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A NOTE ON THE FINITENESS PROPERTY RELATED TO
DERIVED FUNCTORS

AMIR MAFI AND HERO SAREMI

Abstract. Let R be a commutative Noetherian ring, a an ideal of R, and
M , N two finitely generated R-modules. Let t be a non-negative integer. It is
shown that for any finitely generated R-module L with Supp(L) ⊆ Supp(M),
the following statements hold:
(i) Supp(Extt

R(L, N)) ⊆ ∪t
i=0 Supp(Exti

R(M, N));
(ii) Ass(Extt

R(L, N)) ⊆ Ass(Extt
R(M, N)) ∪ (∪t−1

i=0 Supp(Exti
R(M, N))).

As an immediate consequence, we deduce that if Supp(Hi
a(N)) or Supp(Hi

a

(M, N)) is finite for all i < t, then the set ∪n∈N Ass(Extt
R(M/anM, N)) is fi-

nite. In particular, if grade(a, N) ≥ t then the set ∪n∈N Ass(Extt
R(M/anM, N))

is finite.

1. Introduction

Throughout this note, we assume that R is a commutative Noetherian ring
with non-zero identity, a an ideal of R, and that M and N two finitely generated
R-modules. We use N to denote the set of positive integers.
Brodmann [1] proved that the two sequences of associated primes (Ass(N/anN))n∈N
and (Ass(anN/an+1N))n∈N eventually become constant for large n. Melkersson
and Schenzel [10] showed that, for any given integer i ≥ 0, the sequences

(Ass(TorR
i (R/an, N)))n∈N and (Att(Exti

R(R/an, A)))n∈N

become, for n large, independent of n where A is an Artinian R-module. They
also asked whether the set Ass(Exti

R(R/an, N)) becomes stable for sufficiently
large n. Khashyarmanesh and Salarian [7], gave an affirmative answer to the
above question in the case i = 1. Katzman [5] gave an example of a Noetherian
local ring (R,m) with two elements x, y ∈ m such that the associated prime
ideals of local cohomology module H2

(x,y)(R) is an infinite set. Therefore the set
∪n∈N Ass(Ext2R(R/(x, y)n, R)) is infinite and so ∪n∈N Ass(Exti

R(R/an, N)) is not
a finite set in general.
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For an integer i ≥ 0, the i-th generalized local cohomology module H i
a(M, N)

of two R-modules M and N with respect to an ideal a is defined by

H i
a(M,N) = lim−→

n

Exti
R(M/anM, N).

It is clear that H i
a(R,N) is just the ordinary local cohomology module H i

a(N) of
N with respect to a. We refer the reader to [2] and [4] for the basic properties of
local cohomology and generalized local cohomology.

The aim of this note is to prove the following theorems.

Theorem 1.1. Let t be a non-negative integer. Then for any finitely generated
module L with Supp(L) ⊆ Supp(M), the following statements hold:
(i) Supp(Extt

R(L, N)) ⊆ ∪t
i=0 Supp(Exti

R(M,N));
(ii) Ass(Extt

R(L, N)) ⊆ Ass(Extt
R(M,N)) ∪ (∪t−1

i=0 Supp(Exti
R(M,N))).

Theorem 1.2. Let t be a non-negative integer such that Supp(H i
a(N)) or

Supp(H i
a(M, N)) is finite for all i < t. Then the set ∪n∈N Ass(Extt

R(M/anM, N))
is finite. In particular, if grade(a, N) ≥ t then ∪n∈N Ass(Extt

R(M/anM, N)) is
finite.

2. The results

Theorem 2.1. Let t be a non-negative integer. Then for any finitely generated
module L with Supp(L) ⊆ Supp(M), the following statements hold:
(i) Supp(Extt

R(L, N)) ⊆ ∪t
i=0 Supp(Exti

R(M,N));
(ii) AssR(Extt

R(L, N)) ⊆ Ass(Extt
R(M,N)) ∪ (∪t−1

i=0 Supp(Exti
R(M,N))).

Proof. We will only prove the first part, and the proof of the second part is
similar. We use induction on t. Let t = 0. Since Supp(L) ⊆ Supp(M), we get by
Gruson’s Theorem [11, Theorem 4.1] that there exists a finite filtration

0 = L0 ⊂ L1 ⊂ . . . ⊂ Lk = L

such that the factors Li/Li−1 are homomorphic images of a direct sum of finitely
copies of M . By using short exact sequences, we may reduce the situation to the
case k = 1. Then there is an exact sequence

0 −→ K −→Mm −→ L −→ 0,

for some m ∈ N and some finitely generated R-module K. This induces an exact
sequence 0 −→ HomR(L, N) −→ HomR(Mm, N) and so the result for t = 0 is
complete. Now suppose, inductively, that t > 0 and we have established that
Supp(Extj

R(L, N)) ⊆ ∪j
i=0 Supp(Exti

R(M,N)) for all j < t and all finitely gener-
ated modules L with Supp(L) ⊆ Supp(M). Again, by using Gruson’s Theorem,
we have an exact sequence 0 −→ K −→ Mm −→ L −→ 0 that induces a long
exact sequence

. . . −→ Extt−1
R (K, N) −→ Extt

R(L, N) −→ Extt
R(Mm, N) −→ . . . .
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Therefore Supp(Extt
R(L, N)) ⊆ Supp(Extt

R(M, N))∪Supp(Extt−1
R (K, N)) and so

by inductive hypothesis the result follows. �

The following corollary immediately follows by Theorem 2.1.

Corollary 2.2. Let t be a non-negative integer. Then for any finitely generated
module L with Supp(L) = Supp(M), the following statements hold:
(i) ∪t

i=0 Supp(Exti
R(L, N)) = ∪t

i=0 Supp(Exti
R(M,N));

(ii)

Ass(Extt
R(L, N)) ∪ (∪t−1

i=0 Supp(Exti
R(M,N)))

= Ass(Extt
R(M,N)) ∪ (∪t−1

i=0 Supp(Exti
R(M,N))).

Corollary 2.3. Let t be a non-negative integer. Then the following equalities
holds.

∪t
i=0(∪n∈N Supp(Exti

R(M/anM, N))) = ∪t
i=0 Supp(Exti

R(M/aM, N))

= ∪t
i=0 Supp(H i

a(M,N)).

Proof. The first equality follows from Corollary 2.2 and the second equality fol-
lows from [3, Lemma 2.8]. �

The following theorem extends [6, Theorem 2.4], [8, Theorem B] and [9, The-
orem 2.12].

Theorem 2.4. Let t be a non-negative integer. Then the following statements
hold:
(i) If Supp(H i

a(N)) is finite for all i < t, then the set ∪n∈N Ass(Extt
R(M/anM, N))

is finite. In particular, Ass(Ht
a(N)) and Ass(Ht

a(M,N)) are finite.
(ii) If Supp(H i

a(M, N)) is finite for all i < t, then the set ∪n∈N Ass(Extt
R(M/anM,

N)) is finite. In particular, Ass(Ht
a(M,N)) is finite.

Proof. Apply Theorem 2.1 and Corollary 2.3. �

The following corollary immediately follows by Theorem 2.4.

Corollary 2.5. Let grade(a, N) ≥ t. Then the set ∪n∈N Ass(Extt
R(M/anM, N))

is finite. In particular, Ass(Ht
a(N)) and Ass(Ht

a(M,N)) are finite.

The following result extends [7, Corollary 2.3].

Corollary 2.6. The set ∪n∈N Ass(Ext1R(M/anM, N)) is finite. In particular,
Ass(H1

a (N)) and Ass(H1
a (M,N)) are finite.

Proof. The exact sequence 0 −→ Γa(N) −→ N −→ N/Γa(N) −→ 0 provides an
exact sequence

0 −→ Ext1R(M/anM, Γa(N)) −→ Ext1R(M/anM, N) −→ Ext1R(M/anM, N/Γa(N)).

Thus ∪n∈N Ass(Ext1R(M/anM, N)) ⊆ (∪n∈N Ass(Ext1R(M/anM, Γa(N)))) ∪
(∪n∈N Ass(Ext1R(M/anM, N/Γa(N)))). On the other hand, by Corollary 2.5
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∪n∈N Ass(Ext1R(M/anM, N/Γa(N))) is finite and so it is enough to prove that
∪n∈N Ass(Ext1R(M/anM, Γa(N))) is finite. The exact sequence

0 −→ anM −→M −→M/anM −→ 0

induces, for large n, the following exact sequence

0 −→ HomR(anM, Γa(N)) −→ Ext1R(M/anM, Γa(N)) −→ Ext1R(M, Γa(N)).

This proves that ∪n∈N Ass(Ext1R(M/anM, Γa(N))) is finite, as required. �
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