KALLIN'S LEMMA FOR RATIONAL CONVEXITY

KIEU PHUONG CHI

ABSTRACT. In this paper, we give a version of Kallin's lemma for rationally convex sets. As an application, we give sufficient conditions so that the union of a totally real graphs in \mathbb{C}^2 is locally rationally convex.

1. INTRODUCTION

Let K be a compact subset of \mathbb{C}^n . By hull(K) we denote the polynomially convex hull of K i.e.,

 $\operatorname{hull}(K) = \{ z \in \mathbf{C}^n : |p(z)| \le \max_K |p| \text{ for every polynomial } p \text{ in } \mathbf{C}^n \}.$

We say that K is polynomially convex if hull(K) = K. By definition, R-hull(K) consists of all $z \in \mathbb{C}^n$ such that

$$|g(z)| \le \max_{K} |g|$$

for every rational function g which is analytic about K. If K = R-hull(K), we say that K is rationally convex in \mathbb{C}^n . Notice that $K \subset R$ -hull $(K) \subset \text{hull}(K)$. Moreover, these inclusions may be proper. The interest for studying polynomial convexity and rational convexity stems from the celebrated Oka-Weil approximation theorem (see [1, p. 36]) which states that holomorphic functions near a compact polynomially (resp. rationally) convex subset of \mathbb{C}^n can be uniformly approximated by polynomials (resp. rational functions) in \mathbb{C}^n . The reader may consult excellent sources like [1, 2, 8] for more applications of polynomial convexity and rational convexity to function theory of several complex variables. We are also interested in local versions of the above concepts. A closed $F \subset \mathbb{C}^n$ is called locally polynomially convex (resp. locally rationally convex) at $a \in F$ if there exists a closed ball $\overline{B}(a, r)$ centered at a such that $\overline{B}(a, r) \cap F$ is polynomially convex (resp. locally rationally convex).

Observe that union of two polynomially convex sets may even fail to be rationally convex (see [7, p. 272]). On the positive side, the following result due to Kallin gives a sufficient condition for polynomial convexity of union of two polynomially convex compact sets.

Received June 5, 2008; in revised form August 23, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 32E20; 46J10.

Key words and phrases. Polynomial convexity, rational convexity, uniform approximation.

Theorem 1.1. (Kallin's lemma) Suppose that

 X₁ and X₂ are polynomially convex subsets of Cⁿ;
Y₁ and Y₂ are polynomially convex subsets of C such that 0 is a boundary point of both Y₁ and Y₂ and Y₁ ∩ Y₂ = {0};
p is a polynomial such that p(X₁) = Y₁ and p(X₂) = Y₂;
p⁻¹(0) ∩ (X₁ ∪ X₂) is polynomially convex. Then X₁ ∪ X₂ is polynomially convex.

Kallin's lemma is a powerful tool in verifying polynomial convexity of finite union of polynomially convex sets. For a comprehensive survey on Kallin's lemma and its use, we refer the reader to [3] (see also [5] for a recent development).

The purpose of this paper is to provide an analogous result for rational convexity.

Theorem 1.2. Suppose that

1) X_1 and X_2 are polynomially convex subsets of \mathbf{C}^n ;

2) Y_1 and Y_2 are polynomially convex subsets of \mathbf{C} such that Y_2 is a continuous arc, ∂Y_1 is a continuous Jordan curve and $E = Y_1 \cap Y_2$ has one-dimensional Hausdorff measure zero;

3) p is a rational function with poles off $X_1 \cup X_2$ such that $p(X_1) = Y_1$ and $p(X_2) = Y_2$;

4) $p^{-1}(\lambda) \cap (X_1 \cup X_2)$ is polynomially convex for every $\lambda \in E$. Then $X_1 \cup X_2$ is rationally convex.

Recall that by a continuous arc we mean the homeomorphism image of the unit interval [0, 1]. Note that there is a continuous arc having positive two-dimension Hausdorff measure (see [1, p. 202]). In comparison with Theorem 1.1, even though the assumptions on p and $Y_1 \cap Y_2$ have been relaxed, we have to impose a stronger restriction on the shape of Y_2 . Nevertheless, from Theorem 1.2 we may derive the following consequence which is easy to appreciate.

Corollary 1.3. Let φ be a smooth complex valued function of class C^1 defined on a neighborhood U of $0 \in \mathbf{C}$. Assume that

1)
$$\varphi(0) = \frac{\partial \varphi}{\partial z}(0) = \frac{\partial \varphi}{\partial \overline{z}}(0) = 0$$

2) $\{z : \operatorname{Im} \varphi(z) = 0\}$ is countable.

Let M be the graph $\{(z, \overline{z} + \varphi(z)) : z \in U\}$. Then $\mathbf{R}^2 \cup M$ is locally rationally convex at the origin.

There are a lot of functions φ verifying the assumptions of Corollary 1.3. Indeed, let $\{a_j\}_{j\geq 1}$ be a sequence of real numbers decreasing to 0. Let φ_1 be a real valued C^1 smooth function on **R** such that $\varphi_1 \geq 0, \varphi_1 = 0$ precisely on the set $\{a_j\}_{j\geq 1} \cup \{0\}$. Then the function $\varphi(z) := \varphi_1(x) + i|z|^2$ satisfies the conditions of Corollary 1.3.

2. Preliminaries

For a compact set $K \subset \mathbb{C}^n$, let C(K) denote the algebra of all continuous complex valued functions on K, with the norm

$$||g||_{K} = \max\{|g(z)| : z \in K\}, \text{ for every } g \in C(K),$$

346

and let P(K) denote the closure of the set of polynomials in C(K); let A(K) be the subalgebra of C(K) of functions which are holomorphic on the interior int(K)of K; let R(K) be the closure in C(K) of rational functions with poles off K. It is well-known that K, \hat{K} and R-hull(K) respectively can be identified with the space of maximal ideals of C(K), P(K) and R(K) (see [1, 2]). In the special case that K is a compact subset of the complex plane, we will make use of Mergelyan's theorem (see [2, p. 48]) which states that if $\hat{K} = K$ then A(K) = P(K). We will also use well-known results concerning the algebra R(K) for K a compact subset of the complex plane. The following result is Hartogs-Rosenthal's theorem (see [1, p. 10]).

Theorem 2.1. (Hartogs-Rosenthal) If K is a compact subset of the complex plane which has two-dimensional Lebesgue measure zero, then R(K) = C(K).

Let *E* be a subset of the complex plane. By AC(E) will be denoted the family of functions *f* such that *f* is continuous on the Riemann sphere S^2 , *f* is analytic off some compact subset of *E*, $||f||_{S^2} \leq 1$ and $f(\infty) = 0$. The continuous analytic capacity of *E* is

$$\alpha(E) = \sup\{|f'(\infty)| : f \in AC(E)\}.$$

For basic materials on continuous analytic capacity the readers may consult [2]. The following result is Vituskhin's characterization of K for which R(K) = A(K) in terms of continuous analytic capacity (see [2, p. 217]).

Theorem 2.2. (Vituskhin) Let K be a compact subset of the complex plane. The following are equivalent

1)
$$R(K) = A(K)$$
.

2) For every bounded open set D, $\alpha(D \setminus K) = \alpha(D \setminus int K)$.

The next lemma is an easy consequence of Vitushkin's theorem.

Lemma 2.3. Let K_1 be a compact subset of \mathbf{C} such that $R(K_1) = A(K_1)$. Let $K_2 \subset \mathbf{C}$ be a compact subset having two-dimensional Lebesgue measure zero. Then

$$R(K_1 \cup K_2) = A(K_1 \cup K_2).$$

Proof. Let D be any open bounded subset of \mathbf{C} . By virtue of Vitushkin's theorem, it suffices to show

$$\alpha(D \setminus (K_1 \cup K_2)) = \alpha(D \setminus \operatorname{int}(K_1 \cup K_2))$$

where α is continuous analytic capacity. Since K_2 has two-dimensional Lebesgue measure zero and K_1 is compact, we infer that $int(K_1 \cup K_2) = intK_1$.

Now because $R(K_1) = A(K_1)$, we apply Theorem 2.2 to get

$$\alpha(D \setminus K_1) = \alpha(D \setminus \operatorname{int} K_1).$$

Thus

(1)
$$\alpha(D \setminus K_1) = \alpha(D \setminus \operatorname{int} K_1) = \alpha(D \setminus \operatorname{int} (K_1 \cup K_2)).$$

On the other hand, since K_2 has two-dimensional Lebesgue measure zero, from Hartog-Rosenthal's theorem we deduce $R(K_2) = C(K_2) = A(K_2)$. This implies that

$$\alpha\Big((D\setminus K_1)\setminus K_2\Big)=\alpha\Big((D\setminus K_1)\setminus \mathrm{int}K_2\Big)=\alpha\big(D\setminus K_1\big).$$

Hence

(2)
$$\alpha(D \setminus (K_1 \cup K_2)) = \alpha(D \setminus K_1).$$

Combining (1) and (2) we get

$$\alpha(D \setminus (K_1 \cup K_2)) = \alpha(D \setminus \operatorname{int}(K_1 \cup K_2)).$$

The lemma is proved.

Let K be a compact subset of \mathbb{C}^n and let \mathcal{A} be a uniform algebra on K. A point $x \in K$ is a peak point for \mathcal{A} if there is a function $f \in \mathcal{A}$ such that f(x) = 1 while |f(y)| < 1 for $y \in K$ and $y \neq x$. The function f which satisfies this condition is called to be peak at x. The well-known lemma below (see [8, p. 62]) is a simple observation that certain points are peak point for P(K).

Lemma 2.4. If K is a compact, polynomially convex subset of the complex plane, then every point of ∂K is a peak point of P(K).

Proof. Without loss of generality, assume that the origin is a point of ∂K and that K is a subset of the open unit disk. Let $\{z_n\}_{n=1}^{\infty}$ be a sequence in $\mathbb{C} \setminus K$ that converges to the origin, and for each n, let γ_n be an arc in the Riemann sphere from z_n to infinity that misses K. Fix a point $z_0 \in K \setminus \{0\}$, and for each n, let θ_n be a branch of $\log(z - z_n)$ defined on $\mathbb{C} \setminus \gamma_n$, the θ_n is chosen so that the sequence $\theta_n(z_0)$ converges. The sequence $\{\theta_n\}_{n=1}^{\infty}$ converges pointwise on $K \setminus \{0\}$ to a continuous branch of $\log z$. We shall denote the limit function by $\log z$. The function $\varphi(z)$ defined by $\varphi(z) = \frac{\log z}{\log z - 1}, z \in K \setminus \{0\}, \varphi(0) = 1$, is continuous on K and is holomorphic on the interior of K. Moreover, $\varphi(0) = 1 > |\varphi(z)|$ for every $z \in K \setminus \{0\}$. From Mergelyan's theorem we get that $\varphi \in P(K)$, so 0 is a peak point for the algebra P(K). The lemma is proved.

3. Proof of the main results

Proof of Theorem 1.2. We follow the lines in the proof of the classical Kallin's lemma (Theorem 1.1). Let $X = X_1 \cup X_2$ and $Y = Y_1 \cup Y_2$. First we claim that every point $x \in \partial Y$ is a peak point for R(Y). Indeed, since Y_1 is polynomially convex, by Mergelyan's theorem we have $P(Y_1) = A(Y_1)$. In particular $R(Y_1) = A(Y_1)$. Since Y_2 is a continuous arc, it follows that Y_2 has two-dimensional Lebesgue zero. Applying Lemma 2.3 we get R(Y) = A(Y). If $x \in \partial Y_1$, by Lemma 2.4, there exists $p \in A(Y_1)$ peaking at x. By extending p to a continuous function on Y_2 , we infer that x is a peak point for A(Y) = R(Y). The case where $x \in Y_2$ can be treated analogously. The claim follows.

Now we let $x \in R$ -hull(X). Let μ be a representing measure for R(X) on X, representing the point x, that is, μ is a positive regular Borel measure on X such

348

that $f(x) = \int f d\mu$ for all $f \in R(X)$ (see [2, p. 31]). By the global description of rational convex hulls (see [7, p. 262]) we have $p(x) \in p(X) = Y$. There are two cases to be considered.

Case 1. $p(x) \in \partial Y$. Let *h* be a peak function for R(Y), peaking at p(x). Let $H = h \circ p$. Clearly $H \in R(X)$. For every polynomial *f* and positive integers *k* we have $f.H^k \in R(X)$. We obtain

(3)
$$f(x) = f(x)H^k(x) = \int fH^k d\mu$$

for all positive integers k. Let ν be the restriction of μ to $p^{-1}(p(x)) \cap X$. Passing to limit as $k \to \infty$ in (3), by Lebesgue's dominated convergence theorem we obtain

$$f(x) = \int f d\nu.$$

It follows that

$$|f(x)| = |\int f d\nu| \le ||f||_{p^{-1}(p(x)) \cap X} \int d\nu \le ||f||_{p^{-1}(p(x)) \cap X}.$$

This implies that

$$x \in \operatorname{hull}\left(p^{-1}(p(x)) \cap X\right).$$

We will show that $x \in X$. If $p(x) \in E$ then $p^{-1}(p(x)) \cap X$ is polynomially convex. It follows that

$$x \in \operatorname{hull}\left(p^{-1}(p(x)) \cap X\right) = p^{-1}(p(x)) \cap X \subset X.$$

If $p(x) \in \partial Y \setminus E$ then $p(x) \in Y_1 \setminus E$ or $p(x) \in Y_2 \setminus E$. This implies that

$$p^{-1}(p(x)) \cap X \subset X_1 \text{ or } p^{-1}(p(x)) \cap X \subset X_2$$

Since X_1, X_2 are polynomially convex we get that

$$x \in \operatorname{hull}\left(p^{-1}(p(x)) \cap X\right) \subset \operatorname{hull}(X_1) = X_1$$

or

$$x \in \operatorname{hull}\left(p^{-1}(p(x)) \cap X\right) \subset \operatorname{hull}(X_2) = X_2.$$

Hence $x \in X$.

Case 2. $p(x) \in \text{int } Y$. We let φ be a complex valued continuous function on ∂Y_1 such that $\varphi = 0$ on E and $\varphi \not\equiv 0$. By Rudin-Carleson interpolation's theorem (see [6]), we can find $g \in A(Y_1)$ such that $g = \varphi$ on ∂Y_2 . Clearly $g \not\equiv 0$ on $\text{int}(Y_1)$. Thus there exists a sequence $\{x_j\}_{j\geq 1} \in R$ -hull $(X), x_j \to x$ such that $p(x_j) \in \text{int}(Y_1)$ and $g(p(x_j)) \neq 0$. By setting g = 0 on Y_2 , in view of the relation R(Y) = A(Y), we have $g \in R(Y)$.

Fix a polynomial f. For $j, k \ge 1$ we define

$$f_{j,k}(z) = \frac{g(p(z))}{g(p(x_j))} f^k(z).$$

Clearly $f_{i,k} \in R(X)$. It follows that

(4)
$$|f^k(x_j)| = |f_{j,k}(x_j)| = \left| \int_X f_{j,k} d\mu \right| \le ||f^k||_{X_1} \int_{X_1} \left| \frac{g(p(z))}{g(p(x_j))} \right| d\mu(z).$$

Taking kth roots and letting $k \to \infty$ in (4), we obtain $|f(x_j)| \le ||f||_{X_1} \quad \forall j \ge 1$. Letting $j \to \infty$ we infer $|f(x)| \le ||f||_{X_1}$. This means that $x \in \text{hull}(X_1) = X_1 \subset X$. The proof is thereby complete.

Proof of Corollary 3. By a well-known result of Wermer on local polynomial convexity of graphs (see [1, p. 102]) and by the first condition on φ we deduce that \mathbf{R}^2 and M are locally polynomially convex at the origin. Choose r > 0 small enough such that $M_r := M \cap \overline{B}(0, r)$ is polynomially convex.

Now we set p(z, w) = z + w. Clearly $p(\mathbf{R}^2) = \mathbf{R}$ and for every r > 0 small enough $N_r := p(M_r)$ is a compact polynomially convex subset of \mathbf{C} . Moreover, by the second assumption on φ , the set $E := N_r \cap \mathbf{R}$ is countable. Notice that for $\lambda \in E$, the set $p^{-1}(\lambda) \cap (\mathbf{R}^2 \cup M_r) \cap \overline{B}(0, r)$ is the union of two smooth arcs. It follows that this set is polynomially convex (see [1, p. 84]). Thus with the choice of p, we may apply Theorem 1.2 to get the desired conclusion. \Box

ACKNOWLEDGMENTS.

The author is greatly indebted to Professor Nguyen Quang Dieu for suggesting the problem and for many stimulating conversations. My thanks go to the referee for his comments.

References

- H. Alexander and J. Wermer, Several Complex Variables and Banach Algebras, Grad. Texts in Math. 35, Springer-Verlag, New York, 1998.
- [2] T. W. Gamelin, Uniform Algebras, Prentice-Hall, 1984.
- [3] E. Kallin, Fat polynomially convex sets, *Function Algebras*, (Proc. Inter. Symp. on Function Algebras, Tulane Univ, 1965), Scott Foresman, Chicago, 149-152, 1966.
- [4] Nguyen Quang Dieu and Kieu Phuong Chi, Function algebras on disks II, Indag. Math. 17 (2006), 557–566.
- [5] P. J. de Paepe, Eva Kallin's lemma on polynomial convexity, Bull. London Math. Soc. 33 (2001), 1–10.
- [6] W. Rudin, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc. 7 (1956), 808–811.
- [7] G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259–289.
- [8] E. Stout, Polynomial Convexity, Birkhäuser, 2007.

DEPARTMENT OF MATHEMATICS, VINH UNIVERSITY, VINH CITY, VIETNAM

E-mail address: kpchidhv@yahoo.com