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CODERIVATIVE CALCULATION RELATED TO A
PARAMETRIC AFFINE VARIATIONAL INEQUALITY

PART 1: BASIC CALCULATIONS

J.-C. YAO AND N. D. YEN

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. Consider a parametric affine variational inequality 0 ∈Mx + q +
N(x; ∆(A, b)), denoted by AVI(M, q, A, b), for which the pair (q, b) ∈ Rn×Rm

describes the linear perturbations. Here the matrices M ∈ Rn×n and A ∈
Rm×n are the given data, ∆(A, b) = {x ∈ Rn : Ax 6 b} is a polyhedral
convex constraint set, and N(x; ∆(A, b)) denotes the normal cone to ∆(A, b)
at x. We study the normal coderivative of the normal-cone operator (x, b) 7→
N(x; ∆(A, b)). In the second part of this paper [20], combining the obtained
results with some theorems from Mordukhovich [11], Levy and Mordukhovich
[10], Yen and Yao [21], we get sufficient conditions for the Aubin property (the
Lipschitz-like property) and the local metric regularity in Robinson’s sense of
the solution map (q, b) 7→ S(q, b) of the problem AVI(M, q, A, b) and of the
solution map (w, b) 7→ S(w, b) of the problem 0 ∈ f(x, w) + N(x; ∆(A, b))
where f : Rn × Rs → Rn is a given C1 vector function. Our investigation
complements the well-known work of Dontchev and Rockafellar [3] where the
Aubin property of the solution maps q 7→ S(q, b) and w 7→ S(w, b) (b is fixed)
was established via a critical face condition.

1. Introduction

Necessary optimality conditions of a quadratic programming problem can be
written as an affine variational inequality (AVI for brevity); see [8, Chap. 5] for
more details. In the terminology of Robinson [16], AVI is a linear generalized
equation. By definition, affine variational inequality is the problem of finding an
x satisfying the inclusion

0 ∈Mx+ q +N(x; ∆(A, b)),(1.1)

which is denoted by AVI(M, q,A, b) and which depends on the data quadruplet
{M, q,A, b} with the pair (q, b) ∈ Rn × Rm describing the linear perturbations
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in the model. Here the matrices M ∈ Rn×n and A ∈ Rn×n are the given data,
∆(A, b) = {x ∈ Rn : Ax 6 b} is a polyhedral convex constraint set,

N(x; ∆(A, b)) := {v ∈ Rn : 〈v, u− x〉 6 0 for all u ∈ ∆(A, b)}

is the normal cone to ∆(A, b) at x ∈ ∆(A, b), and 〈v, u〉 denotes the scalar
product of v and u. By convention, N(x; ∆(A, b)) = ∅ whenever x /∈ ∆(A, b). We
abbreviate the solution set of (1.1) to S(q, b). Thus, x ∈ S(q, b) means x ∈ ∆(A, b)
and

〈Mx+ q, u− x〉 > 0 ∀u ∈ ∆(A, b).

In the case A = −E with E denoting the unit matrix in Rn×n and b = 0, x solves
(1.1) if and only if

Mx+ q > 0, x > 0, 〈Mx+ q, x〉 = 0.(1.2)

System (1.2) of 2n linear inequalities and one nonlinear equality is called the
linear complementarity problem.

Solution existence theorems for AVIs were established by Gowda and Pang
[4] (see also [8, Chap. 6]). Solution stability of parametric AVIs is a subject
of a large number of research papers. To our knowledge, the work of Robin-
son [16] establishing an upper Lipschitz continuity property of the solution map
of AVI(M, q,A, b) where (A, b) is fixed and (M, q) is perturbed and the work
of Dontchev and Rockafellar [3], where the Mordukhovich criterion [11] involving
coderivatives of multifunctions was used effectively for obtaining the Aubin prop-
erty of the solution map q 7→ S(q, b) (the triplet (M,A, b) is fixed), are among the
most important papers in this topic. A new proof for the just mentioned stability
theorem of Robinson is given in [8, Chap. 7]. In [3], the authors also studied the
Aubin property of the solution map w 7→ S(w, b) of the problem

0 ∈ f(x,w) +N(x; ∆(A, b)),(1.3)

where f : Rn × Rs → Rn is a given C1 vector function. Other stability results
for AVIs can be found in [8, 9, 17], and the references therein. Basic results on
solution stability of (1.2), where M and q are subject to perturbations, can be
found in [2, Chap. 7]. New developments and applications of the results of [3]
can be found in [5, 6] (the constraint set remains fixed).

For a multifunction F : X ⇒ Y between normed spaces, the set gphF :=
{(x, y) ∈ X × Y : y ∈ F (x)} is called the graph of F . One says that F has a
locally closed graph around a point (x0, y0) ∈ gphF if there exists a closed ball B
in X×Y of positive radius with the center (x0, y0) such that B∩(gphF ) is a closed
subset of X×Y . The norm in the product space is given by ‖(x, y)‖ = ‖x‖+‖y‖.

Specializing the notions of Aubin property (known also as the pseudo-Lipschitz
property, the Lipschitz-like property) of multifunctions [1, 3, 13] and the local
metric regularity of implicit multifunctions [21] (which has the origin in the work
of Robinson [15]) to the solution maps (q, b) 7→ S(q, b) of (1.1) and (w, b) 7→
S(w, b) of (1.3), we have the following concepts.
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Definition 1.1. (i) The solution map S(q, b) of (1.1) is said to have the Aubin
property around (q0, b0, x0) ∈ gphS if there exist neighborhoods U1 of q0, U2 of
b0, V of x0 and a constant ` > 0 such that

S(q′, b′) ∩ V ⊂ S(q, b) + `(‖q′ − q‖+ ‖b′ − b‖)BRn ∀(q′, b′), (q, b) ∈ U1 × U2,

where BRn stands for the closed unit ball in Rn.
(ii) The solution map S(w, b) of (1.3) is said to have the Aubin property around
(w0, b0, x0) ∈ gphS if there exist neighborhoods W of w0, U of b0, V of x0 and a
constant ` > 0 such that

S(w′, b′) ∩ V ⊂ S(w, b) + `(‖w′ − w‖+ ‖b′ − b‖)BRn ∀(w′, b′), (w, b) ∈W × U.

Definition 1.2. (i) The solution map S(q, b) of (1.1) is locally-metrically regular
in Robinson’s sense around a point ω0 = (x0, q0, b0, 0Rn) satisfying 0 ∈ Mx0 +
q0 +N(x0; ∆(A, b0)) if there exist constants γ > 0, µ > 0, and neighborhoods V
of x0, U1 of q0, U2 of b0 such that{

dist(x, S(q, b)) 6 γ dist (0,Mx+ q +N(x; ∆(A, b)))
whenever x ∈ V, q ∈ U1, b ∈ U2, dist (0,Mx+ q +N(x; ∆(A, b))) < µ.

(1.4)

Here dist(u,Ω) := inf{‖u− ω‖ : ω ∈ Ω} denotes the distance from a point u to
a set Ω ⊂ Rn.
(ii) The solution map S(w, b) of (1.3) is locally-metrically regular in Robin-
son’s sense around a point ω0 = (x0, w0, b0, 0Rn) satisfying 0 ∈ f(x0, w0) +
N(x0; ∆(A, b0)) if there exist constants γ > 0, µ > 0, and neighborhoods V
of x0, W of w0, U of b0 such that{

dist(x, S(w, b)) 6 γ dist (0, f(x,w) +N(x; ∆(A, b)))
whenever x ∈ V, w ∈W, b ∈ U, dist (0, f(x,w) +N(x; ∆(A, b))) < µ.

(1.5)

The Aubin property and the local metric regularity are important features of
implicit multifunctions. For the case of inverse multifunctions, they are equivalent
(see for instance [14, 11]). In general, the equivalence does not hold true [7].

Our aim in this paper is to find adequate conditions for having the Aubin prop-
erty and the local metric regularity of the solution maps of parametric variational
inequalities with moving convex polyhedral constraint sets. Namely, by studying
the normal coderivative of the normal-cone operator

(x, b) 7→ N(x; ∆(A, b))(1.6)

and using some results from Mordukhovich [11], Levy and Mordukhovich [10],
Yen and Yao [21] we will get sufficient conditions for the Aubin property and the
local metric regularity in Robinson’s sense of the solution map (q, b) 7→ S(q, b) of
(1.1) and of the solution map (w, b) 7→ S(w, b) of (1.3), which were described in
Definitions 1.1 and 1.2. Our investigation complements the study of [3] where the
Aubin property of the solution maps q 7→ S(q, b) and w 7→ S(w, b) (the parameter
b is fixed) was established via a critical face condition.
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The inclusion (1.1) can be rewritten as

0 ∈ F (x, y),(1.7)

with y := (q, b) ∈ Rn × Rm, F (x, y) := F1(x, q) + F2(x, b), F1(x, q) = Mx + q,
F2(x, b) = N(x; ∆(A, b)). Then, the solution map S(q, b) coincides with the
implicit multifunction G(y) = {x ∈ Rn : 0 ∈ F (x, y)} defined by (1.7).

The rest of this first part of the paper has three sections. Section 2 recalls
some basic notions concerning normal cones to sets and coderivatives of multi-
functions from [13]. In Section 3, we obtain a formula for the normal coderivative
[13] (called also the limiting coderivative, or the coderivative in the sense of Mor-
dukhovich) of the multifunction x 7→ N(x; ∆(A, b)) at a point (x, v) in its graph,
which is equivalent to the formula established by Dontchev and Rockafellar in [3,
Proof of Theorem 2]. It seems to us that the new formula is more convenient for
practical computations. Besides, our proof is more elementary and direct: we do
not use the Reduction Lemma [3, p. 1090] and other advanced techniques of [3].
In Section 4, combining the method of proof with a suitable trick, we estimate
the normal coderivative of the multifunction F2 : Rn×Rm ⇒ Rn at a given point
(x, b, v) ∈ gphF2.

In Part 2, we use a sum rule in [12] and the above-mentioned coderivative
estimate for F2 to study the normal coderivative of the multifunction F =
F1 + F2. Then, combining the Mordukhovich criterion [11, 19] for the Aubin
property of multifunction with an upper estimate for the normal coderivative of
a implicit multifunction given by Levy and Mordukhovich [10], we obtain suffi-
cient conditions for the Aubin property of the solution map S around the point
(q0, b0, x0) ∈ gphS. Furthermore, by the upper estimate for the normal coderiva-
tive of F = F1 +F2 and [21, Theorem 3.1] we obtain sufficient conditions for the
local metric regularity in Robinson’s sense of the solution map S(q, b) around a
point (q0, b0, x0) ∈ gphS. Sufficient conditions for the Aubin property and the
local metric regularity in Robinson’s sense of the solution map (w, b) 7→ S(w, b)
of (1.3) can be established in a similar way.

2. Normal cones to sets and coderivatives of multifunctions

Let X,Y be Euclidean spaces whose inner products and norms are denoted by
〈·, ·〉 and ‖ · ‖. For a subset Ω ⊂ X, the symbols Ω, int Ω, and cone Ω respectively
denote the closure of Ω, the interior of Ω, and the cone generated by Ω. The set
of the metric projections of u ∈ X on the closure of Ω is denoted by Π(u,Ω), i.e.,

Π(u,Ω) = {x ∈ Ω : ‖x− u‖ = dist (u,Ω)}.

If M ⊂ X is a cone, then the negative dual cone to M is denoted by M∗. The
closed ball centered at x with radius ρ and the closed unit balls in X are denoted
respectively by Bρ(x) and BX . Given a point x0 ∈ X, we abbreviate the collection
of all the neighborhoods of x0 to N (x0). If A is a matrix, then AT denotes the
transpose of A.
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For a multifunction Φ : X ⇒ Y , the expression Lim sup
x→x̄

Φ(x) denotes the

sequential Kuratowski-Painlevé upper limit of Φ(x) as x→ x̄, that is

Lim sup
x→x̄

Φ(x) = {ξ ∈ Y : ∃ sequences xk → x̄, ξk → ξ,

with ξk ∈ Φ(xk) for all k = 1, 2, . . . }.

Following [13], we now define normal cones to sets and coderivatives of multi-
functions.

The set N̂ε(x; Ω) of the Fréchet ε-normals to Ω at x ∈ Ω is given by

N̂ε(x; Ω) =

v ∈ X : lim sup
u

Ω−→x

〈v, u− x〉
‖u− x‖

6 ε

 ,(2.1)

where the notation u
Ω−→ x means u → x and u ∈ Ω. For ε = 0, the set in (2.1)

is a closed convex cone which is called the Fréchet normal cone to Ω at x and is
denoted by N̂(x; Ω). One puts N̂ε(x; Ω) = ∅ for all ε > 0 whenever x /∈ Ω. The
cone

N(x̄; Ω) := Lim sup
x→x̄, ε↓0

N̂ε(x; Ω)(2.2)

is said to be the normal cone in the sense of Mordukhovich to Ω at x̄. If x̄ /∈ Ω,
then one puts N(x̄; Ω) = ∅. If Ω is locally closed around x̄, then

N(x̄; Ω) = Lim sup
x→x̄

[cone(x−Π(x,Ω))](2.3)

(see [13, Theorem 1.6]) and

N(x̄; Ω) = Lim sup
x→x̄

N̂(x; Ω).(2.4)

Note that in [11, 12] the normal cone N(x̄; Ω) was defined by (2.3). From (2.1)
and (2.2) it follows that N̂(x̄; Ω) ⊂ N(x̄; Ω). If Ω is a convex set, then

N̂(x̄; Ω) = N(x̄; Ω) = {v ∈ C : 〈v, u− x̄〉 6 0 for all u ∈ Ω}.

The multifunction D∗Φ(x̄, ȳ) : Y ⇒ X defined by

D∗Φ(x̄, ȳ)(y∗) := {x∗ ∈ X : (x∗,−y∗) ∈ N((x̄, ȳ); gph Φ)}(2.5)

is said to be the normal coderivative (called also the limiting coderivative and the
coderivative in the sense of Mordukhovich) of Φ at (x̄, ȳ). We put D∗Φ(x̄, ȳ)(y∗) =
∅ whenever (x̄, ȳ) /∈ gph Φ.
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3. Normal coderivative of the multifunction
x 7→ N(x; ∆(A, b))

From now on, we shall employ the notation of Section 1. Given any b ∈ Rn, we
now establish several lemmas which lead to a formula for calculating the normal
coderivative of the multifunction F3(x) := N(x; ∆(A, b)) at a point (x, v) ∈ Ω3,
where Ω3 := gphF3. For simplicity of notation, in this section we set C = ∆(A, b).

We first compute the Fréchet normal cone N̂((x, v); Ω3), where (x, v) ∈ Ω3 is
given arbitrarily. The last inclusion means x ∈ C and v ∈ N(x;C). By definition,
(x∗, v∗) ∈ N̂((x, v); Ω3) if and only if

lim sup
(x̃,ṽ)

Ω3−→(x,v)

〈x∗, x̃− x〉+ 〈v∗, ṽ − v〉
‖x̃− x‖+ ‖ṽ − v‖

6 0.(3.1)

Let J = {1, . . . ,m}. For each x ∈ C, the active index set of x is given by
I(x) = {i ∈ J : Aix = bi}, where Ai denotes the i-th row of A and bi is the i-th
component of b. For every subset I ⊂ J , we put Ī = J \ I and let AI (resp., AĪ)
be the matrix composed by the rows Ai, i ∈ I, of A (resp., the rows Ai, i ∈ Ī).
The pseudo-face FI of C = ∆(A, b) corresponding to an index set I is defined by

FI = {x ∈ Rn : AIx = bI , AĪx < bĪ}.
If x, x̃ ∈ FI then

T (x̃;C) = T (x;C) = {u ∈ Rn : AIu 6 0}
where

T (x;C) = cone (∆(A, b)− x) =
(
N(x;C)

)∗
is the tangent cone to the polyhedral convex set C at x (see, e.g., [18]). By the
Farkas lemma [18, p. 200], from the above formula for T (x̃;C) and T (x;C) we
have

N(x̃;C) = N(x;C) = pos{ATi : i ∈ I},
where pos{ATi : i ∈ I} denotes the convex cone generated by the column vectors
{ATi : i ∈ I}. In the sequel, it is convenient for us to abbreviate T (x̃;C), for any
x̃ ∈ FI , to T (FI ;C). A set Q ⊂ Rn is said to be a closed face of C if there exists
I ⊂ J such that

Q = FI := {x ∈ Rn : AIx = bI , AĪx 6 bĪ}.
This definition is equivalent to the following one: Q ⊂ Rn is a closed face of
C if there exist x̄ ∈ C and v̄ ∈ N(x̄;C) = pos{ATi : i ∈ I(x̄)} such that
Q = {x ∈ C : 〈v̄, x − x̄〉 = 0}. Clearly, if C is a cone (that is the case where
b = 0), then Q is a closed face of C if and only if there exists v̄ ∈ C∗ such that
Q = {x ∈ C : 〈v̄, x〉 = 0}.

Lemma 3.1. If (x∗, v∗) ∈ N̂((x, v); Ω3) then

v∗ ∈ T (x;C) ∩ v⊥(3.2)
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and

x∗ ∈
(
T (x;C) ∩ v⊥

)∗
,(3.3)

where v⊥ := {u ∈ Rn : 〈u, v〉 = 0}.

Proof. Let (x∗, v∗) ∈ N̂((x, v); Ω3). For x̃ = x, v′ ∈ N(x;C), t > 0, ṽ = v+ t(v′−
v) ∈ F3(x) = N(x;C), by (3.1) we have

〈v∗, v′ − v〉 6 0 ∀v′ ∈ N(x;C).(3.4)

Substituting v′ = 2v and v′ = 1
2v into (3.4) gives 〈v∗, v〉 = 0. Hence, by (3.4) we

get 〈v∗, v′〉 6 0 for every v′ ∈ N(x;C). As N(x;C)∗ = T (x;C), it follows that
(3.2) is valid.

Let I = I(x) and Ī = J \ I. Given any ξ ∈ T (x;C)∩ v⊥, to get (3.3) it suffices
to show that 〈x∗, ξ〉 6 0. Put x̃t = x+ tξ. As AIξ 6 0, AIx 6 bI , and AĪx < bĪ ,
there exists δ > 0 such that A(x + tξ) 6 b for all t ∈ (0, δ). This means that
xt ∈ C for every t ∈ (0, δ). Since 〈v, ξ〉 = 0 and v ∈ N(x,C), we have

〈v, x′ − x̃t〉 = 〈v, x′ − x〉+ t〈v, ξ〉 = 〈v, x′ − x〉 6 0

for every x′ ∈ C; so v ∈ N(x̃t, C) for all t ∈ (0, δ). We now see that (x̃t, v) Ω3−→
(x, v) as t→ 0+. Substituting (x̃, ṽ) := (x̃t, v) into (3.1) and passing to the limit
as t→ 0+, we obtain the desired inequality 〈x∗, ξ〉 6 0. �

The next lemma shows that (3.2) and (3.3) are not only necessary but also
sufficient conditions for having (x∗, v∗) ∈ N̂((x, v); Ω3). This is a known fact [3,
Proof of Theorem 1], but the proof we provide here is new.

Lemma 3.2. Any pair (x∗, v∗) which satisfies the conditions (3.2) and (3.3) must
belong to N̂((x, v); Ω3).

Proof. Let (x∗, v∗) be such that (3.2) and (3.3) hold. Given any sequence (x̃k, ṽk)
Ω3−→

(x, v) as k →∞, we have to show that

lim sup
k→∞

〈x∗, x̃k − x〉+ 〈v∗, ṽk − v〉
‖x̃k − x‖+ ‖ṽk − v‖

6 0.(3.5)

By considering a subsequence, if necessary, we may assume that all the vectors
x̃k belong to a pseudo-face

FI0 = {x′ ∈ Rn : AI0x
′ = bI0 , AĪ0x

′ < bĪ0}
which has x in its topological closure (hence I0 ⊂ I := I(x)). Note that

ṽk ∈ N(x̃k;C) = pos{ATi : i ∈ I0} ⊂ pos{ATi : i ∈ I}.
Let ṽk =

∑
i∈I λ

k
iA

T
i , where λki > 0 for all i (we put λki = 0 whenever i ∈ I \ I0).

Observe that

〈v∗, ṽk − v〉 = 〈v∗, ṽk〉 =
∑
i∈I

λki 〈v∗, ATi 〉 6 0,(3.6)

because v∗ ∈ T (x;C) by our assumption and ATi ∈ N(x;C) for every i ∈ I.
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If 〈x∗, x̃k − x〉 6 0 for all k large enough, then (3.5) follows immediately from
(3.6).

We now suppose that there is a subsequence {kj} ⊂ {k} such that the strict
inequality 〈x∗, x̃kj

− x〉 > 0 occurs for each index kj . Then we have

〈x∗, x̃kj
− x〉+ 〈v∗, ṽkj

− v〉
‖x̃kj

− x‖+ ‖ṽkj
− v‖

=
〈x∗, x̃kj

− x〉
‖x̃kj

− x‖+ ‖ṽkj
− v‖

+
〈v∗, ṽkj

− v〉
‖x̃kj

− x‖+ ‖ṽkj
− v‖

6
〈
x∗,

x̃kj
− x

‖x̃kj
− x‖

〉
+

〈v∗, ṽkj
− v〉

‖x̃kj
− x‖+ ‖ṽkj

− v‖
.

(3.7)

There is no loss of generality in assuming that
x̃kj
− x

‖x̃kj
− x‖

→ ξ ∈ T (x;C).

On one hand, we have 〈ξ, v〉 6 0 because v ∈ N(x;C). On the other hand, the
inclusion ṽkj

∈ N(x̃kj
;C) implies〈

ṽkj
,
x− x̃kj

‖x− x̃kj
‖

〉
6 0.

Letting kj → ∞ and recalling that ṽkj
→ v, from the last inequality we get

〈v,−ξ〉 6 0. Thus 〈v, ξ〉 = 0, and we see that ξ ∈ T (x;C) ∩ v⊥. Taking account
of (3.7), (3.6), and (3.3), we obtain

lim sup
kj→∞

〈x∗, x̃kj
− x〉+ 〈v∗, ṽkj

− v〉
‖x̃kj

− x‖+ ‖ṽkj
− v‖

6 lim
kj→∞

〈
x∗,

x̃kj
− x

‖x̃kj
− x‖

〉
+ lim sup

kj→∞

〈v∗, ṽkj
− v〉

‖x̃kj
− x‖+ ‖ṽkj

− v‖
6 〈x∗, ξ〉 6 0

which establishes (3.5) and completes the proof. �

We are now in a position to compute the normal cone in the sense of Mor-
dukhovich to Ω3 at a point (x, v) ∈ Ω3 = gphF3.

Theorem 3.3. (Normal cone in the sense of Mordukhovich; the case where b is
fixed). For any pair (x, v) ∈ Ω3, it holds

N
(
(x, v); Ω3

)
=

⋃
(I′, Q)

(Q∗ ×Q)(3.8)

with the union being taken upon the family of the pairs (I ′, Q) where

I ′ ⊂ I(x) := {i ∈ J : Aix = bi}
satisfying

v ∈ pos{ATi : i ∈ I ′}(3.9)

and Q is a closed face of the polyhedral convex cone T (FI′ ;C) ∩ v⊥.
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Proof. If FI′ is a pseudo-face of C having x in its topological closure, then we
must have I ′ ⊂ I(x). Indeed, if x ∈ FI′ and there is some i ∈ I ′ \ I(x), then

there exists a sequence xk
FI′−−→ x such that Aixk = bi for all k. Hence Aix = bi.

This inequality is an absurd, because i ∈ J \ I(x). Conversely, if I ′ ⊂ I(x) and
FI′ 6= ∅, then x ∈ FI′ . Indeed, take any x′ ∈ FI′ and put xt = (1− t)x+ tx′ for
t ∈ (0, 1). It is easy to see that xt ∈ FI′ and xt → x as t→ 0+.

By definition, (x∗, v∗) ∈ N
(
(x, v); Ω3

)
if and only if one can find sequences

(xk, vk)→ (x, v) and (x∗k, v
∗
k)→ (x∗, v∗) with vk ∈ N(xk;C) and

(x∗k, v
∗
k) ∈ N̂((xk, vk); Ω3) ∀k.

Since the number of pseudo-faces of C is finite, there must exist an index set
I ′ ⊂ J and a subsequence {xkj

} of {xk} such that xkj
∈ FI′ for each kj . As

xkj
→ x, we have I ′ ⊂ I(x). According to Lemmas 3.1 and 3.2, the inclusion

(x∗kj
, v∗kj

) ∈ N̂((xkj
, vkj

); Ω3) means

(x∗kj
, v∗kj

) ∈
(
T (xkj

;C) ∩ v⊥kj

)∗
×
(
T (xkj

;C) ∩ v⊥kj

)
=
(
T (FI′ ;C) ∩ v⊥kj

)∗
×
(
T (FI′ ;C) ∩ v⊥kj

)
.

(3.10)

Due to the condition vkj
∈ N(xkj

;C), we have 〈vkj
, u〉 6 0 for every u ∈

T (FI′ ;C). Thus T (FI′ ;C) ∩ v⊥kj
is a closed face of the polyhedral convex cone

T (FI′ ;C). Of course, by using a subsequence (if it is necessary), we may assume
that

T (FI′ ;C) ∩ v⊥kj
= Q ∀kj ,

where Q is a closed face of T (FI′ ;C). Passing to the limit as kj →∞, from (3.10)
we obtain

(x∗, v∗) ∈ Q∗ ×Q.(3.11)

Since vkj
→ v as kj →∞, it holds

Q ⊂ T (FI′ ;C) ∩ v⊥(3.12)

and, moreover, Q is a closed face of the polyhedral convex cone on the right-hand
side of (3.12). Since vkj

∈ N(xkj
;C) = pos{ATi : i ∈ I ′} for all kj , and the

latter cone is closed, we must have (3.9). We have shown that N
(
(x, v); Ω3

)
is

contained in the set on the right-hand side of (3.8).
Conversely, suppose that the inclusion (3.11) is valid for an index set I ′ ⊂ I(x)

satisfying (3.9) and a closed face Q of the polyhedral convex cone T (FI′ ;C) ∩
v⊥. Since FI′ 6= ∅, we can find a sequence {xk} ⊂ FI′ converging to x. From
our assumption it follows that Q is a closed face of the polyhedral convex cone
T (FI′ ;C). Hence we can find an v̄ ∈ K := pos{ATi : i ∈ I ′} such that Q =
T (FI′ ;C) ∩ v̄⊥. Choose a sequence {tk} ⊂ (0, 1) such that tk → 0+ as k → ∞.
By the convexity of K,

vk := (1− tk)v + tkv̄ ∈ K ∀k.
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From what which has already been said, we have vk ∈ N(xk;C) for all k, vk → v
as k →∞, and

Q = T (FI′ ;C) ∩ v⊥k ∀k.
Then, the inclusion (3.11) and Lemma 3.2 show that (x∗, v∗) ∈ N̂((xk, vk);C) for
all k. This yields (x∗, v∗) ∈ N

(
(x, v); Ω3

)
and establishes equality (3.8). �

In [3], the cone N
(
(x, v); Ω3

)
is described as follows.

Theorem 3.4. (The normal cone N
(
(x, v); Ω3

)
; Dontchev-Rockafellar’s descrip-

tion). For any pair (x, v) ∈ Ω3, let

K(x, v) = T (x;C) ∩ v⊥.
It holds

N
(
(x, v); Ω3

)
=

⋃
(K1,K2)

[(K1 −K2)∗ × (K1 −K2)] ,(3.13)

where the union is taken upon the set of all the pairs (K1,K2) of closed faces of
the polyhedral convex cone K(x, v) satisfying the relation K2 ⊂ K1.

Proof. In our notation, a result in [3, p. 1093] asserts that

N̂((x′, v′); Ω3) = (K(x′, v′))∗ ×K(x′, v′)

for any pair (x′, v′) ∈ Ω3. In [3, p. 1092], the authors observed that there exists
a neighborhood U ⊂ Rn × Rn of (x, v) such that

N
(
(x, v); Ω3

)
=

⋃
(x′,v′)∈U∩Ω3

[
(K(x′, v′))∗ ×K(x′, v′)

]
.(3.14)

Moreover, they showed that every set K(x′, v′) figured in (3.14) can be repre-
sented in the form K1 − K2 where K1,K2 are closed faces of the cone K(x, v)
satisfying the relation K2 ⊂ K1. Conversely, any cone K1 −K2 of this form de-
scribes a set K(x′, v′) participating in (3.14). Based on the preceding proof, it is
not difficult to see that every cone K(x′, v′) in (3.14) corresponds to a closed face
Q defined in Theorem 3.3. Thus, the formulae (3.13) and (3.8) are equivalent. �

Remark 3.5. Listing all the pairs (K1,K2) of closed faces of K(x, v) satisfying
K2 ⊂ K1 seems to be a difficult task. Instead of (3.13), we would prefer using
(3.8) which offers an explicit calculation of the normal cone N

(
(x, v); Ω3

)
.

Remark 3.6. Despite the difficulty mentioned in the preceding remark, (3.13)
shows that in order to get complete information about the nonconvex cone N

(
(x, v);

Ω3

)
one only needs to know the convex cone K(x, v). In other words, the noncon-

vex, complicated cone N
(
(x, v); Ω3

)
allows a complete description via the convex,

much simpler, cone K(x, v). This is an amazing fact about Mordukhovich normal
cones in the case under consideration.

The normal coderivative of the multifunction F3 at a given point in its graph
can be computed easily by employing Theorem 3.3.
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Theorem 3.7. (Normal coderivative; the case where b is fixed). For any (x, v) ∈
gphF3 and v∗ ∈ Rn, the set D∗F3(x, v)(v∗) consists of all x∗ ∈ Rn such that

(x∗,−v∗) ∈ Q∗ ×Q(3.15)

for an index set I ′ ⊂ I = I(x) satisfying condition (3.9) and a closed face Q of
the polyhedral convex cone T (FI′ ;C) ∩ v⊥.

4. Normal coderivative of the multifunction
(x, b) 7→ N(x; ∆(A, b))

Given any b ∈ Rn and x ∈ ∆(A, b), we want to calculate the normal coderiva-
tive of the multifunction F2(x, b) := N(x; ∆(A, b)) at (x, b, v) ∈ Ω2, where
Ω2 := gphF2.

First, let us establish some facts about the Fréchet normal cone to Ω2 at
(x, b, v) ∈ Ω2.

Lemma 4.1. If (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2) then

(x∗, v∗) ∈
(
T (x; ∆(A, b)) ∩ v⊥

)∗
×
(
T (x; ∆(A, b)) ∩ v⊥

)
,(4.1)

x∗ = −ATI b∗I(4.2)

and

b∗Ī = 0,(4.3)

where I = IA,b(x) := {i ∈ J : Aix = bi}, Ī = J \ I. Moreover, if v =
∑
i∈I

λiA
T
i

with λi > 0 for all i ∈ I, and I0 := {i ∈ I : λi = 0}, then

b∗I0 6 0.(4.4)

Proof. Suppose that (x, b, v) ∈ Ω2. Let IA,b(x), I, Ī be defined as in the formula-
tion of the lemma. If (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2) then

lim sup
(x̃,̃b,ṽ)

Ω2−→(x,b,v)

〈x∗, x̃− x〉+ 〈b∗, b̃− b〉+ 〈v∗, ṽ − v〉
‖x̃− x‖+ ‖b̃− b‖+ ‖ṽ − v‖

6 0.(4.5)

Taking b̃ = b, from the last expression and Lemma 3.1 we get (4.1).
Fix any j ∈ Ī. Property (4.3) will be established if we can show that b∗j = 0.

Let b̃i = bi for every i ∈ J \ {j} and b̃j ∈ (bj − ε, bj + ε), where ε = bj −Ajx > 0.
Obviously,

Aix = b̃i ∀i ∈ I, Aix < b̃i ∀i ∈ Ī .
Hence x̃ := x belongs to ∆(A, b̃) and ṽ := v satisfies the relation

ṽ ∈ pos{Ai : i ∈ I} = N(x̃; ∆(A, b̃)).(4.6)
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Therefore, from (4.5) it follows that

lim sup
b̃j→bj

b∗j (̃bj − bj)
|̃bj − bj |

6 0.

Since b̃j ∈ (bj − ε, bj + ε) can be chosen arbitrarily, this yields b∗j = 0.

Given any x̃ → x, we choose b̃I = AI x̃, b̃Ī = bĪ , and ṽ = v. It is clear that
(4.6) holds whenever x̃ is sufficiently close to x. Substituting the chosen triplet
(x̃, b̃, ṽ) into (4.5) and noting that bI = AIx, we get

lim sup
x̃→x

〈x∗, x̃− x〉+ 〈b∗I , AI x̃−AIx〉
‖x̃− x‖+ ‖AI x̃−AIx‖

6 0.

Therefore,

lim sup
x̃→x

〈
x∗ +ATI b

∗
I ,

x̃−x
‖x̃−x‖

〉
1 + ‖AI

(
x̃−x
‖x̃−x‖

)
‖
6 0.

So we have
〈x∗ +ATI b

∗
I , w〉

1 + ‖AIw‖
6 0

for any w ∈ Rn with ‖w‖ = 1. Clearly, this property implies (4.2).

It remains to verify the second claim of the lemma. Let v =
∑
i∈I

λiA
T
i with

λi being nonnegative for all i ∈ I, and let I0 = {i ∈ I : λi = 0}. Fix an index
j ∈ I0. Choose b̃j → bj , b̃j > bj , b̃i = bi for any i ∈ J \ {j}, x̃ = x, and ṽ = v.
Clearly,

ṽ = v ∈ pos{Ai : i ∈ I \ {j}} = N(x̃; ∆(A, b̃)).

Therefore, by (4.5) we obtain

lim sup
b̃j→bj+0

b∗j (̃bj − bi)
|̃bj − bi|

6 0,

which implies the desired inequality bj 6 0. �

The above lemma describes necessary conditions for a triplet (x∗, b∗, v∗) to
belong to the Fréchet normal cone N̂((x, b, v); Ω2). We show that the set of nec-
essary conditions is sufficient for having (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2) if, instead
of (4.4), a little bit tighter condition b∗I 6 0 is satisfied.

Lemma 4.2. If (x, b, v) ∈ Ω2 and if (x∗, b∗, v∗) ∈ Rn × Rm × Rn is a triplet
satisfying (4.1)–(4.3) and the additional condition

b∗I 6 0,(4.7)

then (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2).
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Proof. Given any (x, b, v) ∈ Ω2 and (x∗, b∗, v∗) ∈ Rn ×Rm ×Rn satisfying (4.1)–
(4.3) and (4.7), we are going to show that (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2). To
achieve the goal, it suffices to verify the inequality (4.5). Let there be given a
sequence (x̃k, b̃k, ṽk)

Ω2−→ (x, b, v). Since (x̃k, b̃k)→ (x, b), we must have

IA,bk(x̃k) ⊂ I = IA,b(x)

for all k sufficiently large. As

ṽk ∈ pos{Ai : i ∈ IA,bk(x̃k)} ⊂ pos{Ai : i ∈ I} = N(x; ∆(A, b)),

condition (4.1) implies that

〈v∗, ṽk − v〉 = 〈v∗, ṽk〉 6 0.(4.8)

Due to (4.2) and (4.3), we have

〈x∗, x̃k − x〉+ 〈b∗, b̃k − b〉 = 〈−ATI b∗I , x̃k − x〉+ 〈b∗I , (̃bk)I − bI〉

= 〈b∗I , AIx−AI x̃k〉+ 〈b∗I , (̃bk)I − bI〉

= 〈b∗I , (̃bk)I −AI x̃k〉.

Using (4.7) and the inequality AI x̃k 6 (̃bk)I , from this we see that

〈x∗, x̃k − x〉+ 〈b∗, b̃k − b〉 6 0.(4.9)

Combining (4.9) with (4.8), we get

lim sup
k→∞

〈x∗, x̃k − x〉+ 〈b∗, b̃k − b〉+ 〈v∗, ṽk − v〉
‖x̃k − x‖+ ‖b̃k − b‖+ ‖ṽk − v‖

6 0

which establishes (4.5) and completes the proof. �

In connection with the preceding lemmas, we would like to raise two open
questions.

Question 1. Does the system (4.1)–(4.4) imply that (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2)?

Question 2. Does the inclusion (x∗, b∗, v∗) ∈ N̂((x, b, v); Ω2) imply (4.7)?

Using Lemma 4.1 we now give an upper estimate for the Mordukhovich normal
cone to Ω2 at (x, b, v) ∈ Ω2.

Theorem 4.3. (Normal cone in the sense of Mordukhovich to Ω2). For any
point (x, b, v) ∈ Ω2, if a triplet (x∗, b∗, v∗) ∈ Rn × Rm × Rn belongs to the cone
N
(
(x, b, v); Ω2

)
, then there exist an index set

I ′ ⊂ IA,b(x) := {i ∈ J : Aix = bi}
satisfying

v ∈ pos{ATi : i ∈ I ′}(4.10)

and a closed face Q of the polyhedral convex cone T (FI′ ;C) ∩ v⊥ such that

(x∗, v∗) ∈ Q∗ ×Q,(4.11)
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x∗ = −ATI′b∗I′(4.12)

and

b∗Ī′ = 0,(4.13)

where
FI′ = {x : AI′x = bI′ , AĪ′x < bĪ′}, Ī ′ = J \ I ′.

Proof. Suppose that (x∗, b∗, v∗) ∈ N
(
(x, b, v); Ω2

)
. This inclusion means that

there exist sequences (xk, bk, vk) → (x, b, v) and (x∗k, b
∗
k, v
∗
k) → (x∗, b∗, v∗) such

that vk ∈ N(xk; ∆(A, bk)) and

(x∗k, b
∗
k, v
∗
k) ∈ N̂((xk, bk, vk); Ω2)(4.14)

for all k. Since
IA,bk(xk) := {i ∈ J : Aixk = (bk)i} ⊂ J,

there must exist a subset I ′ ⊂ J such that the equality IA,bk(xk) = I ′ holds for
an infinite number of indices k. By considering a subsequence, if necessary, we
may assume that IA,bk(xk) = I ′ for all k. The inclusion I ′ ⊂ I is valid. Indeed,
otherwise there is an index j ∈ I ′ \ I, and we have Ajxk = (bk)j for all k. Passing
to the limit, we get Ajx = bj which is an absurd.

By Lemma 4.1, (4.14) and the equality IA,bk(xk) = I ′ imply that

(x∗k, v
∗
k) ∈

(
T (xk; ∆(A, bk)) ∩ v⊥k

)∗
×
(
T (xk; ∆(A, bk)) ∩ v⊥k

)
,(4.15)

x∗k = −ATI′(b∗k)I′ ,(4.16)

(b∗k)Ī′ = 0(4.17)

and

(b∗k)I′0(k) 6 0,(4.18)

where Ī ′ = J \ I ′, vk =
∑
i∈I′

λkiA
T
i with λki > 0 being nonnegative for all i ∈ I ′,

and I ′0(k) := {i ∈ I ′ : λki = 0}. Since

T (xk; ∆(A, bk)) = {v : AI′v 6 0} = T (FI′ ;C) ∀k,

we can rewrite (4.15) as follows

(x∗k, v
∗
k) ∈

(
T (FI′ ;C) ∩ v⊥k

)∗
×
(
T (FI′ ;C) ∩ v⊥k

)
.(4.19)

By letting k →∞ and using an argument of the proof of Theorem 3.3, from (4.19),
(4.16) and (4.17) we deduce the existence of a closed face Q of the polyhedral
convex cone T (FI′ ;C) ∩ v⊥ such that (4.11)–(4.13) are satisfied. �
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Remark 4.4. Let v =
∑
i∈I′

λiA
T
i with λi > 0 for all i ∈ I ′ and let I ′0 := {i ∈ I ′ :

λi = 0}. Concerning the index sets I ′0(k) appeared in (4.18), we observe that
they may vary on k. By considering a subsequence, if necessary, we may assume
that I ′0(k) = I ′′ ⊂ I ′. But, in general, the condition vk → v does not imply that
I ′′ ⊂ I0. Hence, from (4.18) we may not have b∗I′0 6 0. This explains why the last
property cannot be included in the conclusion of the above theorem.

Using Theorem 4.3 we can estimate the values of the normal coderivative of
multifunction F2 as follows.

Theorem 4.5. (Normal coderivative; the case where b is varying). For any
(x, b, v) ∈ gphF2 and v∗ ∈ Rn, if (x∗, b∗) ∈ D∗F2(x, b, v)(v∗) then there must exist
an index set I ′ ⊂ IA,b(x) satisfying (4.10) and a closed face Q of the polyhedral
convex cone T (FI′ ;C) ∩ v⊥ such that the conditions (4.12), (4.13) are satisfied,
and

(x∗,−v∗) ∈ Q∗ ×Q.
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