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KALLIN’S LEMMA FOR RATIONAL CONVEXITY

KIEU PHUONG CHI

Abstract. In this paper, we give a version of Kallin’s lemma for rationally
convex sets. As an application, we give sufficient conditions so that the union
of a totally real graphs in C2 is locally rationally convex.

1. Introduction

Let K be a compact subset of Cn. By hull(K) we denote the polynomially
convex hull of K i.e.,

hull(K) = {z ∈ Cn : |p(z)| ≤ max
K
|p| for every polynomial p in Cn}.

We say that K is polynomially convex if hull(K) = K. By definition, R-hull(K)
consists of all z ∈ Cn such that

|g(z)| ≤ max
K
|g|

for every rational function g which is analytic about K. If K = R-hull(K), we
say that K is rationally convex in Cn. Notice that K ⊂ R-hull(K) ⊂ hull(K).
Moreover, these inclusions may be proper. The interest for studying polynomial
convexity and rational convexity stems from the celebrated Oka-Weil approxi-
mation theorem (see [1, p. 36]) which states that holomorphic functions near a
compact polynomially (resp. rationally) convex subset of Cn can be uniformly
approximated by polynomials (resp. rational functions) in Cn. The reader may
consult excellent sources like [1, 2, 8] for more applications of polynomial convex-
ity and rational convexity to function theory of several complex variables. We are
also interested in local versions of the above concepts. A closed F ⊂ Cn is called
locally polynomially convex (resp. locally rationally convex) at a ∈ F if there
exists a closed ball B(a, r) centered at a such that B(a, r) ∩ F is polynomially
convex (resp. locally rationally convex).

Observe that union of two polynomially convex sets may even fail to be ra-
tionally convex (see [7, p. 272]). On the positive side, the following result due
to Kallin gives a sufficient condition for polynomial convexity of union of two
polynomially convex compact sets.
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Theorem 1.1. (Kallin’s lemma) Suppose that
1) X1 and X2 are polynomially convex subsets of Cn;
2) Y1 and Y2 are polynomially convex subsets of C such that 0 is a boundary point
of both Y1 and Y2 and Y1 ∩ Y2 = {0};
3) p is a polynomial such that p(X1) = Y1 and p(X2) = Y2;
4) p−1(0) ∩ (X1 ∪X2) is polynomially convex.
Then X1 ∪X2 is polynomially convex.

Kallin’s lemma is a powerful tool in verifying polynomial convexity of finite
union of polynomially convex sets. For a comprehensive survey on Kallin’s lemma
and its use, we refer the reader to [3] (see also [5] for a recent development).

The purpose of this paper is to provide an analogous result for rational con-
vexity.
Theorem 1.2. Suppose that
1) X1 and X2 are polynomially convex subsets of Cn;
2) Y1 and Y2 are polynomially convex subsets of C such that Y2 is a continuous
arc, ∂Y1 is a continuous Jordan curve and E = Y1 ∩ Y2 has one-dimensional
Hausdorff measure zero;
3) p is a rational function with poles off X1 ∪ X2 such that p(X1) = Y1 and
p(X2) = Y2;
4) p−1(λ) ∩ (X1 ∪X2) is polynomially convex for every λ ∈ E.
Then X1 ∪X2 is rationally convex.

Recall that by a continuous arc we mean the homeomorphism image of the unit
interval [0, 1]. Note that there is a continuous arc having positive two-dimension
Hausdorff measure (see [1, p. 202]). In comparison with Theorem 1.1, even though
the assumptions on p and Y1∩Y2 have been relaxed, we have to impose a stronger
restriction on the shape of Y2. Nevertheless, from Theorem 1.2 we may derive
the following consequence which is easy to appreciate.
Corollary 1.3. Let ϕ be a smooth complex valued function of class C1 defined
on a neighborhood U of 0 ∈ C. Assume that
1) ϕ(0) = ∂ϕ

∂z (0) = ∂ϕ
∂z (0) = 0.

2) {z : Im ϕ(z) = 0} is countable.
Let M be the graph {(z, z + ϕ(z)) : z ∈ U}. Then R2 ∪M is locally rationally
convex at the origin.

There are a lot of functions ϕ verifying the assumptions of Corollary 1.3. In-
deed, let {aj}j≥1 be a sequence of real numbers decreasing to 0. Let ϕ1 be a real
valued C1 smooth function on R such that ϕ1 ≥ 0, ϕ1 = 0 precisely on the set
{aj}j≥1 ∪ {0}. Then the function ϕ(z) := ϕ1(x) + i|z|2 satisfies the conditions of
Corollary 1.3.

2. Preliminaries

For a compact set K ⊂ Cn, let C(K) denote the algebra of all continuous
complex valued functions on K, with the norm

‖g‖K = max{|g(z)| : z ∈ K}, for every g ∈ C(K),
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and let P (K) denote the closure of the set of polynomials in C(K); let A(K) be
the subalgebra of C(K) of functions which are holomorphic on the interior int(K)
of K; let R(K) be the closure in C(K) of rational functions with poles off K. It
is well-known that K, K̂ and R-hull(K) respectively can be identified with the
space of maximal ideals of C(K), P (K) and R(K) (see [1, 2]). In the special case
that K is a compact subset of the complex plane, we will make use of Mergelyan’s
theorem (see [2, p. 48]) which states that if K̂ = K then A(K) = P (K). We will
also use well-known results concerning the algebra R(K) for K a compact subset
of the complex plane. The following result is Hartogs-Rosenthal’s theorem (see
[1, p. 10]).

Theorem 2.1. (Hartogs-Rosenthal) If K is a compact subset of the complex
plane which has two-dimensional Lebesgue measure zero, then R(K) = C(K).

Let E be a subset of the complex plane. By AC(E) will be denoted the family
of functions f such that f is continuous on the Riemann sphere S2, f is analytic
off some compact subset of E, ‖f‖S2 ≤ 1 and f(∞) = 0. The continuous analytic
capacity of E is

α(E) = sup{|f ′(∞)| : f ∈ AC(E)}.
For basic materials on continuous analytic capacity the readers may consult [2].
The following result is Vituskhin’s characterization of K for which R(K) = A(K)
in terms of continuous analytic capacity (see [2, p. 217]) .

Theorem 2.2. (Vituskhin) Let K be a compact subset of the complex plane. The
following are equivalent
1) R(K) = A(K).
2) For every bounded open set D, α(D \K) = α(D \ int K).

The next lemma is an easy consequence of Vitushkin’s theorem.

Lemma 2.3. Let K1 be a compact subset of C such that R(K1) = A(K1). Let
K2 ⊂ C be a compact subset having two-dimensional Lebesgue measure zero.
Then

R(K1 ∪K2) = A(K1 ∪K2).

Proof. LetD be any open bounded subset of C. By virtue of Vitushkin’s theorem,
it suffices to show

α
(
D \ (K1 ∪K2)

)
= α

(
D \ int(K1 ∪K2)

)
where α is continuous analytic capacity. Since K2 has two-dimensional Lebesgue
measure zero and K1 is compact, we infer that int(K1 ∪K2) = intK1.

Now because R(K1) = A(K1), we apply Theorem 2.2 to get

α(D \K1) = α
(
D \ intK1

)
.

Thus

(1) α(D \K1) = α
(
D \ intK1

)
= α

(
D \ int(K1 ∪K2)

)
.
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On the other hand, since K2 has two-dimensional Lebesgue measure zero, from
Hartog-Rosenthal’s theorem we deduce R(K2) = C(K2) = A(K2). This implies
that

α
(

(D \K1) \K2

)
= α

(
(D \K1) \ intK2

)
= α

(
D \K1

)
.

Hence

(2) α(D \ (K1 ∪K2)
)

= α(D \K1).

Combining (1) and (2) we get

α
(
D \ (K1 ∪K2)

)
= α

(
D \ int(K1 ∪K2)

)
.

The lemma is proved. �

Let K be a compact subset of Cn and let A be a uniform algebra on K. A point
x ∈ K is a peak point for A if there is a function f ∈ A such that f(x) = 1 while
|f(y)| < 1 for y ∈ K and y 6= x. The function f which satisfies this condition is
called to be peak at x. The well-known lemma below (see [8, p. 62]) is a simple
observation that certain points are peak point for P (K).

Lemma 2.4. If K is a compact, polynomially convex subset of the complex plane,
then every point of ∂K is a peak point of P (K).

Proof. Without loss of generality, assume that the origin is a point of ∂K and
that K is a subset of the open unit disk. Let {zn}∞n=1 be a sequence in C \ K
that converges to the origin, and for each n, let γn be an arc in the Riemann
sphere from zn to infinity that misses K. Fix a point z0 ∈ K \ {0}, and for each
n, let θn be a branch of log(z− zn) defined on C\γn, the θn is chosen so that the
sequence θn(z0) converges. The sequence {θn}∞n=1 converges pointwise on K \{0}
to a continuous branch of log z. We shall denote the limit function by log z. The
function ϕ(z) defined by ϕ(z) = log z

log z−1 , z ∈ K \ {0}, ϕ(0) = 1, is continuous
on K and is holomorphic on the interior of K. Moreover , ϕ(0) = 1 > |ϕ(z)| for
every z ∈ K \ {0}. From Mergelyan’s theorem we get that ϕ ∈ P (K), so 0 is a
peak point for the algebra P (K). The lemma is proved. �

3. Proof of the main results

Proof of Theorem 1.2. We follow the lines in the proof of the classical Kallin’s
lemma (Theorem 1.1). Let X = X1 ∪ X2 and Y = Y1 ∪ Y2. First we claim
that every point x ∈ ∂Y is a peak point for R(Y ). Indeed, since Y1 is poly-
nomially convex, by Mergelyan’s theorem we have P (Y1) = A(Y1). In partic-
ular R(Y1) = A(Y1). Since Y2 is a continuous arc, it follows that Y2 has two-
dimensional Lebesgue zero. Applying Lemma 2.3 we get R(Y ) = A(Y ). If
x ∈ ∂Y1, by Lemma 2.4, there exists p ∈ A(Y1) peaking at x. By extending p to
a continuous function on Y2, we infer that x is a peak point for A(Y ) = R(Y ).
The case where x ∈ Y2 can be treated analogously. The claim follows.

Now we let x ∈ R-hull(X). Let µ be a representing measure for R(X) on X,
representing the point x, that is, µ is a positive regular Borel measure on X such
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that f(x) =
∫
fdµ for all f ∈ R(X) (see [2, p. 31]). By the global description of

rational convex hulls (see [7, p. 262]) we have p(x) ∈ p(X) = Y. There are two
cases to be considered.
Case 1. p(x) ∈ ∂Y . Let h be a peak function for R(Y ), peaking at p(x). Let
H = h ◦ p. Clearly H ∈ R(X). For every polynomial f and positive integers k
we have f.Hk ∈ R(X). We obtain

(3) f(x) = f(x)Hk(x) =
∫
fHkdµ

for all positive integers k. Let ν be the restriction of µ to p−1
(
p(x)

)
∩X. Passing

to limit as k → ∞ in (3), by Lebesgue’s dominated convergence theorem we
obtain

f(x) =
∫
fdν.

It follows that

|f(x)| = |
∫
fdν| ≤ ||f ||

p−1
(
p(x)
)
∩X

∫
dν ≤ ||f ||

p−1
(
p(x)
)
∩X
.

This implies that

x ∈ hull
(
p−1
(
p(x)

)
∩X

)
.

We will show that x ∈ X. If p(x) ∈ E then p−1
(
p(x)

)
∩ X is polynomially

convex. It follows that

x ∈ hull
(
p−1
(
p(x)

)
∩X

)
= p−1

(
p(x)

)
∩X ⊂ X.

If p(x) ∈ ∂Y \ E then p(x) ∈ Y1 \ E or p(x) ∈ Y2 \ E. This implies that

p−1
(
p(x)

)
∩X ⊂ X1 or p−1

(
p(x)

)
∩X ⊂ X2.

Since X1, X2 are polynomially convex we get that

x ∈ hull
(
p−1
(
p(x)

)
∩X

)
⊂ hull(X1) = X1

or
x ∈ hull

(
p−1
(
p(x)

)
∩X

)
⊂ hull(X2) = X2.

Hence x ∈ X.
Case 2. p(x) ∈ int Y . We let ϕ be a complex valued continuous function on ∂Y1

such that ϕ = 0 on E and ϕ 6≡ 0. By Rudin-Carleson interpolation’s theorem
(see [6]), we can find g ∈ A(Y1) such that g = ϕ on ∂Y2. Clearly g 6≡ 0 on
int(Y1). Thus there exists a sequence {xj}j≥1 ∈ R-hull(X), xj → x such that
p(xj) ∈ int(Y1) and g(p(xj)) 6= 0. By setting g = 0 on Y2, in view of the relation
R(Y ) = A(Y ), we have g ∈ R(Y ).

Fix a polynomial f . For j, k ≥ 1 we define

fj,k(z) =
g
(
p(z)

)
g
(
p(xj)

)fk(z).
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Clearly fj,k ∈ R(X). It follows that

(4) |fk(xj)| = |fj,k(xj)| =
∣∣∣ ∫

X
fj,kdµ

∣∣∣ ≤ ‖fk‖X1

∫
X1

∣∣∣ g(p(z))
g
(
p(xj)

)∣∣∣dµ(z).

Taking kth roots and letting k → ∞ in (4), we obtain |f(xj)| ≤ ‖f‖X1 ∀j ≥ 1.
Letting j →∞ we infer |f(x)| ≤ ‖f‖X1 . This means that x ∈ hull(X1) = X1 ⊂ X.
The proof is thereby complete. �

Proof of Corollary 3. By a well-known result of Wermer on local polynomial con-
vexity of graphs (see [1, p. 102]) and by the first condition on ϕ we deduce that
R2 and M are locally polynomially convex at the origin. Choose r > 0 small
enough such that Mr := M ∩B(0, r) is polynomially convex.

Now we set p(z, w) = z + w. Clearly p(R2) = R and for every r > 0 small
enough Nr := p(Mr) is a compact polynomially convex subset of C. Moreover,
by the second assumption on ϕ, the set E := Nr∩R is countable. Notice that for
λ ∈ E, the set p−1(λ) ∩ (R2 ∪Mr) ∩ B(0, r) is the union of two smooth arcs. It
follows that this set is polynomially convex (see [1, p. 84]). Thus with the choice
of p, we may apply Theorem 1.2 to get the desired conclusion. �

Acknowledgments.

The author is greatly indebted to Professor Nguyen Quang Dieu for suggesting
the problem and for many stimulating conversations. My thanks go to the referee
for his comments.

References

[1] H. Alexander and J. Wermer, Several Complex Variables and Banach Algebras, Grad.
Texts in Math. 35, Springer-Verlag, New York, 1998.

[2] T. W. Gamelin, Uniform Algebras, Prentice-Hall, 1984.
[3] E. Kallin, Fat polynomially convex sets, Function Algebras, (Proc. Inter. Symp. on Func-

tion Algebras, Tulane Univ, 1965), Scott Foresman, Chicago, 149-152, 1966.
[4] Nguyen Quang Dieu and Kieu Phuong Chi, Function algebras on disks II, Indag. Math.

17 (2006), 557–566.
[5] P. J. de Paepe, Eva Kallin’s lemma on polynomial convexity, Bull. London Math. Soc. 33

(2001), 1–10.
[6] W. Rudin, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc. 7

(1956), 808–811 .
[7] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259–289.
[8] E. Stout, Polynomial Convexity, Birkhäuser, 2007.
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