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DOMAINS OF OPERATOR SEMI-ATTRACTION OF
OPERATOR SEMI-STABLE PROBABILITY MEASURES

HO DANG PHUC

Abstract. In this paper we attempt to describe domains of operator semi-
attraction of operator semi-stable probability measures on finite dimensional
Euclidean spaces. We give new characterizations of the operator semi-stability,
the domains of operator semi-attraction and the domains of operator attrac-
tion.

1. Introduction and notation

Let V be a finite dimensional real vector space with an inner product (., .)
and a norm ‖.‖. For an arbitrary linear operator A acting in V and a probability
measure (p.m.) p on V , Ap is a p.m. defined by Ap(E) := p(A−1E) for each
Borel subset E ⊂ V . Further, we denote the p.m. concentrated at the point
x ∈ V by δ(x), the convolution of two p.m.’s p and q by pq. Throughout, for
natural number n the power pn is taken in the sense of the convolution. The
characteristic function (Fourier transform) of a p.m. p is defined by the formula

p∧(y) :=
∫

V

ei(x;y)p(dx).

It is easy to verify that for linear operators A, B and p.m.’s p, q the formulas

(Ap)∧(y) = p∧(A∗y), A(pq) = ApAq, (AB)p = A(Bp)

hold, where A∗ denotes the adjoin operator of A. Besides, if p is infinitely di-
visible (inf .div.) p.m. then for every positive t > 0 the power (p∧)t is also the
characteristic function of an inf .div. p.m. which is denoted straight by pt.

Given p.m. p, we define p̄ by putting p̄(E) := p(−E) for each Borel subset
E of V , where −E := {−y : y ∈ E}. Moreover, the p.m. |p|2 := pp̄ is called
symmetrization of p. The p.m. p is said to be full if its support is not contained
in any proper subspace of V . Let ⇒ mean the weak convergence of measures and
AutV denote the group of all non-singular linear operators acting on V . In the
following definitions, the assumption on non-singularity of the operators is not
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essential, it takes place only for convenience in the sequel. Thus, in what follows,
(Ak), (bk) and (nk), also with other subscripts or indices, will denote a sequence
of operators from AutV , a sequence of vectors from V and a strictly increasing
sequence of positive integers, respectively. Then if

(1) (Akp
nk)δ(bk) ⇒ q

as k → ∞, we say that p belongs to the domain of operator partial attraction of
q (write p ∈ DOPA(q)). Moreover, if we assume in addition that

(2)
nk

nk+1
→ r > 0

as k → ∞, then we say that q is operator semi-stable and p belongs to the
domain of operator semi-attraction of q (p ∈ DOSA(q)), or more exactly, to the
domain of operator r-semi-attraction of q (p ∈ DOSA(r, q)). Further, we say
that q is operator stable and p belongs to the domain of operator attraction of q
(p ∈ DOA(q)), if (nk) in (1) coincides with the sequence of all natural numbers,
i.e.

(3) (Akpk)δ(bk) ⇒ q

as k → ∞.
Following Jajte ([4, Lemma 1]) we have

Lemma 1. If (1) holds and q is full then Ak → Θ, the zero operator.

Let LIM(ck) denote the set of all limit points of a real sequence (ck). Then
under power of Lemma 1, it is easy to see that

Note. If (1) holds for some sequences (Ak), (bk) and (nk) with q full then there
are new sequences (A1

k), (b1
k) and (n1

k) such that (1) holds for them and 1 ∈
LIM(n1

k/n
1
k+1).

Let G(q) := {r > 0 : (1) and (2) hold with some p}. By virtue of Theorem [4]
and Theorem 3.2 [6], the set G(q) is a closed multiplicative subgroup of R+ :=
{r : r > 0} if G(q) �= ∅. Thus either G(q) = R+ and q is operator stable, or
G(q) is generated by s, the largest element in R+ less than 1. In the last case
we say that q is operator (s)-semi-stable and p belongs to the domain of operator
(s)-semi-attraction of q (denote p ∈ DOSA((s), q)).

For more detailed descriptions of operator stable and operator semi-stable
p.m.’s, the reader is referred to [3, 4-6, 8]. Here we only concern the problem
similar to that of stable and semi-stable p.m.’s discussed in [2]. In particular, we
shall show that in the definitions of the operator semi-stability, the domain of
operator semi-attraction and the domain of operator attraction, the conditions
(2) and (3) can be replace by the weaker ones.

2. Results and demonstration

This section is started with definitions of type and equivalence of p.m.’s.
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Definition 1. Two p.m.’s q1 and q2 are said to be of the same type if there are
A ∈ AutV and b ∈ V such that q2 = (Aq1)δ(b). If q1 and q2 are inf .div. and
there is a positive number s > 0 such that

(4) q2 = (Aqs
1)δ(b)

then q1 and q2 are called equivalent.

Remark. It is well known that an inf .div. p.m. q is operator stable if and only
if every power qs (s ∈ R+) is of the same type as q (see [3, 8] for example).
Therefore, for operator stable p.m.’s, the two concepts of “sample type” and
“equivalence” coincide.

Now we state the first main result related with the equivalence of two p.m.’s.

Theorem 1. Let p, q1 and q2 be p.m.’s on V , q1 and q2 be full. Suppose that
there exist sequences (Ai,k), (bi,k) and (ni,k), i = 1, 2, and a positive number c > 0
such that for i = 1, 2

(5) (Ai,kp
ni,k)δ(bi,k) ⇒ qi

as k → ∞, and

(6)
n1,k

n1,k+1
≥ c

for all k. Then q1 and q2 are equivalent inf. div. p.m.’s.

Proof. The infinite divisibility of the measures q1 and q2 is an immediate con-
sequence of Lemma 1. Besides, one can suppose that there is a subsequence of
positive integers (k(m)) such that

n1,k(m)−1 ≤ n2,m < n1,k(m).

Then by virtue of (6), for all m = 1, 2, . . ., we have

c ≤ n1,k(m)−1

n1,k(m)
≤ n2,m

n1,k(m)
< 1.

Hence, taking a subsequence if necessary, one can assume in addition that

(7) n2,m/n1,k(m) → s

with c ≤ s ≤ 1.
Now, we attempt to show that the sequence of operators

(8) (Am := (A∗
1,k(m))

−1A∗
2,m)

is precompact in the space of all linear endomorphisms of V . Let us suppose the
contrary, i.e. that the sequence of norms ‖Am‖ is unbounded. Choose vectors
zm in V such that ‖zm‖ = 1 and ‖Amzm‖ = ‖Am‖. Let ym = Amzm. Taking a
subsequence if necessary, we can assume that ‖Am‖ → ∞ and ym/ ‖ym‖ → y ∈ V .
Then zm/ ‖ym‖ → 0 which together with (7) yields

|p∧(tA∗
2,m(ym/ ‖ym‖))|n2,m

= {|p∧(tA∗
1,k(m)(zm/ ‖ym‖))|n1,k(m)}(n2,m/n1,k(m)) → |q∧1 (0)|s = 1
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for every t ∈ R. Simultaneously, (5) implies

|p∧(tA∗
2,m(ym/ ‖ym‖))|n2,m → |q∧2 (ty)|.

Therefore, the characteristic function of the symmetrized measure |q2|2 equals 1
on the subspace {ty : t ∈ R}. Consequently, q2 is not a full measure (see [8,
Proposition 1]), which contradicts the assumption.

Let C be a limit point of the sequence (8). Then by taking a subsequence if
necessary, we can suppose that Am → C. Meanwhile, it follows from (5) that for
every y ∈ V we have

q∧2 (y) = lim
m→∞(p∧(A∗

2,my))n2,m .ei(b2,m,y)

= lim
m→∞{(p∧(A∗

1,k(m)Amy))n1,k(m) .ei(b1,k(m) ,Amy)}(n2,m/n1,k(m)).ei(bm,y)

with suitable chosen vectors bm ∈ V (m = 1, 2, . . .). Hence, it is evident from (5)
and (7) that (bm) converges to some vector b ∈ V and

q∧2 (y) = q∧1 (Cy)s.ei(b,y).

Then, by setting A = C∗, we have q2 = (Aq1)sδ(b). Moreover, since the support of
Aq1 is contained in the image A(V ) and q2 is full, the operator A is non-singular.
Thus, q1 and q2 are equivalent. �

It should be noted that in the above proof we use the technique developed in
the fundamental work [9] by K. Urbanik.

Stability, semi-stability and infinite divisibility of p.m.’s are strongly related
with their DOPA, DOSA and DOA. The following corollaries show interesting
features of DOPA’s, DOSA’s and DOA’s:

Corollary 1. Let p, q1 and q2 be as in Theorem 1. Then

(i) The conditions p ∈ DOSA(q1) and p ∈ DOPA(q2) imply the equivalence
of q1 and q2;

(ii) From the conditions p ∈ DOA(q1) and p ∈ DOPA(q2) we can conclude
the p.m.’s q1 and q2 to be of the same type and therefore the both two
p.m.’s are operator stable.

Corollary 2. Let p, q1 and q2 be as in Theorem 1 and p ∈ DOSA(r, q1) with
r ∈ (0, 1]. Then p ∈ DOSA(r, q2) if and only if q1 and q2 are equivalent.

Proof. It is clear that Corollary 1 and the “only if” part of Corollary 2 follow im-
mediately from Theorem 1. We shall prove the “if” part of Corollary 2. Suppose
that (4) holds and

(Akpnk)δ(bk) ⇒ q1;
nk

nk+1
→ r

as k → ∞.
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Let us put
A1

k := AAk,
n1

k := [nk.s],

b1
k := b + n1

k
nk

Abk,

where [t] means the largest integer less than or equal to t. Then we have

n1
k

nk
=

[nk.s]
nk

→ s.

Therefore

(A1
kp

n1
k)δ(b1

k) = A{(Akpnk)δ(bk)}(n1
k/nk)δ(b) ⇒ (Aq1)δ(b) = q2.

On the other hand,

lim
k→∞

n1
k

n1
k+1

= lim
k→∞

[nk.s]
[nk+1.s]

= lim
k→∞

nk

nk+1
= r.

Thus, p ∈ DOSA(r, q2), the proof is complete. �

From the above we see that for two equivalent full p.m.’s, if one of them is
operator r-semi-stable then so is the second. Besides, if p belongs to DOSA
of some full operator (r)-semi-stable p.m. then it does not belong to DOSA of
another full operator (s)-semi-stable p.m. with r �= s, moreover it does not belong
to DOPA of any full p.m. which is not operator semi-stable.

The following theorem gives a new characterization of the operator semi-
stability:

Theorem 2. Let p and q be p.m.’s on V , q be full. Assume that (1) holds and

(9) LIM(
nk

nk+1
) ∩ (0, 1) �= ∅.

Then q is operator semi-stable.

Proof. Under the power of (9) we can choose a subsequence (k(m)) of natural
numbers and a positive number c such that

nk(m)

nk(m)+1
→ c

as m → ∞. Then using the same technique as in the proof of Theorem 1 we can
infer from (1) that there exist A ∈ AutV , b ∈ V such that q = (Aqc)δ(b) which
together with Theorem in [4] implies the operator semi-stability of q. �

After this theorem one can put the following question: Does p ∈ DOSA(q) if
p and q satisfy the condition in Theorem 2? The answer will be given partially
in the following theorem:
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Theorem 3. Let p and q be as in Theorem 2. Suppose that (1) holds and there
exists a positive number c > 0 such that

nk

nk+1
≥ c(6*)

for all k. Then

(a) If q is operator (r)-semi-stable then p ∈ DOSA((r), q),
(b) If q is operator stable then p ∈ DOA(q).

The proof of the theorem will be preceded by the following two lemmas:

Lemma 2. Let 0 < r < 1 and q be a full operator (r)-semi-stable p.m. Suppose
that there exist sequences (Ak), (bk), (nk) and a real number c, 0 < c < 1, such
that (1) and (6�) hold. Then there exist sequences (A1

k), (b1
k) and (n1

k) such that

(A1
kp

n1
k)δ(b1

k) ⇒ q(1’)

and

LIM(n1
k/n

1
k+1) = {r, 1}.(2’)

Proof. Let A ∈ AutV and b ∈ V such that

(10) qr = (Aq)δ(b)

(see Theorem [4]) and let N be the natural number satisfying rN ≥ c > rN+1.
We define sequences (A(m)

k ), (b(m)
k ) and (n(m)

k ), m = 1, 2, ..., N + 1, by

A
(m)
k := Am−1Ak,

b
(m)
k := ( [nk/r(m−1)]

nk
)Am−1bk,

n
(m)
k := [nk/r

(m−1)],

with A0 := Id, the identity operator. Then for m = 1, 2, . . . , N + 1 there is an
element b(m) ∈ V such that

(11) (A(m)
k pn

(m)
k )δ(b(m)

k ) ⇒ qδ(b(m)).

Indeed, the left sides of (11) can be written as

(Am−1((Akpnk)δ(bk)))[nk/r(m−1)]/nk ⇒ Am−1(q1/r(m−1)
)

as k → ∞ because of (1) and of

[nk/r
(m−1)]

nk
→ 1

r(m−1)

as k → ∞. On the other hand, (10) implies

Am−1(q1/r(m−1)
) = qδ(b(m))

with b(m) ∈ V . Thus (11) is true.
For k = 1, 2, . . . let h(k) be a natural number such that

(12)
nk

rh(k)−1
≤ nk+1 <

nk

rh(k)
.
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Hence, it follows from (6*) that for all natural k,

(13) 1 ≤ h(k) ≤ N + 1.

We now try to show that

(14) LIM(
n

(h(k))
k

nk+1
) = {r, 1}.

Namely, (11) implies

(A(m)
k pn

(m)
k )δ(b(m)

k − b(m)) ⇒ q

as k → ∞, for m = 1, 2, ..., N + 1. Therefore, by setting

p2k−1 := (A(h(k))
k pn

(h(k))
k )δ(b(h(k))

k − b(h(k))),
p2k := (Ak+1p

nk+1)δ(bk+1)

for k = 1, 2, . . ., from (1) we have pk ⇒ q as k → ∞. If s ∈ LIM(n(h(k))
k /nk+1)

and s �= 1, then (12) implies r ≤ s < 1. On the other hand, from (6*) and the
definition of pk, in the same way as in the proof of Theorem 2 we can see that q is
s-semi-stable. Meanwhile, q is (r)-semi-stable. Consequently, s = r and looking
at Note in the first section, we can see that (14) holds.

The sequences (A1
k), (b1

k) and (n1
k) are built as follows

A1
k := A

(m)
j ,

b1
k := b

(m)
j − b(m),

n1
k := n

(m)
j

if k = h(1) + h(2) + . . . + h(j − 1) + m, 1 ≤ m ≤ h(j), j = 2, 3, . . .. Then
by using (11) and (13) we can easily verify that (1’) is satisfied. Besides, for
k = h(1) + h(2) + ... + h(j − 1) + m,

a) If k = h(1) + h(2) + . . . + h(j − 1) + m and 1 ≤ m < h(j) then

(15)
n1

k

n1
k+1

=
n

(m)
j

n
(m+1)
j

=
[nj/r

(m−1)]
[nj/rm]

→ r as j → ∞.

b) If k = h(1) + h(2) + ... + h(j) then

n1
k

n1
k+1

=
n

(h(j))
j

nj+1
.

This together with (14) and (15) results (2’). The proof is complete. �
Lemma 3. Let p and q be p.m.’s on V , q be full and 0 < r < 1. Then

(i) If there exist sequences (Ak), (bk) and (nk) satisfying (1) and (2) then we
can find sequences (A1

k), (b1
k) and (n1

k) such that (1′) and (2′) hold,
(ii) Conversely, if there exist sequences (A1

k), (b1
k) and (n1

k) such that (1′) and
(2′) hold and q is not operator stable then we can build new sequences
(Ak), (bk) and (nk) satisfying (1) and (2).
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Proof. (i) For m = 1, 2, . . . let us put

A1
2m−1 = A1

2m := Am,

b1
2m−1 = b1

2m := bm,

n1
2m−1 := nm,

n1
2m := nm+1.

Then, by the assumption, it is evident that

(n1
2m)/(n1

2m−1) → 1; (n1
2m−1)/(n

1
2m+1) → r; (n1

2m)/(n1
2m+1) → r.

Consequently, the condition (2’) is true. On the other hand, by virtue of Lemma
2, we have

A1
k → Θ; A1

kp ⇒ δ(0).

and (1’) follows straightly from (1).
(ii) Now let us suppose that conditions (1’) and (2’) are satisfied. By an

argument analogous to that used for the proof of Theorem 2 we conclude that q
is operator r-semi-stable and after Theorem 3.2 [6] there exists a positive number
r0 < 1 such that q is operator (r0)-semi-stable and r = rm

0 with some natural m.
Then

a) If m = 1 then q is operator (r)-semi-stable. Let q = (Aqr)δ(b) with b ∈ V
and A ∈ AutV (see Theorem [4]). For every k = 1, 2, . . . let h(k) be a natural
number such that

(16) n1
h(k)−1 ≤ n1

k

r
< n1

h(k).

Then from (1’) we see that

lim
k→∞

(A1
kp

[n1
k/r])δ(b1

k/r) = lim
k→∞

((A1
kpn1

k)δ(b1
k))1/r = q1/r = (A−1q)δ(b0

r)

with some b0
r ∈ V . Hence

(17) (AA1
kp

[n1
k/r])δ(Ab1

k/r − b0
r) ⇒ q.

We infer that

(18) LIM([n1
k/r]/n

1
h(k)) = {r, 1}.

Indeed, it follows from (16) that n1
h(k)−1/n

1
h(k) ≤ [n1

k/r]/n
1
h(k) < 1 and by virtue

of (2’) we have
LIM(n1

h(k)−1/n
1
h(k)) ⊂ {r, 1}.

Consequently, it is clear that

LIM([n1
k/r]/n

1
h(k)) ⊂ [r, 1].

Thus, if s ∈ LIM([n1
k/r]/n

1
h(k)) and s �= 1 then under the power of (1’) and (17),

with the same reason of Lemma 2, we can confirm s = r and (18) is just proved.
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Now let us define
K1 := {k : [n1

k/r]/n
1
h(k) ≥ 1+r

2 },
K2 := {k : [n1

k/r]/n
1
h(k) < 1+r

2 }.
Then (18) implies

(19)

⎧⎨
⎩

lim
k→∞,k∈K1

([n1
k/r]/n

1
h(k)) = 1,

lim
k→∞,k∈K2

([n1
k/r]/n

1
h(k)) = r.

Moreover, it is obvious that

(20) n1
k/[n

1
k/r] → r

as k → ∞.
The desired sequences (Ak), (bk) and (nk) will be constructed by the following

induction: Let A1 := A1
1, b1 := b1

1 and n1 := n1
1. Further we set

A2 := A1
h(1), b2 := b1

h(1), n2 := n1
h(1)

if 1 ∈ K1, or

A2 := AA1
1, b2 := (1/r)Ab1

1 − b0
r, n2 := [n1

1/r]

A3 := A1
h(1), b3 := b1

h(1), n3 := n1
h(1)

if 1 ∈ K2.
Suppose that Ai, bi and ni have been built for i = 1, 2, . . . , k and

Ak = A1
h(j), bk = b1

h(j), nk = n1
h(j)

with some natural j. Then we set

Ak+1 := A1
h(h(j)), bk+1 := b1

h(h(j)), nk+1 := n1
h(h(j))

if h(j) ∈ K1, or

Ak+1 := AA1
h(j), bk+1 := (1/r)Ab1

h(j) − b0
r, nk+1 := [n1

h(j)/r]

Ak+2 := A1
h(h(j)), bk+2 := b1

h(h(j)), nk+2 := n1
h(h(j))

if h(j) ∈ K2, etc.
It follows from (1’) and (17) that (1) is true for the new sequences (Ak), (bk)

and (nk). Moreover, (2) fulfils immediately from (19) and (20).
b) In the case that m > 1, the condition (2’) allows us to suppose that

n1
k

n1
k+1

≥ rm+1
0 > 0

for all k. Then the conditions of Lemma 2 are satisfied for r0 in place of r whilst
(A1

k), (b1
k) and (n1

k) playing respectively the role of (Ak), (bk) and (nk). In that
circumstance, with the new constructed sequences, by using Lemma 2 we can turn
to the case when m = 1, and apply the above part to complete the proof. �
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Proof of Theorem 3. (a) Let q be operator (r)-semi-stable with 0 < r < 1. Then
we can turn to the case when LIM(nk/nk+1) = {r, 1} applying Lemma 2 and
supposing in addition that 0 < c ≤ r. Therefore, the support of Lemma 3
guarantees the confirmation of p ∈ DOSA((r), q).

(b) Let q be operator stable and for every s ∈ (0, 1] let Bs ∈ AutV , βs ∈ V be
defined by

(21) (Bsq
1/s)δ(βs) = q

(see Theorem 2 [8]). We construct the sequences (Ao
m) and (bo

m) as follows:

Ao
m := Bnj/mAj ,

bo
m := (m/nj)Bnj/mbj + β(nj/m)

for nj ≤ m < nj+1, j = 1, 2, . . .. We tend to prove that

(22) (Ao
mpm)δ(bo

m) ⇒ q

as m → ∞.
In the matter, let (m′) be any subsequence of natural numbers. Then for all

m′ ∈ (m′) one can find a natural number j(m′) such that nj(m′) ≤ m′ < nj(m′)+1.
Hence from (6*) we have

c ≤ nj(m′)

nj(m′)+1
<

nj(m′)

m′ ≤ 1.

Therefore one can pick from (m′) another subsequence (m′′) such that
nj(m′′)

m′′ → s

for some s ∈ (0, 1]. Then by virtue of the compactness lemma ([8, Proposition
1]), using (21) and taking a subsequence once more if necessary, we can assume
that

B(nj(m′′)/m′′) → Bs, β(nj(m′′)/m
′′) → β(s).

Now, (1) together with (21) implies

Ao
m′′pm′′

)δ(bo
m′′)

= B(nj(m′′)/m′′)Aj(m′′)p
m′′

δ(
m′′

nj(m′′)
B(nj(m′′)/m′′)bj(m′′) + β(nj(m′′)/m

′′))

= [B(nj(m′′)/m′′){(Aj(m′′)p
(nj(m′′)))δ(bj(m′′))}](m

′′/nj(m′′))δ(β(nj(m′′)/m
′′))

⇒ (Bsq
1/s)δ(β(s)) = q.

Thus, Theorem 2.3 [1] yields (22), i.e. p ∈ DOA(q), the proof is finished. �

As an immediate consequence of Theorem 3 we have

Corollary 3. Suppose that q is a full operator stable p.m. on V . Then we have
DOA(q) = DOSA(r, q) for every r ∈ (0, 1).



DOMAIN OF OPERATOR SEMI-ATTRACTION 267

After Theorem 3 we have new characterizations of DOA’s and DOSA’s by
putting (6*) in place of (2) in the definitions. It is worthy to notice that the
condition (9) used in Theorem 2 to determine semi-stability of a given p.m. is
weaker than (6*) that is equivalent to

LIM(
nk

nk+1
) ⊂ (0, 1].

Moreover, in the same way as in Example [2], we can build an example to show
that in Theorem 3 the condition (6*) cannot be replaced by (9).
P.S. The earlier version of the article was published only in a preprint form. How-
ever, a part of the results has been used in a monograph written by Meerschaert
and Scheffler ([7, Theorem 7.5.6, p. 281]).
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