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SECOND-ORDER OPTIMALITY CONDITIONS
IN SET-VALUED OPTIMIZATION

BY A NEW TANGENTIAL DERIVATIVE

G. ISAC AND A. A. KHAN

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. This paper gives new second-order necessary and sufficient opti-
mality conditions in set-valued optimization. We define second-order tangen-
tial derivative/epiderivative of set-valued maps by taking contingent derivative
of the first-order contingent derivative. The resulting derivatives/epiderivatives
have strikingly simple structure and nice properties. The proposed derivatives
are then employed to give new second-order optimality conditions for weak-
minimality in set-valued optimization.

1. Introduction

Let X and Y be real normed spaces, let Q be a nonempty subset of X, let
C ⊂ Y be a proper pointed closed convex cone with nonempty interior, and let
F : X ⇒ Y be a set-valued map. In this work we focus on the following set-valued
minimization problem

(P ) WMinF (x) subject to x ∈ Q,

where we are interested in a weak-minimizer. A weak-minimizer of (P ) is an
element (x̄, ȳ) ∈ X×Y such that ȳ ∈ F (x̄) and (∪x∈QF (x))∩ ({ȳ− int(C)}) = ∅,
where int(C) stands for the interior of C. We recall that given the cone C, the
set of weakly minimal points of any nonempty set A ⊂ Y , henceforth denoted
by WMin(A,C), is defined by WMin(A,C) = {x ∈ A| A ∩ ({x} − int(C)) =
∅}. Therefore, for a solution (x̄, ȳ), we have ȳ ∈ F (x̄) ∩WMin(F (Q), C) where
F (Q) := ∪x∈QF (x).

In this short paper, we present new second-order optimality conditions for
weak-optimality in set-valued optimization. Set-valued optimization presents an
important generalization and unification of the scalar and the vector optimiza-
tion problems. Moreover, there are many research areas that directly lead to
optimization problems with set-valued objective, and/or set-valued constraints.
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For instance, the duality principles in vector optimization, the gap functions for
vector variational inequalities, inverse problems, fuzzy optimization, image pro-
cessing, etc. all lead to optimization problems that can be conveniently framed
as set-valued optimization problems. Furthermore, since the set-valued maps ap-
pear in many branches of pure and applied mathematics, set-valued optimization
has the evident potential to remain as an important and active research topic in
the near future. In set-valued optimization, there are two kinds of the optimality
conditions, namely, by employing the derivatives of the involved set-valued maps
and by using the alternative-type theorems. In the present work, we focus on the
use of derivatives of the involved set-valued maps.

In 1988, Corley [7] employed contingent and circatangent derivatives to give
general optimality conditions in set-valued optimization. Corley’s results were
subsequently refined by Luc-Malivert [24], and others. In these works the deriv-
ative notion revolves around the graphs of the set-valued maps. Another useful
approach which is based on using the epigraphs of set-valued maps was pro-
posed by Jahn-Rauh [18] and Bednarczuk and Song [3], and further pursued in
[9, 15, 16, 23], among others. See also [8, 11, 25], and the references therein.

Although the field of first-order optimality conditions in set-valued optimiza-
tion is still in making, recent developments in non-smooth scalar and vector
optimization have shown a tremendous increase in interest towards the develop-
ment of higher-order optimality conditions [12, 19]. Motivated by this, in [17], the
second-order contingent epiderivatives were introduced and used to give second-
order optimality conditions in set-valued optimization. These results were further
refined in [20] where the second order asymptotic derivatives were used.

In this contribution, we present new second-order optimality conditions in
set-valued optimization problems. The motivation behind this work is the de-
sire to give second-order optimality conditions when the underlying second-order
contingent sets are empty, and consequently the second-order contingent deriva-
tives, and second-order epiderivatives are undefined. For this, we define a new
second-order tangential derivative by taking contingent derivative of a contingent
derivative. This new tangential derivative, is then used to obtain new optimal-
ity conditions in set-valued optimization. One major advantage of this approach
is that the second-order derivative has a simpler structure. We will show that
the optimality conditions given in this work are more general and subsumes the
results obtained by using the second-order contingent derivatives.

2. Derivatives and epiderivatives

We begin with by recalling the definitions of some tangential cones and sets
(see [1, 26] for details).

Definition 2.1. Let Z be a real normed space, let S ⊂ Z be nonempty and let
w ∈ Z.

1. The second order contingent set T 2(S, z̄, w) of S at z̄ ∈ cl(S) (closure of S)
in the direction w ∈ Z is the set of all z ∈ Z such that there are a sequence
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(zn) ⊂ Z with zn → z and a sequence (λn) ⊂ P := {t ∈ R | t > 0} with
λn ↓ 0 so that z̄ + λnw + (λ2

n/2)zn ∈ S.
2. The contingent cone T (S, z̄) of S at z̄ ∈ cl(S) is the set of all z ∈ Z such

that there are a sequence (zn) ⊂ Z with zn → z and a sequence (λn) ⊂ P
with λn ↓ 0 so that z̄ + λnzn ∈ S.

3. The interiorly contingent cone IT (S, z̄) of S at z̄ is the set of all v ∈ Z
such that for any sequences (λn) ⊂ P and (vn) ⊂ Z with λn ↓ 0 and
vn → v, there exists an integer m ∈ N such that z̄ + λnvn ∈ S for all
n ≥ m.

Remark 2.1. It is known that the contingent cone T (S, z̄) is a nonempty closed
cone (cf. [1]). However, T 2(S, z̄, w) is only a closed set (possibly empty), non-
connected in general, and it may be nonempty only if w ∈ T (S, z̄). On the other
hand the interiorly contingent cone IT (S, z̄) is an open cone. As concern the
relationship between T (S, z̄) and IT (S, z̄), we have IT (S, z̄) = Z\T (Z\S, z̄). For
any S ⊂ Z, the identities T (S, z̄) = T (cl(S), z̄) and IT (S, z̄) = IT (int(S), z̄)
hold. Moreover, for a convex solid set S, we have cl(IT (S, z̄)) = T (S, z̄) and
int(T (S, z̄)) = IT (S, z̄). Some details and examples of these cone are given in
[1, 4, 19, 26, 27].

Let X and Y be real normed spaces and let F : X ⇒ Y be a set-valued
map. The effective domain and the graph of F are given by dom(F ) := {x ∈
X| F (x) 6= ∅} and gph(F ) := {(x, y) ∈ X ×Y | y ∈ F (x)}, respectively. Given
a proper convex pointed cone C ⊂ Y, the profile map F+ : X ⇒ Y is defined by:
F+(x) := (F + C)(x) = F (x) + C, for every x ∈ dom(F ). Then the epigraph of
F is just the graph of F+, that is, epi(F ) = gph(F+).

We recall that given normed spaces X, Y and a set-valued map F : X ⇒ Y, the
contingent derivative of F at (x̄, ȳ) ∈ gph(F ) is the set-valued map DcF (x̄, ȳ) :
X ⇒ Y defined by

(1) gph(DcF (x̄, ȳ)) = T (gph(F ), (x̄, ȳ)).

Using the above notion, the generalized contingent epiderivative of F at (x̄, ȳ) ∈
gph(F ) is the set-valued map DgF (x̄, ȳ) : X ⇒ Y given by

(2) DgF (x̄, ȳ)(x) := Min(Dc(F + C)(x), C) x ∈ dom(Dc(F + C)(x̄, ȳ)).

Here Min(A,C) = {x ∈ A| A ∩ ({x} − C) = {x}} is the set of all minimal point
of any nonempty set A with respect to C.

We say that epiderivative DgF (x̄, ȳ) dominates at x ∈ dom(DcF+(x̄, ȳ)), if
DcF+(x̄, ȳ)(x) ⊆ DgF (x̄, ȳ)(x) + C. It is known that if DgF (x̄, ȳ) dominates at
all x ∈ dom(DcF+(x̄, ȳ)) then

(3) epi(DgF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)).

On the other hand, given a set-valued map F : X ⇒ Y and (x̄, ȳ) ∈ gph(F ), the
contingent epiderivative DF (x̄, ȳ) : X → Y is a single-valued map satisfying (3).

All the above derivatives and epiderivatives have their natural second-order
analogues. For instance, the second-order contingent derivative of F : X ⇒
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Y, at (x̄, ȳ) ∈ gph(F ) in the direction (ū, v̄) ∈ X × Y is a set-valued map
D2
cF (x̄, ȳ, ū, v̄) : X ⇒ Y given by

(4) D2
cF (x̄, ȳ, ū, v̄)(x) :=

{
y ∈ Y | (x, y) ∈ T 2(gph(F ), (x̄, ȳ), (ū, v̄))

}
.

In recent years the above derivative has been used to give very general optimal-
ity condition in set-valued optimization (see [17]). Notice that if (ū, v̄) = (0X , 0Y )
in the above definition, where 0X and 0Y are the zero elements in X and Y ,
we recover the contingent derivative DcF (x̄, ȳ) of F at (x̄, ȳ). In particular, if
F : X → Y is a single valued map which is twice continuously Fréchet differ-
entiable around x̄ ∈ Ω ⊂ X, then the second order contingent derivative of the
restriction FΩ of F to Ω at x̄ in a direction ū is given by the formula (see [1, p.
215]):

(5) D2FΩ(x̄, F (x̄), ū, F ′(x̄)(ū))(x) = F ′(x̄)(x) +F ′′(x̄)(ū, ū) for x ∈ T 2(Ω, x̄, ū).

It is empty when x /∈ T 2(Ω, x̄, ū).
We now introduce new second-order tangential derivatives and epiderivatives.

Definition 2.2. Let X and Y be real normed spaces, and let C ⊂ Y be a pointed
closed convex cone. Let F : X ⇒ Y be a set-valued map, let (x̄, ȳ) ∈ gph(F ),
and let (ū, v̄) ∈ X × Y .

(1) A set-valued map D2F (x̄, ȳ, ū, v̄) : X ⇒ Y defined by
D2F (x̄, ȳ, ū, v̄)(x) = {y ∈ Y | (x, y) ∈ T (T (gph(F ), (x̄, ȳ)), (ū, v̄))}

is called second-order tangential derivative of F at (x̄, ȳ) in the direction
(ū, v̄).

(2) A single-valued map D2
eF (x̄, ȳ, ū, v̄) : X → Y defined by

epi(D2
eF (x̄, ȳ, ū, v̄)) = T (T (epi(F ), (x̄, ȳ)), (ū, v̄))

is called second-order tangential epiderivative of F at (x̄, ȳ) in the direc-
tion (ū, v̄).

(3) A set-valued map D2
gF (x̄, ȳ, ū, v̄) : X ⇒ Y defined by

D2
gF (x̄, ȳ, ū, v̄)(x) = Min(D2(F + C)(x̄, ȳ, ū, v̄)(x), C)

x ∈ dom(D2(F + C)(x̄, ȳ, ū, v̄))
is called generalized second-order tangential epiderivative of F at (x̄, ȳ)
in the direction (ū, v̄).

The above concepts are defined in analogy to the notions of contingent deriva-
tives and (generalized) contingent epiderivatives. If (ū, v̄) = (0X , 0Y ) then the
above notions recover the contingent derivative, the contingent epiderivative
DF (x̄, ȳ)(·) and the generalized contingent epiderivative DgF (x̄, ȳ)(·) of F at
(x̄, ȳ), respectively.

The following result clarifies the relationship between the second-order tangen-
tial derivative and the second-order contingent derivative.

Proposition 2.1. Assume that F : X ⇒ Y is C-convex. Then the second-order
tangential derivative D2(F +C)(x̄, ȳ, ū, v̄) of the map (F +C) coincides with the
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second-order contingent derivative D2
c (F +C)(x̄, ȳ, ū, v̄) of (F +C) provided that

0Y ∈ D2
c (F + C)(x̄, ȳ, ū, v̄)(0X).

Proof. The proof follows from the known fact that for a convex subset S of a
normed space B, the equality T 2(S, x, y) = T (T (S, x), y) holds provided that
0 ∈ T 2(S, x, y). �

The following examples will further clarify the differences and the similarities
between the two notions.

Example 2.1. Let {F1, F2} : R ⇒ R be two set-valued maps given by

F1(x) := {y ∈ R | y ≥ x4} for all x ∈ R,
F2(x) := {y ∈ R | y ≥ x3/2} for all x ∈ R.

Let (x̄, ȳ) = (0, 0) and let (ū, v̄) = (1, 0). Define R+ = {r ∈ R| r ≥ 0}. Then
D2
c (F1 +R+)(0, 0, 1, 0)(x) = D2(F1 +R+)(0, 0, 1, 0)(x) = R+ for every x ∈ R.
On the other hand

D2(F1 +R+)(0, 0, 1, 0)(x) = R+ for every x ∈ R,
whereas the second-order contingent derivative is not defined.

Remark 2.2. Although the above example is given in a finite-dimensional set-
ting, it clearly highlights the advantages of using the second-order tangential
derivatives. A similar situation persists in infinite dimensional setting. For ex-
ample, several examples of empty as well as nonempty second-order contingent
sets in the space of continuous functions defined over bounded intervals can be
found in the interesting work of Kawasaki [22]. On the other hand, the contin-
gent cone of the contingent cone is always nonempty. It should be mentioned
that the computation of the second-order contingent sets of positive cones in
some function spaces is of great importance in many applications such as sen-
sitivity analysis and inverse problems. The interested reader is referred to the
important contributions of Cominetti and Penot [6] and Bednarczuk et al. [2] for
more details. (see also [22] and [21].)

3. Optimality conditions

Let X, Y, Z be normed spaces and let the spaces Y and Z be partially ordered
by nontrivial pointed closed convex cones C ⊂ Y and D ⊂ Z. We assume that C
and D have nonempty interiors, that is, int(C) 6= ∅ and int(D) 6= ∅. Let Q0 ⊂ X
be nonempty. Let F : Q0 ⇒ Y and G : Q0 ⇒ Z be given set-valued maps.

We are concerned with the following set-valued optimization problems:

(P0) WMin F (x) subject to x ∈ Q0.

(P1) WMin F (x) subject to x ∈ Q1 := {x ∈ Q0| G(x) ∩ −D 6= ∅}.

In (P0) and (P1), we seek for a weak-minimizer. Clearly, (x̄, ȳ) ∈ gph(F ) is a
weak-minimizer of (P1) if ȳ ∈WMin(F (Q1), C), where F (Q1) := ∪x∈Q1F (x).



86 G. ISAC AND A. A. KHAN

Observe that (P1) reduces to (P0), if G(x) = 0Z . In this case the set of con-
straints Q0 is not explicitly specified. If additionally we have Q0 = X, then (P1) is
an unconstrained set-valued optimization problem. The optimality notion given
in the above definition is a global one, that is, the whole set F (Q1) has been taken
into account. Its local versions is defined as follows: The point (x̄, ȳ) ∈ gph(F )
is said to be a local weak-minimizer, if there exists a neighborhood U of x̄ such
that ȳ ∈WMin(F (Q1 ∩ U), C).

The notion of weak-minimality requires that the ordering cone has a nonempty
interior which is a quite stringent requirement. Nonetheless, many important
cones have nonempty interior, as shown in the following example.

Example 3.1. (1) In the n-dimensional Euclidean space (Rn, 〈·, ·〉), the cone
Rn

+ = {x = (x1, x2, . . . , xn)| x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0} has a nonempty interior.
(2) Consider the space of continuous functions C([a, b],R) with the norm ‖x‖ =
sup{|x(t)|| t ∈ [a, b]}. Then the cone K = {x ∈ C([a, b],R)| x(t) ≥ 0 for any t ∈
[a, b]} has a nonempty interior.
(3) Consider the space `2(N,R) with the well-known structure of a Hilbert space.
The convex cone K = {x = {xi}i≥0| x0 ≥ 0, Σn

i=1x
2
i ≤ x2

0} has a nonempty
interior given by int(K) = {x = {xi}i≥0| x0 > 0, Σn

i=1x
2
i < x2

0}.
(4) Let `∞ be the space of bounded sequences of real numbers, equipped with the
norm ‖x‖ = sup

n∈N
{|xn|}. The convex cone K = {x = {xn}n∈N| xn ≥ 0, for any n ∈

N} has a nonempty interior.
(5) Consider the space C1([a, b],R) of real continuously differentiable functions
equipped with the norm ‖f‖1 = {

∫ b
a (f(t))2dt +

∫ b
a (f ′(t))2dt}1/2 for any t ∈

C1([a, b],R). It is known that the coneK = {f ∈ C1([a, b],R)| f(t) ≥ 0, for any t ∈
[a, b]} has a nonempty interior.
(6) Let (X, ‖ · ‖) be a normed vector space and X∗ be the topological dual of X∗.
Let f ∈ X∗, and let ε > 0. The convex cone Kf,ε = {x ∈ X| f(x) ≥ ε‖x‖} has a
nonempty interior given by int(Kf,ε) = {x ∈ X| f(x) > ε‖x‖}.

In the following necessary optimality conditions for (P0), ∂C stands for the
boundary of C.

Theorem 3.1. Assume that (x̄, ȳ) ∈ gph(F ) is a local weak-minimizer of (P0).
Then for every ū ∈ dom(D(F +C)(x̄, ȳ)) and for every v̄ ∈ D(F +C)(x̄, ȳ)(ū)∩
(−C), we have

(6) D2(F + C)(x̄, ȳ, ū, v̄)(x) ∩ IT (−int(C), v̄) = ∅

for all x ∈ dom(D2(F + C)(x̄, ȳ, ū, v̄)).

Proof. Assume that (6) does not hold, and assume that there exists x ∈
dom(D2 (F + C)(x̄, ȳ, ū, v̄)) such that

y ∈ D2(F + C)(x̄, ȳ, ū, v̄)(x) ∩ IT (−int(C), v̄).
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Then (x, y) ∈ T (T (epi(F ), (x̄, ȳ)), (ū, v̄)). Consequently, there are sequences (tn) ⊂
P and ((xn, yn)) ⊂ X × Y such that tn ↓ 0 and (xn, yn)→ (x, y) with

(ū+ tnxn, v̄ + tnyn) ∈ T (epi(F ), (x̄, ȳ)) for every n ∈ N.

Since tn ↓ 0, yn → y and y ∈ IT (−int(C), v̄), there exists n1 ∈ N such that

v̄ + tnyn ∈ −int(C) for all n > n1.

For any n > n1, we fix an element (un, vn) = (ū+ tnxn, v̄+ tnyn), and notice that

(un, vn) ∈ T (epi(F ), (x̄, ȳ)).

In view of the definition of contingent cone, for (un, vn), there are sequences
(tm) ⊂ P and (xm, ym) ∈ X × Y such that tm ↓ 0, (xm, ym)→ (un, vn) and

ȳ + tmym ∈ F (x̄+ tmxm) + C.

Moreover, since vn ∈ −int(C) and ym → vn, there exists m1 ∈ N such that
ym ∈ −int(C) for all m > m1. This, in view of the fact that C is a cone, further
implies that tmym ∈ −int(C). Now assume that wm ∈ F (x̄+ tmxm) is such that
ȳ + tmym ∈ wm + C. Then

wm ∈ ȳ − int(C).

Since am := (x̄ + tmxm) → x̄, there exists m2 > 0 such that am ∈ N (x̄), where
N (x̄) is a suitable neighborhood of x̄. Therefore, we have shown that there exists
a sequence (wm) such that

wm ∈ F (am) ∩ (ȳ − int(C)) for all m > {m1,m2}.

However, this a contradiction to the weak-optimality of (x̄, ȳ). The proof is
complete. �

Setting (x̄, ȳ) = (0X , 0Y ), we get the following known first-order optimality
condition (see [7]).

Corollary 3.1. Assume that (x̄, ȳ) ∈ gph(F ) is a local weak-minimizer of (P0).
Then

(7) D(F + C)(x̄, ȳ) ∩ −int(C) = ∅ for all x ∈ dom(D(F + C)(x̄, ȳ)).

The following result shows that (6) is in fact a sufficient optimality condition
provided that a certain convexity hypothesis holds.

Theorem 3.2. Assume that gph(F+C) is convex, and assume that the following
condition holds:
For every ū ∈ dom(D(F+C)(x̄, ȳ)) and for every v̄ ∈ D(F+C)(x̄, ȳ)(ū)∩{−∂C},
we have

(8) D2(F + C)(x̄, ȳ, ū, v̄)(x) ∩ IT (−int(C), v̄) = ∅

for all x ∈ D0 := dom(D2(F + C)(x̄, ȳ, ū, v̄)).
Then (x̄, ȳ) ∈ gph(F ) is a weak-minimizer of (P0).
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Proof. By setting (ū, v̄) = (0X , 0Y ) we obtain (7) from (8). We will prove suffi-
ciency by using (8). Notice that (x− x̄) ∈ dom(D(F +C)(x̄, ȳ)) for x ∈ Q0, and
under the convexity assumption, we have y− ȳ ⊂ DF (x̄, ȳ)(x− x̄). Therefore, we
obtain

(y − ȳ) ∩ −int(C) = ∅.
The weak-minimality then follows. �

The following is a necessary optimality conditions for (P1), where we use the
notation (F,G)(x) to represent (F + C)(x)× (G+D)(x).

Theorem 3.3. Let (x̄, ȳ) ∈ gph(F ) be a local weak-minimizer of (P1), and
let z̄ ∈ G(x̄). Then for every ū ∈ dom(D(FG)(x̄, ȳ, z̄)), for every (v̄, w̄) ∈
D(FG)(x̄, ȳ, z̄)(ū) ∩ {−C ×−D} and for every
x ∈ D1 := dom(D2(FG)(x̄, ȳ, z̄, ū, v̄, w̄), we have

(9) D2(FG)(x̄, ȳ, z̄, ū, v̄, w̄)(x) ∩ IT (−C, v̄)× IT (IT (−D, z̄), w̄) = ∅.

Proof. Assume that the assertion is not true. Then there exists x ∈ D1 such that

(y, z) ∈ D2(F,G)(x̄, ȳ, z̄, ū, v̄, w̄)(x) ∩ IT (−C, v̄)× IT (IT (−int(D), z̄), w̄),

which implies that (x, y, z) ∈ T (T (gph(F,G), (x̄, ȳ, z̄)), (ū, v̄, w̄)).
Therefore, there are sequences (tn) ⊂ P, ((xn, yn, zn)) ⊂ X × Y ×Z, such that

tn ↓ 0, (xn, yn, zn)→ (x, y, z) and

(10) (ū+ tnxn, v̄ + tnyn, w̄ + tnzn) ∈ T (gph(F,G), (x̄, ȳ, z̄)).

Since y ∈ IT (−int(C), v̄), there exists n1 ∈ N such that

v̄ + tnyn ∈ −int(C) for all n > n1.

Analogously, since z ∈ IT (IT (−int(D), z̄), w̄), there exists n2 ∈ N such that

w̄ + tnzn ∈ IT (−int(D), z̄) for all n > n2.

For n ≥ max{n1, n2} we fix elements un := ū + tnxn, vn := v̄ + tnyn, and
wn := w̄ + tnzn. Notice that the following containments hold:

(un, vn, wn) ∈ T (gph(FG), (x̄, ȳ, z̄))
(vn, wn) ∈ −int(C)× IT (−int(D), z̄).

In view of the definition of the contingent cone, there are sequences (tm) ⊂ P,
((xm, ym, zm)) ⊂ X × Y × Z, such that tm ↓ 0, (xm, ym, zm)→ (un, vn, wn) and

(ȳ + tmym, z̄ + tmzm) ∈ (F,G)(x̄+ tmxm)

which means that

ȳ + tmym ∈ F (x̄+ tmxm) + C

z̄ + tmzm ∈ G(x̄+ tmxm) +D.
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Since ym → vn and vn ∈ −int(C) there exists m1 > 0 such that tmym ∈
−int(C) for every m > m1. Let am ∈ F (x̄ + tmxm) be such that ȳ − int(C) ∈
am + C, and consequently we have

(11) am ∈ ȳ − int(C).

Similarly, because wn ∈ IT (−int(D), z̄) there exists m2 > 0 such that z̄+ tmzm ∈
−int(D) for every m > m4. Let bm ∈ G(x̄+tmxm) be such that z̄+tmzm ∈ bm+D,
and consequently we have

(12) bm ∈ −int(D).

Therefore, we have shown that for sufficiently large m, we have cm := x̄ +
tmxm ∈ N (x̄), G(cm) ∩ −D 6= ∅ and F (cm) ∩ (ȳ − int(C)) 6= ∅. This contradicts
the optimality of (x̄, ȳ). �

4. Concluding remarks

New second-order optimality conditions have been given by introducing new
tangential derivatives of second-order. Several extensions of our results are possi-
ble. By using standard separation arguments the existence of Lagrange multiplier
can be proved (see [18, 28]). It is of interest to give second-order optimality by
using derivatives of F and G (not of (F,G)). It seems that Aubin’s property can
be used to reach this goal (see [13, 25]).
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