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DEFORMATIONS OF THE TANGENT BUNDLE AND THEIR

RESTRICTION TO STANDARD RATIONAL CURVES

JUN-MUK HWANG

Abstract. We study the deformations of the tangent bundle of a uniruled
manifold X by restricting them to standard rational curves on X. By em-
ploying an idea from holomorphic symplectic geometry, we prove that, if
H2i(X, Ω1

X) = 0 for all i ≥ 0, the splitting type on a standard rational curve
remains unchanged under small deformations of the tangent bundle.

1. Introduction

By Grothendieck’s decomposition theorem, vector bundles on P1 are sums
of line bundles. An important tool for studying vector bundles on a uniruled
manifold X is to study the restrictions of the vector bundles to rational curves on
X. Of particular interest is the restriction to rational curves of simple type. For
example, for vector bundles on the projective space, the study of their restrictions
to lines has been very successful (e.g. [OSS]). Lines on the projective space are
examples of standard rational curves. Recall that a rational curve f : P1 → X is
standard if

f∗T (X) ∼= O(2)⊕O(1)p ⊕Oq

for some non-negative integers p, q. This is the ‘simplest’ decomposition type for
f∗T (X) as long as it is semi-positive on P1. It is natural in the study of vector
bundles on uniruled manifolds to examine their restrictions to standard rational
curves. In this regard, the following question naturally arises in the study of
deformations of the tangent bundle.

Question 1.1. Let X be a uniruled projective manifold and f : P1 → X be
a standard rational curve. Denote by ∆ the unit disc. Let {Vt, t ∈ ∆} be
deformations of the tangent bundle of X, i.e., a holomorphic family of vector
bundles with V0

∼= T (X). Is there some 0 < ε < 1, such that for any |t| < ε,
f∗Vt ∼= f∗V0?
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The most simple-minded deformation of the tangent bundle T (X) arises from
Pic0(X). For a family of line bundles {Lt, t ∈ ∆} with L0

∼= O, the tensor
product Vt := T (X)⊗ Lt yields a deformation of T (X). Since Pic0(P1) ∼= {1}, a
deformation of this type does not affect the isomorphism type of f∗Vt, giving an
affirmative example for Question 1.1.

However, a simple example shows us that the answer is not always affirmative.
In fact, on P1, we have a family of vector bundles {Wt, t ∈ ∆} withW0

∼= O(2)⊕O
and Wt

∼= O(1)2 for t 6= 0. Let X := P1 × E for some elliptic curve E and let
π : X → P1 be the projection. The family of vector bundles {Vt := π∗Wt, t ∈ ∆}
is a deformation of the tangent bundle V0

∼= T (X). The P1-factors in X = P1×E
are standard rational curves in X. The splitting type of Vt on these standard
rational curves changes, yielding a negative answer to Question 1.1.

So the interesting question is what additional conditions on X are needed to
guarantee an affirmative answer to Question 1.1. In this article, we will show
that the following Hodge-theoretic conditions on X work:

Theorem 1.2. Let X be a uniruled projective manifold with H2i(X,Ω1
X) = 0 for

all i ≥ 0. Then for any standard rational curve f : P1 → X and any deformation
{Vt, t ∈ ∆} of V0

∼= T (X), there exists some 0 < ε < 1 with f∗Vt ∼= f∗V0 for
every |t| < ε.

This will be proved in Section 2. The key idea of the proof comes from holo-
morphic symplectic geometry. One can see that the behavior of Vt on standard
rational curves can be interpreted as that of certain rational curves in the under-
lying manifold of the dual bundle V ∗

t . Since the cotangent bundle V ∗
0 is a holo-

morphic symplectic manifold, we can employ an argument of Wierzba [Wi] on the
deformation of rational curves in holomorphic symplectic manifolds. Wierzba’s
argument relies on a construction of symplectic deformations due to Kaledin-
Verbitsy [KV]. The construction of [KV] does not apply to our situation directly.
We will give an analogous construction for the cotangent bundle. The additional
vanishing conditions H2i(X,Ω1

X ) = 0 are needed to extend this construction to
the underlying manifolds of the dual bundles V ∗

t .

Standard rational curves play a particularly important role in the geometry of
Fano manifolds of Picard number 1. Theorem 1.2 suggests the following question.

Question 1.3. Let X be a Fano manifold of Picard number 1 with H2i(X,Ω1
X) =

0 for all i ≥ 0. For any deformation {Vt, t ∈ ∆} of V0
∼= T (X), does there exist

some 0 < ε < 1 with Vt ∼= V0 for every |t| < ε?

As an illustration of how Theorem 1.2 can be used in the study of deformation
of the tangent bundle, we will use it in Theorem 3.1 to answer Question 1.3 in
some special cases.

2. Proof of Theorem 1.2

For a complex manifold X, Ω1
X denotes the locally free sheaf of differentials

on X. By abuse of notation, we will use Ω1
X to denote also the complex manifold
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underlying the cotangent bundle of X. For a vector bundle W , denote by PW

its projectivization as the set of 1-dimensional subspaces in the fibers of W .
Put ∆ × C := {(t, s) ∈ C × C, |t| < 1}. A key ingredient of the proof of

Theorem 1.2 is the following construction, inspired by [KV].

Proposition 2.1. In the setting of Theorem 1.2, there exists a complex manifold
M with a smooth morphism ϕ : M → ∆ × C such that, denoting by Mt,s the
fiber ϕ−1((t, s)),
(i) Mt,0 is biholomorphic to the underlying complex manifold of the dual bundle
V ∗
t of Vt (in particular, M0,0 is biholomorphic to the underlying complex manifold

of the cotangent bundle of X), and
(ii) given a rational curve g0 : P1 → M with g0(P1) ⊂ M0,0, any deformation
{gu : P1 →M, u ∈ ∆}, has images in M0 := ∪t∈∆Mt,0.

Proof. Let π : X × ∆ → ∆ be the natural projection. Denote by U the vector
bundle on X ×∆ such that

U|π−1(t)
∼= V ∗

t for each t ∈ ∆.

From the vanishingH2i(X,Ω1
X) = 0 for all i ≥ 0, the semi-continuity of dimH2i(X,

V ∗
t ) implies that there exists some ε > 0 such that H2i(X,V ∗

t ) = 0 for all i ≥ 0
for any t with |t| < ε. Since the Euler characteristic χ(X,V ∗

t ) is constant, we see
that

dimH i(X,V ∗
t ) = dimH i(X,Ω1

X) for each i ≥ 0 and each |t| < ε.

In particular, H1(X,V ∗
t ) ∼= H1(X,Ω1

X ) 6= 0 and R1π∗U is a vector bundle on
{|t| < ε}. By rescaling, we will assume that ε = 1.

Choose a holomorphic section ξt ∈ H
1(X,V ∗

t ) of the vector bundle R1π∗U on
∆ such that ξ0 ∈ H1(X,Ω1

X) is the class of an ample line bundle on X. Let
L ⊂ R1π∗U be the line subbundle generated by ξt. The underlying 2-dimensional
complex manifold of L is biholomorphic to ∆×C with the coordinate (t, s) given
by

L = {(t, s · ξt), t ∈ ∆, s ∈ C}.

For each (t, s), let Wt,s be the isomorphism class of the vector bundle on X

defined by the extension

0 −→ V ∗
t −→Wt,s −→ OX −→ 0

corresponding to the extension class s · ξt ∈ H
1(X,V ∗

t ).
On X × L, we have a vector bundle W such that

W |X×(t,0)
∼= OX ⊕ V

∗
t for each t ∈ ∆

W |X×(t,s)
∼= Wt,s for each t ∈ ∆, s ∈ C \ {0}.

For each (t, s), W |X×(t,s) contains the subbundle of corank 1 given by V ∗
t . Thus

PV ∗
t ⊂ PWt,s defines a natural hypersurface H ⊂ PW . Define M := PW \H

and set ϕ :M→ ∆×C to be the restriction of the composition

PW −→ X × L −→ L ∼= ∆×C.

The property (i) is obvious and it remains to check (ii).
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Denote by (α(u), β(u)) ∈ ∆×C the image ϕ ◦ gu(P1). We need to show that
β(u) ≡ 0. Denote by Mt,s ⊂ M the fiber ϕ−1((t, s)). Then Mt,s = PWt,s \PV

∗
t

and there is a natural affine bundle structure Mt,s → X. Let hu : P1 → X be the
composition of gu : P1 →Mα(u),β(u) with the natural projection Mα(u),β(u) → X.

For each u, hu is a non-constant morphism. The pull-back bundle h∗uWα(u),β(u) on
P1 has a line subbundle Lu corresponding to gu(P1) ⊂ PWα(u),β(u). Since gu(P1)
is disjoint from the hypersurface PV ∗

α(u) ⊂ PWα(u),β(u), Lu is complementary to

h∗uV
∗
t ⊂ h

∗
uWα(u),β(u), splitting the sequence

0 −→ h∗uV
∗

α(u) −→ h∗uWα(u),β(u) −→ OP1
−→ 0.

It follows that

0 = h∗u(β(u) · ξα(u)) = β(u) · h∗uξα(u) for all u ∈ ∆.

Suppose that β(u) 6≡ 0. Then h∗uξα(u) = 0 for all u. But h∗0ξα(0) = h∗0ξ0 is the

pull-back of the ample class ξ0 ∈ H
1(X,Ω1

X) by a non-constant morphism h0, a
contradiction. This shows that β(u) ≡ 0. 2

The proof of the next proposition is borrowed from [Wi, Proof of Theorem
1.1].

Proposition 2.2. In the setting of Proposition 2.1, let g : P1 → M0,0 be
a rational curve in M0,0. Then the germ Homg(P1,M0) of the Hom-scheme
Hom(P1,M0) at g has dimension ≥ 2n+ 2 where n = dimX.

Proof. Since M0,0 is a symplectic manifold, g∗KM is a trivial bundle on P1.
By [Ko, II.1.2],

dim Homg(P1,M) ≥ dimM− deg(g∗KM) = 2n + 2.

By Proposition 2.2 (ii),

Homg(P1,M) = Homg(P1,M0)

and the result follows. 2

Recall the following elementary fact.

Lemma 2.3. Let {Et, t ∈ ∆} be a family of vector bundles on P1. Assume that

E0
∼= O(a1)⊕ · · · ⊕ O(an), a1 ≥ · · · ≥ an

and for t 6= 0 with |t| small,

Et ∼= O(b1)⊕ · · · ⊕ O(bn), b1 ≥ · · · ≥ bn.

Then ∑

i

ai =
∑

i

bi, a1 ≥ b1 and an ≤ bn.

Proof. The equality is just the equivalence of Chern classes. To see the two in-
equalities, just use the semi-continuity of dimH0(P1, Et(−b1)) and dimH0(P1, E

∗
t

(bn)). 2

We are ready to finish the proof of Theorem 1.2.
Proof of Theorem 1.2. Let f : P1 → X be a standard rational curve with
f∗T (X) ∼= O(2) ⊕O(1)p ⊕On−p−1.



DEFORMATIONS OF THE TANGENT BUNDLE 75

If p = n−1, the vector bundle O(2)⊕O(1)n−1 on P1 is locally rigid by Lemma
2.3. So there is nothing to prove.

Assume p < n − 1. It is easy to see by a repeated application of Lemma 2.3
that a non-trivial small deformation of the vector bundle O(2)⊕O(1)p⊕On−p−1

on P1 must be of the form O(1)p+2 ⊕ On−p−2. Thus to prove the theorem, it
suffices to show that dimH0(P1, f

∗V ∗
t ) ≥ n− p− 1 for |t| < ε.

Let g : P1 → M0,0
∼= V ∗

0 be the rational curve given by a non-zero sec-
tion of f∗V ∗

0 . We will define a number of morphisms associated to the germ
Homg(P1,M0). From Proposition 2.1 (i), we have natural projections ψ : M0,0 →

X and ψ̃ :M0 → X, which induce morphisms

ψ∗ : Homg(P1,M0,0) −→ Homf (P1,X) and ψ̃∗ : Homg(P1,M0) −→ Homf (P1,X)

such that ψ̃∗|Homg(P1,M0,0) = ψ∗. For h ∈ ψ̃−1
∗ (f) ⊂ Homg(P1,M0), define η(h) :=

ϕ̄(h(P1)), where ϕ̄ : M0 → ∆ is the morphism sending Mt,0 ⊂ M0 to t. This

defines a morphism η : ψ̃−1
∗ (f) → ∆0, where ∆0 denotes the germ of ∆ at 0.

Then
η−1(0) = ψ̃−1

∗ (f) ∩Homg(P1,M0,0) = ψ−1
∗ (f).

In summary, we have

Homf (P1,X)
ψ̃∗

←− Homg(P1,M0) ⊃ ψ̃−1
∗ (f)

η
−→ ∆0

‖ ∪ ∪ ∪

Homf (P1,X)
ψ∗

←− Homg(P1,M0,0) ⊃ ψ−1
∗ (f) −→ {0}.

Since g comes from a section of V ∗
0 , an element h of the germ Homg(P1,M0)

comes from a section of (ψ̃∗(h))
∗V ∗

t for some t. In particular, if h ∈ ψ̃−1
∗ (f), it

comes from a section of f∗V ∗
t with t = η(h). We conclude that

dim η−1(t) = dimH0(P1, f
∗V ∗
t ) and dimψ−1

∗ (f) = dimH0(P1, f
∗V ∗

0 ) = n−p−1.

Note that dimHomf (P1,X) = n+p+2 because the deformations of standard ra-
tional curves are unobstructed. Also, dim Homg(P1,M0) ≥ 2n+2 by Proposition
2.2. It follows that

dim ψ̃−1
∗ (f) ≥ dim Homg(P1,M0)−dimHomf (P1,X) ≥ (2n+2)−(n+p+2) = n−p.

Since dim ψ̃−1
∗ (f) ≥ n− p and dimψ−1

∗ (f) = n− p− 1, we see that η is surjective
and dim η−1(t) ≥ n − p − 1 for t ∈ ∆0. It follows that dimH0(P1, f

∗V ∗
t ) =

dim η−1(t) ≥ n− p− 1. This completes the proof. 2

3. Rigidity of the tangent bundle under additional conditions on

varieties of minimal rational tangents

In this section, we will show how Theorem 1.2 can be used in combination with
the theory of varieties of minimal rational tangents to study the deformation of
the tangent bundle of a Fano manifold of Picard number 1. We refer the reader to
[Hw] for an introduction to the theory of varieties of minimal rational tangents.

Recall that a subvariety Z ⊂ Pn−1 is linearly normal if it is not contained in
any hyperplane and dimH0(Z,O(1)) = n. Let X be a Fano manifold of Picard
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number 1. We will consider the following condition for a component K of the
space of rational curves RatCurves(X).

(†) K is complete and each member of K is a standard rational curve. For each
x ∈ X, let Kx ⊂ K be the closed subscheme parametrizing members of K through
x. Then the variety of minimal rational tangents Cx ⊂ PTx(X), i.e. the union
of tangent directions of members of Kx at x, is a linearly normal non-singular
projective subvariety of the projective space PTx(X) with H1(Cx,O) = 0.

Theorem 3.1. Let X be a Fano manifold of Picard number 1 satisfying H2i(X,
Ω1
X) = 0 for i ≥ 0 and admitting a component K of RatCurves(X) with the

property (†). For any deformation {Vt, t ∈ ∆} of V0
∼= T (X), there exists some

0 < ε < 1 with Vt ∼= V0 for every |t| < ε.

Proof. LetO(2)⊕O(1)p⊕On−p−1 be the splitting type of T (X) on a member of K.
We have seen in the proof of Theorem 1.2 that a non-trivial small deformation of
O(2)⊕O(1)p⊕On−p−1 on P1 is O(1)p+2⊕On−p−2. Let U ⊂ K×∆ be the subset
consisting of ([C], t) ∈ K ×∆ such that for the normalization f : P1 → C ⊂ X,

f∗Vt ∼= O(1)p+2 ⊕On−p−2.

Since U is an open subset by Lemma 2.3, U must be empty by Theorem 1.2.
On the other hand, let E ⊂ K×∆ be the subset consisting of ([C], t) ∈ K×∆

such that for the normalization f : P1 → C ⊂ X,

f∗Vt 6∼= O(2)⊕O(1)p ⊕On−p−1 or O(1)p+2 ⊕On−p−2.

By Lemma 2.3, E is a closed subset. Since U is empty, if ([C], t) 6∈ E, then the
normalization f : P1 → C ⊂ X satisfies f∗Vt ∼= V0. From the assumption on K,
we know that the closed set E is disjoint from K×{0}. Since K is complete, there
exists an ε > 0 with f∗Vt ∼= V0 for any |t| < ε and any f : P1 → X belonging to
K.

For each x ∈ X and α ∈ Cx, there exists a unique member C of Kx and a
germ Cα of C at x whose tangent direction is α (e.g. [Hw, Proposition 1.4]).
When ν : P1 → C is the normalization, α corresponds to the O(2)-factor of
ν∗T (X) ∼= O(2)⊕O(1)p ⊕On−p−1. Since for each |t| < ε,

ν∗Vt ∼= O(2)⊕O(1)p ⊕On−p−1,

the O(2)-factor of Vt determines a unique point in PVt,x corresponding to x and
the germ Cα of C at x. This induces a morphism

τx,t : Cx −→ PVt,x.

The set {τx,t, x ∈ X, |t| < ε} is a holomorphic family of morphisms with τx,0 =
IdCx . Since τx,0 is a non-degenerate embedding, so is τx,t for small |t|. Since
Cx ⊂ PTx(X) is linearly normal, so is the embedding τx,t for small |t|. From
H1(Cx,O) = 0, all these embeddings are given by the same line bundle. This
induces an isomorphism ψx,t : Tx(X) → Vt,x for small t, determined up to a
scalar factor. Since H1(X,O) = 0 for a Fano manifold X, we can choose the
scalar factor in the choice of ψx,t to define a global isomorphism ψt : T (X)→ Vt.
2
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It is easy to see that the property (†) holds for the family K of lines on an irre-
ducible Hermitian symmetric space X (e.g. [Hw, 1.4.5]). Since H2i(X,Ω1

X) = 0
for i ≥ 0 is also well-known, we have the proof of the local deformation-rigidity
of the tangent bundle of irreducible Hermitian symmetric spaces. This rigid-
ity would follow also from the vanishing H1(X,End(T (X))) = 0, which may be
proved by Borel-Weil-Bott Theorem. However, to our knowledge, this cohomo-
logical vanishing has never been checked.

The conditions in Theorem 3.1 hold also for symplectic Grassmannians (e.g
[HM, Proposition 3.2.1]).
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