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PERSISTENCE AND GLOBAL ATTRACTIVITY
IN THE MODEL A, ;1 = AyF(An, An_1,- -+, Ap—m)

DANG VU GIANG

ABSTRACT. First, we prove the uniform persistence for discrete model A,,+1 =
AnFn(An, Ap—1,--+ , An_m) of population growth, where F), : ((Loo)mJrl —
(0, 00) are continuous all. Second, we investigation the effect of delay m on
the global attractivity of the unique positive equilibrium.

1. INTRODUCTION

Consider the model
(1-1) Ant1 :AnFn(AnaAn—la"‘ aAn—m), n=01,---,

where F, : (0,00)™*! — (0,00) are continuous all. This model is potentially
appeared in medicine (for example, the population of blood cells) and was inves-
tigated by several authors [Graef, Liz, Tkachenko et al.] with more restrictions
on F,. If F,(x,y) = exp(y — ax — By) with «, 8 > 0 we get back a model investi-
gated by Tkachenko et al. (But they found no explicit conditions for the global
attractivity of the positive equilibrium.) A positive solution {A,}5° _, is called
persistent if
0 < liminf A,, < limsup 4,, < cc.

n—00 n—o0
The following theorem gives a sufficient condition for persistent (non-extinctive)
model.

Theorem 1. Assume that

(12) Fn($07x11"' ,$m)<b<00
foralln=0,1,--- , and xg,x1, - , Ty >0,
(1.3) lim inf min F,(zo, 21, - ,om) >0

n—0o0 zg,x1, ,xm€[0,K]
for every K > 0, and
(1.4) limsup  Fp(xo,x1, - ,&m) < 1,

T,20,T1," Lm0
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(1.5) lim inf Fo(xo, 21, ,xm) > L.

n—00,20,21, " ,&m—0+0

Then every solution {Ap}o>_,.. of (1.1) is persistent.

Proof. First, we prove that {A,}52 _,  is bounded from above. Assume, for the

sake of a contradiction, that limsup,,_,., A, = oco. For each integer n > m, we
define
kn:=max{p: —m < p<n, A, = max A;}.

—m<i<n

Observe that k_,,, < k_pmt1 < -+ <k — 00 and that
(1.6) lim Ay, = oo.

n—oo

But Akn < bAkn—lv SO
(1.7) lim Ay, _1 = o0.

n—oo

Let ng > 0 such that k,, > 0. We have for n > ny,
A —1Fr—1(Akyp—1, A2, -+, Am1—m) = Ag,, > Ap,1

and therefore,
Fr1(Ag, -1 Aky—25 5 Ak —1-m) > 1.
By (1.4) and (1.7), this implies that

(1.8) lim sup min{ Ay, 2, , Ag,—1-m} < 00.

n—oo

On the other hand,
A, = Ap1Fp1(Ag,—1, 0 Apm1om) = -

= Ap—1-mFrp—1-m(Akp—1-m, -+ Apg—1—2m) X -+ X
XFy 1 (A1, Ak —1-m)
< min{Ag, ob? -, Ag,1-mb™ T

Now take limsup on both sides we have limsup,,_,., Ak, < oo which contradicts
(1.6). Thus, {An} is bounded from above. Let K be an upper bound of
{AntnZm-

Next, we prove that liminf,, .., A, > 0. Assume, for the sake of a contradic-
tion, that liminf, .., A, = 0. For each integer n > m, we define

o0
n=—m

spr=max{p: —m< p<n, A, = m<in< A}
—m<i<n

Clearly, s < S—my1 < - -+ < s, — 00 and that
(1.9) lim A;, =0.

n—oo

But As, > aAs, 1, where

a = inf min Fn(xo, -+ yxm) >0,
N2>sp—1-mxg,x1, - ,2m€[0,K]
S0
(1.10) lim A,, _; = 0.

n—oo
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Let ng > 0 such that s,, > 0. We have for any n > ny,
Ag, = Ag, 1 Fs, 1(Ag—1, - Aspc1om) 2 Ag oo 1(As 1+ s As—1-m)
and therefore,
Fo1(As -1, Asm1-m) < L.
By (1.5) and (1.10), this implies that
lim inf max{Ag, 2, -, As,—1-m} > 0.

n—oo

On the other hand,
Asn = ASn—lFSn—l(ASn—l? e 7A5n_1_m) =

- Asnflfmanflfm(Asnflfma to 7Asn7172m) X X
X an—1<ASn—17 e 7A8n—1—m)
2 m+1
> max{As,—2a% -+, As,—1-ma™" }.

Now take liminf as n — oo on both sides we have liminf, . As, > 0 which
contradicts (1.9) The proof is complete. O

2. THE GLOBAL ATTRACTIVITY

In this section we assume that there is a unique positive equilibrium z of (1.1)
and

(2.1) 1=F.(z, - ,%),
for every n =0,1,2,--- . Suppose further that if
Fo(zo, 21, ,om) < 1,
then max{xg,z1, -+ ,Zm} > T, and if
Fo(zo, 21, ,&m) > 1,
then min{xo, 21, - ,Zm} < Z.

A solution {A,}52 _,  is called nonoscillated, if

limsup A, < z or liminf A,, > Z.
n—o0 n—oo

Lemma. FEvery nonoscillated solution of (1.1) converges to T.

Proof. Without loss of generality we assume that
AnoaAno-i-l) e Z z
all. Then F,,(Ang, Ang—m+1, 5 Any) < 1, 80 Apgt1 < Apy. Similarly, A, < 4,
for all n > ng, - - -. Therefore, there is a limit of {A,}2>_, . This limit is exactly
x.
To investigate the effect of delay, we suppose further that

(2.2)  limsup|In F,(xo,x1, - ,2m)| < Lmax{‘ln@}, In 2
z T

n—oo

=

for all zg,x1,--+ ,xm > 0. O

yttt
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Theorem 2. Assume that (1.2) — (1.5), (2.1) and (2.2) hold. Suppose further
that
3

3

Then every solution {A,}22 . of (1.1) converges to .

Proof. Without loss of generality we assume that L(m + %) > 1 (if L is small, we
can replace it by 1/(m+3)) and {4,352 _,, is an oscillated solution. This means
that there is a sequence t, — oo of integers such that A;, < z, A¢, 41 > 7 and
tp+1 —tn > 2m for every n =1,2,---. Let

At
n > }hlfl for every t>t, —2m.
z

Then

‘ A1 ‘ =|InFi(Ay, -, Armm)| < Lmax{}l - |In Atjm ’} < Lpy

for all ¢ > t; — m. Indeed, by our assumption, we have for every € > 0,
Ay |1 Atm }
o In =2 |
z

x
if ¢ is large enough. Here, we use L instead of L + € legally. Let A;, < Z with
te > t1. It follows that

I Fy(Ap, -+, Aeem)| < (L +€) max{\l

te—1

Z“ A /| ZU AHI SLpi(te+1 =)
t+

for all s € [t} — m, t,]. This is right because the last sum is of (¢, + 1 — s) terms
and each of them is < Lp;. Furthermore,

In

‘ A1 Aim ‘}

‘—“HFt(At, L Aimm)| < Lmax{|l

)

< LPpi(ti+m+1—t)

for all t € [t1,t« + m]. First, we prove that

At
n—

‘l <p1(L(m+g)—%) for all ¢ >t +m.

If this were not so, let

A 1
T:min{t>t1+m: Ay > 7, ‘lngt‘ >p1<L(m+;)_§)}'
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If A, == min{Ap_q, - aAT—(m—i—l)} <zthent,+m+1>T >t +m and

3.1 A A
pr(Lim+3) =) < \m Z\l m‘ Z ‘1 m‘
t*"‘m_[f] tetm
< D L+ Y. LPPpita+m+1-1)
t=t. t=ti+m—[F]+1

= Lofm+1- () + o l3)(0)
< (Lm0,

+1)

([a] denotes the largest integer < a). This is a contradiction, so we have
min{Ar_1, -+, Ap_(my1y} > T

and consequently,

(2.3) Fr(Ar—1, -+, Ap_(m41)) < L.

Hence, Ar_1 > Ap. By the minimality of T' we should have T" = t; + m + 1.
Therefore,

3. 1 At+1 At+1
t1+m—[1] ti+m
< Z Lpy + Z LPpi(ti +m+1—1)
t=t1 t=t1+m—[L]+1
1 1 1.1
= L 1—[=)+=pL?[=]([+] +1
pr(m+ 1= (7)) + 5p LTI+ 1)

< PI(L(m"i'g) - %)

This is a contradiction, so we have
A 3 1
‘lnft‘ < pl(L(m—i— 5) — 5) forall ¢>1t +m.
z

This result permits us to choose
3 1
p2 = p1(L(m + 5) - 5)-
Repeat the above argument (with ¢; and p; replaced by t2 and ps) we have

Ay

lIn = - pg(L(m—i-g)—%) for all ¢ >ty +m.

Using the assumption (L(m + %) — %) < 1, we complete the proof. O
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3. APPLICATION

A tipical example is the equation
Apy1 = Ap eXP(’Y —ad, — /BAn—l)-
Here m = 1 and we easily compute

v
a+p’

Hence, if ve2? < % the positive equilibrium is globally attractive.

i‘:

L =n~e¥.

Another example is the model of blood cells
A,

Apis =
I Y A

where

m
A>1 and Zaﬂ?” =« is fixed.
j=1

We easily compute
_oAa—1 I A—1
rT=—— = —.
a A
A—1

Hence, if (m + %)T < % the positive equilibrium is globally attractive.
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