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GENERALIZED PROJECTION METHOD FOR
NON-LIPSCHITZ MULTIVALUED MONOTONE VARIATIONAL

INEQUALITIES

PHAM NGOC ANH, LE DUNG MUU AND JEAN-JACQUES STRODIOT

Dedicated to Nguyen Van Hien on the occasion of his sixty-fifth birthday

Abstract. We generalize the projection method for solving strongly mono-
tone multivalued variational inequalities when the cost operator is not neces-
sarily Lipschitz. At each iteration at most one projection onto the constrained
set is needed. When the convex constrained set is not polyhedral, we embed
the proposed method in a polyhedral outer approximation procedure. This
allows us to obtain the projections by solving strongly convex quadratic pro-
grams with linear constraints. We also discuss how to use the proposed method
to implement inexact proximal point methods.

1. Introduction

Let K be a nonempty closed convex subset in Rn and F : K → 2Rn
be a

multivalued mapping such that K ⊂ domF ≡ {x : F (x) 6= ∅}. We consider the
multivalued variational inequality problem given as

find x∗ ∈ K : ∃ w∗ ∈ F (x∗) : 〈w∗, x− x∗〉 ≥ 0 ∀x ∈ K. VIP(K,F )

As usual, we will refer to K as the constrained (or feasible) set and to F as
the cost operator (or mapping) of VIP(K,F ). This problem has important ap-
plications in different fields (see e.g. [8, 16]). In the case F is singlevalued,
there exist many algorithms for solving VIP(K,F ). The interested readers are
referred to the comprehensive monographs [8, 16, 26] as well as to the papers
[2, 6, 7, 10, 12, 17, 18, 21, 23, 25, 29] and the references quoted therein. Rather
few algorithms have been developed for solving multivalued variational inequal-
ities (see e.g. [3, 5, 13, 23, 28]). Most of these algorithms require that the cost
mapping F is Lipschitz with respect to the Hausdorff distance. However, in
general, the Lipschitz constant associated with F is not easy to compute.
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In a recent paper [3], we have proposed a fixed point method for solving multi-
valued variational inequalities involving monotone cost operators. The assump-
tions were that the cost operator F is Lipschitz with respect to the Hausdorff
distance. So, at each iteration k, we can find xk+1 and tk+1 ∈ F (xk) such that
the inequality ||tk − tk+1|| ≤ L||xk − xk+1|| is satisfied.

In this paper, we consider a multivalued variational inequality VIP(K,F )
whose cost operator F is not assumed to be Lipschitz. First, we generalize the
projection method to the case of strongly monotone (not necessarily Lipschitz)
variational inequalities. The main features of this new method are that

(i) the cost operator is not required to be Lipschitz.
(ii) at each iteration, at most one projection onto the feasible domain is needed.
(iii) the search direction can be determined from any point in the image of the

current iterate.
Next, we embed the proposed algorithm in a polyhedral approximation proce-

dure. This allows us to obtain the projections by solving strongly convex qua-
dratic programs with linear constraints. From a computational view point, this
is helpful, since the projection onto a closed convex set may be difficult to deter-
mine when the convex set is not simple. Finally, we discuss an application of the
proposed method in the framework of the proximal point method. Namely, we
give an approximation rule and show how to use it in the proposed algorithm to
implement inexact proximal point methods for (not necessarily strongly) mono-
tone multivalued variational inequalities whose cost operator is not assumed to
be Lipschitz.

The paper is organized as follows. In the next section, we consider the varia-
tional inequality problem VIP(K, F) with F a strongly monotone operator. Then
we describe a generalized projection method for solving this problem. Section 3
is devoted to show how to embed the new method in a polyhedral outer approx-
imation procedure. In Section 4, we discuss how to apply our method to obtain
an implementation of the inexact proximal point method with the aim of solving
a variational inequality problem involving a monotone operator.

2. A generalized projection method

First, let us recall the well known concepts of monotonicity that will be used
in the sequel.

Definition 2.1. The operator F : K → 2Rn
is said to be:

a) strongly monotone on K with modulus β > 0 if

〈wx − wy, x− y〉 ≥ β||x− y||2 ∀x, y ∈ K,wx ∈ F (x), wy ∈ F (y).

b) monotone on K if

〈wx − wy, x− y〉 ≥ 0 ∀x, y ∈ K,wx ∈ F (x), wy ∈ F (y).
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Note that if F is strongly monotone on K, then there exists a compact set D
such that

∀x ∈ K \D,∃y ∈ K ∩D : 〈v, y − x〉 < 0 ∀v ∈ F (x). (CO)

Indeed, assume that this coercivity property does not hold, then for every closed
ball Br centered at zero with radius r, there exists xr ∈ K \Br such that

∀y ∈ K ∩Br, ∃ur ∈ F (xr) : 〈ur, xr − y〉 ≤ 0.

In particular, let r0 > 0 and y0 ∈ K ∩Br0 . Then

∀r > r0, ∃ur ∈ F (xr) : 〈ur, xr − y0〉 ≤ 0.

On the other hand, by the strong monotonicity of F , we have

〈ur, xr − y0〉 ≥ 〈v0, xr − y0〉+ β||xr − y0||2,

where v0 ∈ F (y0). Since ||xr|| > r, this inequality implies that 〈ur, xr−y0〉 → +∞
as r →∞, which contradicts 〈ur, xr − y0〉 ≤ 0.

It is well known (see e.g. [8, 16]) that if F is upper semicontinuous with
compact, convex values on K and the coercive condition (CO) is satisfied, then
the variational inequality VIP(K,F ) admits a solution, and if in addition, F is
strongly monotone, then the solution is unique.

For each x ∈ K and v ∈ F (x), we define the following strongly convex pro-
gramming problem

min
y∈K
{〈v, y − x〉+

1
2ρ
‖y − x‖2}, P (x,w)

where ρ > 0 is a regularization parameter. Since K is a nonempty closed con-
vex subset and the objective function is a strongly convex quadratic function,
this problem admits a unique solution denoted by s(x, v). Then we define a
multivalued mapping S : K → 2K , by

S(x) ≡ {s(x, v) ∈ K : v ∈ F (x)} with domS ⊂ K ⊂ domF.

It is well known (see e.g. [2, 16]) that x is a solution of VIP(K,F ) if and only if
x ∈ S(x). This fact suggests solving VIP(K,F ) by the iterative procedure xj+1 ∈
S(xj). It has been shown in [3] that if F is strongly monotone and Lipschitz
continuous with respect to the Hausdorff distance on K, then the regularization
parameters can be chosen depending on the strongly monotone modulus and the
Lipschitz constant in such a way that the sequence {xk} linearly converges to
the unique solution to VIP(K,F ). However, from the numerical point of view,
computing the Lipschitz constant can be costly and even sometimes impossible.
Our aim now is to construct iteratively a sequence converging to a solution to
VIP(K,F ) without assuming the Lipschitz continuity of F . Given an iterate
xj ∈ K, we attempt to find a direction wj on which the next iterate xj+1 is
lying. By using an optimality condition for convex programming, we can see that
xj+1 ∈ S(xj) if and only if

〈vj +
1
ρ

(xj+1 − xj), y − xj+1〉 ≥ 0 ∀y ∈ K
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holds true for some vj ∈ F (xj). With y = xj ∈ K, the last inequality becomes

〈vj , xj − xj+1〉 − 1
ρ
〈xj+1 − xj , xj+1 − xj〉 ≥ 0.

By taking wj =
1
ρ

(xj+1 − xj), we obtain xj+1 = xj + ρwj . It may happen that

xj + ρwj does not belong to K for any ρ > 0. In this case, it is natural to take
xj+1 = PK(xj + ρwj), where PK stands for the Euclidean projection onto K.
Of course, we can also take ρ = ρj depending on each iteration. In that case,
the regularization parameter ρj plays the role of a stepsize at iteration j. The
method can now be described in detail as follows:
ALGORITHM 2.1

Step 0. Choose a sequence {ρj} such that

0 < ρj < 1 ∀j,
∞∑
j=0

ρj = +∞,
∞∑
j=0

ρ2
j < +∞.

Let x0 ∈ K and set j := 0.
Step 1. Take vj ∈ F (xj) .
If vj = 0, then terminate: xj solves VIP(K,F ).
If vj 6= 0, then find wj , such that

(2.1) 〈vj , y − xj〉+ 〈wj , y − xj〉 ≥ 0 ∀y ∈ K.

If wj = 0, terminate: xj is a solution.
Otherwise, go to Step 2.
Step 2. Set

zj+1 := xj + ρjw
j , xj+1 = PK(zj+1).

Let j ← j + 1 and go back to Step 1.

Remark 2.1. (i) The main subproblem in this algorithm is to find wj 6= 0
satisfying (2.1). Clearly (2.1) holds if wj = −vj . In fact the inequality (2.1)
means that vj + wj ∈ −NK(xj), where NK(xj) denotes the (outward) normal
cone of K at xj . In the case K is given by K ≡ {x : g(x) ≤ 0} with g a
subdifferentiable convex function, one can take wj = −vj when g(xj) < 0 and wj

such that −(vj+wj) ∈ ∂g(xj) when g(xj) = 0. In both cases vj+wj ∈ −NK(xj).
In the particular case where F is the subdifferential of a convex function f ,
it is suggested in [22] to determine −wj as the vector of the smallest norm in
F (xj)+NK(xj). This vector is a descent direction for the objective function f at
the current iterate. In [22], it is also shown how to compute this descent direction
when K is a polyhedral convex set given by a finite number of affine inequalities.

(ii) The direction wj defined by vj +wj ∈ −NK(xj) with vj ∈ F (xj) takes into
account not only the cost operator F , but also the constrained set K. This is
helpful in certain cases, for example for avoiding the projection onto K. Indeed
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it may happen that (−F (xj)) ∩K = ∅, but that (−F (xj)) ∩
(
NK(xj) + wj

)
6= ∅

for some wj 6= 0 such that xj + ρwj ∈ K for some ρ > 0 (see the figure below).

j j

j
j

j

K

: feasible direction

-w - v

-v
-w
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If at each iteration j, we take wj = −vj , then Algorithm 2.1 becomes the
following usual projection method

Step 0. Choose a sequence {ρj} such that

0 < ρj < 1 ∀j,
∞∑
j=0

ρj = +∞,
∞∑
j=0

ρ2
j < +∞.

Let x0 ∈ K and set j := 0.
Step 1. Take vj ∈ F (xj) .
If vj = 0, then terminate: xj solves VIP(K,F ).
If vj 6= 0, take xj+1 = PK(xj − ρjvj). Let j ← j + 1 and go back to Step 1.

Convergence of Algorithm 2.1 is ensured by the following theorem.

Theorem 2.1. Suppose that the mapping F is strongly monotone on K with
modulus β > 0. Then the sequence {xj} constructed by Algorithm 2.1 satisfies

||xj+1 − x∗||2 ≤ (1− 2βρj)||xj − x∗||2 + ρ2
j ||wj ||2 ∀j,

where x∗ is the unique solution of VIP(K,F ). Moreover, if 0 < ρj <
1

2β
for

every j, and the sequence {wj} is bounded, then xj → x∗.

We need the following lemma for the proof of the theorem.

Lemma 2.1. Let {αj} be a sequence of nonnegative numbers such that

αj+1 ≤ (1− λj)αj + εj ∀j,
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where

λj ∈ (0, 1) ∀j,
∞∑
j=0

λj = +∞, εj > 0 ∀j,
∞∑
j=0

εj < +∞.

Then lim
j→∞

αj = 0.

Proof. Applying iteratively the inequality αj+1 ≤ (1−λj)αj+εj for j, j−1, . . . , 0,
we obtain

(2.2) αj+1 ≤ α0

j∏
k=1

(1− λk) +
j∑
i=1

εi−1

j∏
k=i

(1− λk) + εj ∀j.

Since
∑∞

j=0 εj < +∞,
∑∞

j=0 λj = +∞ and

j∏
i=k

(1− λi) ≤ exp
(
−

j∑
i=k

λi
)
→ 0 as j →∞,

for all k, letting j →∞, we see from (2.2) that lim
j→∞

αj = 0. �

Proof of the theorem. Let x∗ be the solution of VIP(K,F ). Since xj+1 = PK(zj+1)
and x∗ = PK(x∗), we have, by the nonexpansivity of the Euclidean projection
mapping, that

(2.3) ||xj+1 − x∗||2 = ||PK(zj+1)− PK(x∗)||2 ≤ ||zj+1 − x∗||2.
Replacing zj+1 by xj + ρjw

j , we obtain

||zj+1 − x∗||2 = ||xj + ρjw
j − x∗||2 = ||xj − x∗||2 + 2ρj〈wj , xj − x∗〉+ ρ2

j ||wj ||2.

Then, by (2.3), we have

(2.4) ||xj+1 − x∗||2 ≤ ||xj − x∗||2 + 2ρj〈wj , xj − x∗〉+ ρ2
j ||wj ||2.

On the other hand, applying inequality (2.1) with y = x∗, we obtain

〈vj , x∗ − xj〉+ 〈wj , x∗ − xj〉 ≥ 0,

which implies

(2.5) 〈vj , x∗ − xj〉 ≥ 〈wj , xj − x∗〉.
Since F is strongly monotone on K with modulus β > 0, and x∗ ∈ K, vj ∈ F (xj),
we have

〈vj − w, xj − x∗〉 ≥ β||xj − x∗||2 ∀w ∈ F (x∗).
Hence

(2.6) 〈vj , x∗ − xj〉 ≤ −β||xj − x∗||2 − 〈w, xj − x∗〉 ∀w ∈ F (x∗).

Since x∗ ∈ K is the solution of VIP(K,F ), there exists w∗ ∈ F (x∗) satisfying

(2.7) 〈w∗, xj − x∗〉 ≥ 0.
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Substituting (2.7) into (2.6) with w = w∗, we obtain

〈vj , x∗ − xj〉 ≤ −β||xj − x∗||2.

Thus, by (2.5),

(2.8) 〈wj , xj − x∗〉 ≤ −β||xj − x∗||2.

Combining (2.4) and (2.8), we can deduce successively that

||xj+1 − x∗||2 ≤ ||xj − x∗||2 − 2ρjβ||xj − x∗||2 + ρ2
j ||wj ||2

= (1− 2ρjβ)||xj − x∗||2 + ρ2
j ||wj ||2.

To prove that lim
j→∞

xj = x∗, we apply Lemma 2.1 with λj := 2ρjβ, αj := ||xj −

x∗||2, and εj = ρ2
j ||wj ||2. Since 0 < ρj <

1
2β for all j and

∑∞
j=0 ρj =∞, we have

0 < λj < 1 for all j and
∑∞

j=0 λj =∞. Furthermore, the sequence {||wj ||} being
bounded, and

∑∞
j=0 ρ

2
j < ∞, we have

∑∞
j=0 εj < ∞. Consequently, by Lemma

2.1, lim
j→∞

||xj − x∗|| = 0, which means that xj → x∗ as j →∞. 2

Remark 2.2. In order to ensure the convergence of Algorithm 2.1, we have
assumed that the sequence {wj} is bounded. By using an additional parameter
τj , we can guarantee that the sequence {wj} is automatically bounded. It is the
case if we take τj such that

(2.9) 0 < τj < min
{

1
2βρj

,
1
||vj ||

}
for all j and

∞∑
j=0

ρjτj = +∞,

and if in Algorithm 2.1 we require, instead of (2.1), that

〈τjvj , y − xj〉+ 〈wj , y − xj〉 ≥ 0 ∀y ∈ K.

Indeed, if we take uj ∈ NK(xj) ≡ {v : 〈v, x − xj〉 ≤ 0 ∀x ∈ K} such that
||uj || ≤ c and −τvj − wj = uj , then

||wj || = || − τjvj − uj || ≤ τj ||vj ||+ ||uj || ≤ 1 + c,

where the second inequality follows from (2.9). By using the same arguments as
in the proof of Theorem 2.1, we obtain

‖xj+1 − x∗‖2 ≤ ‖xj − x∗‖2 + 2ρjτj〈vj , x∗ − xj〉+ ρ2
j‖wj‖2

≤ ‖xj − x∗‖2 − 2ρjβτj‖xj − x∗‖2 + ρ2
j‖wj‖2

= (1− 2ρjβτj)‖xj − x∗‖2 + ρ2
j‖wj‖2.

Again by (2.9), 2ρjβτj < 1 for all j. Then we can apply Lemma 2.1 with λj =
2ρjβτj < 1, αj = ||xj − x∗||2, and εj = ρ2

j ||wj ||2 to show that ||xj − x∗|| → 0 as
j →∞.
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3. Polyhedral approximation

In the algorithm described in the previous section, at each iteration j, the
iterate xj+1 is defined as the projection on K of the preference point zj+1. This
task leads to the problem of minimizing the quadratic function ||x− zj+1||2 over
the closed convex set K. In the case K is a polyhedron, this problem can be solved
efficiently by using available softwares. When K is not polyhedral, we suggest
approximating K by polyhedral convex sets. Polyhedral outer approximations of
a convex set are based upon the fact that any nonempty closed convex set can be
approximated by polyhedral convex sets. This technique has been widely used
in convex programming and variational inequality problems (see e.g. [10, 15]).
In this section, we embed Algorithm 2.1 in a polyhedral outer approximation
procedure in order to solve problem VIP(K,F ). We also suppose that the closed
convex set K is given as

K := {x ∈ Rn : gj(x) ≤ 0, j ∈ J},

where J is a finite index set and the functions gj (j ∈ J) are convex and sub-
differentiable on Rn. By taking g(x) := maxj∈J gj(x), we can write K = {x ∈
Rn| g(x) ≤ 0}. Suppose now that Slater’s condition is satisfied, i.e., that there
exists v0 such that g(v0) < 0.

For getting the convergence of the polyhedral approximation algorithm de-
scribed below, we need the following result.

Theorem 3.1. ([21], [30, Theorem 6.1, p.180]) Let {xk} ⊂ Rn \K be a bounded
sequence, let v0 ∈ intK, yj ∈ [v0, xk] \ intK, pk ∈ ∂g(yk) and 0 ≤ αk ≤ g(yk)
such that αk − g(yk) → 0 as k → +∞. If, for every k, the affine functions
lk(x) := 〈pk, x− yk〉+ αk satisfy

lk(xk) > 0, lk(xk+1) ≤ 0, lk(x) ≤ 0 ∀x ∈ K,

then every accumulation point of the sequence {xk} belongs to K.

Now we are in a position to describe the polyhedral approximation algorithm.

ALGORITHM 3.1
Initialization. Choose a sequence {δk} of positive numbers such that δk ↘ 0,

and take a polyhedral convex set T0 containing K. For example

T0 := {x : g(x0) + 〈v0, x− u0〉 ≤ 0},

where u0 ∈ Rn and v0 ∈ ∂g(x0).

Iteration k (k = 0, 1, ...). Find xk ∈ Tk such that

(3.1) ∃ vk ∈ F (xk) : 〈vk, x− xk〉 ≥ −δk ∀x ∈ Tk ⊃ K.

a) If xk ∈ K, take Tk+1 = Tk.
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b) If xk 6∈ K, then construct a hyperplane lk such that

lk(x) ≤ 0 ∀x ∈ K, lk(xk) > 0,

and take
Tk+1 := {x ∈ Tk : lk(x) ≤ 0}.

Increase k by 1 and go to iteration k.

Theorem 3.2. Assume that
(i) F is upper semicontinuous, with compact values, and strongly monotone on

T0.
(ii) The cutting hyperplane lk used in the algorithm is constructed as in Theo-

rem 3.1.
Then the sequence {xk} generated by the algorithm converges to the solution

to VIP(F,K).

Proof. Let x∗ be the exact solution to VIP(F,K). Applying (3.1) with x = x∗,
we obtain

(3.2) 〈vk, x∗ − xk〉 ≥ −δk ∀k.
If F is strongly monotone with modulus β, then

〈vk − v∗, xk − x∗〉 ≥ β||xk − x∗||2 ∀vk ∈ F (xk), v∗ ∈ F (x∗),

which implies
〈vk, xk − x∗〉 ≥ 〈v∗, xk − x∗〉+ β||xk − x∗||2.

Then by (3.2), it follows that

β||xk − x∗||2 + 〈v∗, xk − x∗〉 ≤ δk.
Thus

β||xk − x∗||2 ≤ δk + ||v∗||||xk − x∗|| ∀k.
Since {δk} is bounded, it follows directly from this inequality that {xk} is also
bounded. Then there is a cluster point x̄ of the sequence {xk} with x̄ ∈ K.
Indeed, if xk 6∈ K for every k large enough, then this is guaranteed by Theorem
3.1. On the other hand, if xk ∈ K for infinitely many k, then it is a consequence
of the closedness of K. Now, we show that x̄ solves VIP(F,K). Let x be any
point in K and let {xkj} be a subsequence of {xk} such that xkj → x̄ as j →∞.
Since K ⊂ Tk for all k, again by (3.1), we have

(3.3) 〈vkj , x− xkj 〉 ≥ −δkj
.

Since {xkj} is bounded, by upper semicontinuity of F , we see that the sequence
{vkj} is bounded too (see e.g. [4, Proposition 11, p.112]), and therefore we may
assume, taking a subsequence if necessary, that vkj → v as j → +∞. Since F is
closed at x, we have v ∈ F (x). Now letting j in (3.3) tend to +∞, as δkj

→ 0,
we obtain

〈v, x− x〉 ≥ 0,
which implies that x solves VIP(F,K). 2
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4. Application to inexact proximal point methods

The proximal point method is a fundamental tool for solving the inclusion
0 ∈ T (x) with T a maximal monotone operator. For the variational inequality
VIP(K,F ), the mapping T is defined as

T (x) :=
{
F (x) +NK(x) if x ∈ K,
∅ if x 6∈ K,

where NK(x) is the normal cone to K at x. It is well known (see e.g. [11,
p.381]) that, if F is upper semicontinuous and monotone with compact values on
K, then T is maximal monotone. Then, for any ck > 0, the proximal mapping
Pk := (I + ckT )−1 is single valued and nonexpansive on the whole space. The
proximal point method constructs a sequence {xk} by taking xk+1 = Pk(xk) for
all k. In the case of a variational inequality, where T := F + NK , computing
xk+1 = Pk(xk) is reduced to the problem of finding the unique solution of the
following strongly monotone variational inequality

find xk+1 ∈ K and wk+1 ∈ Fk(xk+1) : 〈wk+1, x− xk+1〉 ≥ 0 ∀x ∈ K,

where Fk(x) := ckF (x) + x− xk.
It is well known [27] that starting from any x0 ∈ K, the sequence of iterates

{xk} defined by xk+1 = Pk(xk) converges to a solution of the initial variational
inequality VIP(K,F ) provided that the regularization parameters ck are bounded
away from 0, i.e., ck > c > 0 for all k. Since Fk is strongly monotone on K,
Algorithm 2.1 proposed in Section 2 can be applied. In practice, we can solve
the subproblem only approximately. In [27], criteria for approximation are given
that ensure that the global convergence remains true. Following this idea, starting
from an arbitrary point x̃0 ∈ K, we construct a sequence {x̃k} of approximate
solutions to subvariational inequalities by taking, for each k,

(4.1) x̃k+1 ∈ K and w̃k+1 ∈ Fk(x̃k+1) : 〈w̃k+1, x− x̃k+1〉 ≥ −δk ∀x ∈ K,

where δk > 0 and
∑∞

k=1 δk < ∞. We call a point x̃k+1 satisfying (4.1) a δk-
solution to the variational inequality

find xk+1 ∈ K and wk+1 ∈ Fk(xk+1) : 〈wk+1, x−xk+1〉 ≥ 0 ∀x ∈ K. VIP(K,Fk)

Convergence of the sequence defined by (4.1) is ensured by the following theorem.

Theorem 4.1. Suppose that F is monotone and upper semicontinuous with com-
pact, convex values on K, and that Fk(.) = ckF (.) +∇h(.)−∇h(x̃k) with h being
a Lipschitz differentiable, strongly convex function and ck ≥ c > 0 for all k. Then
the sequence {x̃k} generated by (4.1) with δk > 0 and

∑∞
k=1 δk <∞ converges to

a solution of the variational inequality problem VIP(K, F).

Proof. Let x = x∗ be a solution of VIP(K,F ). Applying (4.1) with x = x∗, and
substituting w̃k+1 = ck t̃

k+1 +∇h(x̃k+1)−∇h(x̃k) with t̃k+1 ∈ F (x̃k+1), we have

(4.2) 〈ck t̃k+1, x∗ − x̃k+1〉+ 〈∇h(x̃k+1)−∇h(x̃k), x∗ − x̃k+1〉 ≥ −δk.
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Since t̃k+1 ∈ F (x̃k+1), we obtain, by monotonicity of F , that

〈t̃k+1 − t∗, x∗ − x̃k+1〉 ≤ 0 ∀t∗ ∈ F (x∗).

Furthermore, since x∗ is a solution of VIP(K,F ), there exists t∗ ∈ F (x∗) such
that

〈t∗, x̃k+1 − x∗〉 ≥ 0.
Thus, again by monotonicity, we obtain

〈t̃k+1, x∗ − x̃k+1〉 ≤ 0.

Then, by (4.2)

(4.3) 〈∇h(x̃k+1)−∇h(x̃k), x∗ − x̃k+1〉 ≥ −δk.
On the other hand, since h is strongly convex with modulus α, we have

(4.4) L(x) := h(x∗)− h(x)− 〈∇h(x), x∗ − x〉 ≥ α

2
||x− x∗||2 ∀x ∈ K.

Using (4.4) with x̃k and x̃k+1, we obtain that

(4.5)

L(x̃k)− L(x̃k+1)

= h(x̃k+1)− h(x̃k) + 〈∇h(x̃k+1), x∗ − x̃k+1〉 − 〈∇h(x̃k), x∗ − x̃k〉

= h(x̃k+1)− h(x̃k) + 〈∇h(x̃k+1), x∗ − x̃k+1〉 − 〈∇h(x̃k), x∗ − x̃k + x̃k+1 − x̃k+1〉

= h(x̃k+1)− h(x̃k) + 〈∇h(x̃k+1)−∇h(x̃k), x∗ − x̃k+1〉 − 〈∇h(x̃k), x̃k+1 − x̃k〉

≥ α

2
‖x̃k+1 − x̃k‖2 + 〈∇h(x̃k+1)−∇h(x̃k), x∗ − x̃k+1〉,

where the last inequality follows from the fact that h is strongly convex with
modulus α. Then from (4.3) and (4.5), we deduce that

L(x̃k+1)− L(x̃k) ≤ −α
2
||x̃k+1 − x̃k||2 + δk ≤ δk.

Since
∑∞

k=0 δk <∞, it follows from the last inequality that the sequence {L(x̃k)}
is convergent, and therefore

||x̃k+1 − x̃k||2 → 0 as k →∞.
Since {L(x̃k)} is convergent, using (4.4) with x = x̃k, we can see that the sequence
{x̃k} is bounded. Let x̃ be any cluster point of {x̃k}. For simplicity of notation,
we write x̃k → x̃. Let x be any point in K. From (4.1), it follows that

〈ck t̃k+1, x− x̃k+1〉+ 〈∇h(x̃k+1)−∇h(x̃k), x− x̃k+1〉 ≥ −δk,
which, by Lipschitz continuity of ∇h, implies that

〈ck t̃k+1, x̃k+1 − x〉 ≤ 〈∇h(x̃k+1)−∇h(x̃k), x− x̃k+1〉+ δk

(4.6) ≤ L||x̃k+1 − x̃k||||x̃k+1 − x||+ δk.

Note that, since F is upper semicontinuous with compact values, {x̃k} is bounded
and t̃k+1 ∈ F (x̃k+1), we can conclude that {t̃k} is bounded ([4, Proposition 11,
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p. 112]). Thus, taking a subsequence if necessary, we may assume that t̃k → t̃.
Letting k → ∞ in (4.6) and observing that the sequence {x̃k} is asymptotic
regular, i.e., ||x̃k+1 − x̃k|| → 0, and ck > c > 0 for all k, we obtain

〈t̃, x− x̃〉 ≥ 0.

Since x is arbitrary in K and t̃ ∈ F (x̃), the last inequality shows that x̃ is a
solution to VIP(K,F ). �

In virtue of Theorem 4.1, we can use Algorithm 2.1 to implement the approx-
imate proximal point algorithm with approximation criterion defined by (4.1).

Remark 4.1. The approximation defined by (4.1) allows us to verify whether
the point x̃k+1 is a δk-solution or not. Indeed, x̃k+1 is a δk-solution to VIP(K,Fk)
if and only if the optimal value of the convex program

min〈t̃k+1, x〉 subject to x ∈ K
is greater or equal to 〈t̃k+1, x̃k+1〉 − δk.
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