Enriques surface Y , the set N of all nodal curves on Y is discrete
(no nodal curve can move), so is the set C of configurations of 9 nodal curves on
Y of Dynkin type 3A1 ⊕ 2A3. Now the assertion follows from Theorem 4.1. �

Question: Is C/Aut(Y ) finite?
Note that C ⊂ N 9, so the finiteness would follow from the finiteness of N 9/Aut(Y ).
We know that N/Aut(Y ) is finite by [18], but this does not necessarily imply the
finiteness of N 9/Aut(Y ).

Let us discuss an explicit example of Enriques surface with 9 nodal curves of
Dynkin type 3A1 ⊕ 2A3.

Example 4.3. Let YIII be the Enriques surface of type III in [14]. It admits an
elliptic pencil with 2 double fibres of type I4, 2 fibres of type I2, and a special
2-section intersecting only one component in each fibre. See [1] for Kodaira’s
notation for types of singular fibres. One can easily find 8 nodal curves among the
components of singular fibres not meeting the 2-section, so can get a configuration
of 9 nodal curves with Dynkin type 3A1⊕2A3. This was mentioned in [6], Example
7.3. For example, using the notation there, we take the elliptic pencil

|2(E1 + E2 + E3 + E9)| = |2(E5 + E6 + E7 + E12)| = |E14 + E18| = |E13 + E17|

and a 2-section E4. The 9 curves

E2—E1—E9 E6—E7—E12 E14 E13 E4

gives the configuration. If M is the sublattice of the cohomology lattice of YIII

generated by the first 8 curves, then M⊥ is generated by the class of the half
elliptic pencil and the 2-section E4, hence belongs to the second case of Lemma
2.2(2-b).

There is another elliptic pencil: an elliptic pencil with a fibre of type I∗2 = D̃6

and 2 double fibres of type I2, e.g.,

|E2 + E9 + 2(E1 + E10 + E7) + E6 + E12| = |2(E11 + E13)| = |2(E4 + E18|
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and a 4-section E14. This gives the configuration

E2—E1—E9 E6—E7—E12 E13 E4 E14

the same as above. This shows that different elliptic pencils with a multi-section
may give the same configuration. In the latter case, if M is the sublattice of the
cohomology lattice of YIII generated by the first 8 curves, then M⊥ is generated
by the class of the half elliptic pencil and the 4-section E14, hence belongs to the
first case of Lemma 2.2(2-b).

Also, one can check that all configurations on YIII of 9 nodal curves with
Dynkin type 3A1 ⊕ 2A3 are conjugate under the automorphism group Aut(YIII).

Proposition 4.4. Let Y be an Enriques surface with 9 nodal curves of Dynkin

type 3A1 ⊕ 2A3. Assume that there is an elliptic pencil on Y containing in its

singular fibres eight of the 9 nodal curves of Dynkin type 2A1 ⊕ 2A3. Then the

elliptic pencil must have singular fibres of type

I4 + I4 + I2 + I2 or I∗2 + I2 + I2 or I∗1 + I4,

where some fibres may be double fibres.

Proof. An elliptic pencil contains in its singular fibres a configuration of 8 nodal
curves of Dynkin type 2A1 ⊕ 2A3 if and only if its singular fibres are of type, one
of the 3 above or III∗ + I2 or III∗ + III.

We will rule out the latter two cases by showing that there is no multi-section
meeting none of the 8 nodal curves. Suppose that there is a multi-section S
meeting none of the 8 nodal curves. The seven non-central components of the
singular fibre of type III∗ form a configuration of Dynkin type A1 ⊕ 2A3. Thus
S cannot meet any component other than the central component of the singular
fibre of type III∗. Denote by B the central component. We know that B has
multiplicity 4. Thus, by Lemma 2.2(2-b), SB = 1. Hence S is a 4-section. On
the K3 cover X of Y , the 4-section S splits to give two 2-sections, both meeting
the central component of each of the two fibres of type III∗. A contradiction. �

Each of the first two cases from Proposition 4.4 occurs, as we have seen in
Example 4.3. But we do not know if the third case actually occurs.

Question: Does the moduli space M′ contain a point different from the point
corresponding to the example given in 4.3? How many points does it have?

Acknowledgments

I thank Igor Dolgachev and Shigeyuki Kondō for helpful discussions, and the
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