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ON OUTLIER DETECTION IN MULTIVARIATE TIME SERIES
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Abstract. This paper deals with the detection of outliers in multivariate
time series models. The different detection methods found in the literature
are reviewed and a new one is suggested. It is based on the coefficient of
vector autocorrelation. We obtain its influence function which is used in a
heuristic for detecting outliers. Then the distribution of the influence function
is obtained and used for testing the hypothesis of presence of outliers.

1. Introduction

The detection of outliers is an important problem in model building, inference
and analysis of multivariate time series. Indeed, the presence of outliers, even in
small quantity, can lead to biased estimation of the parameters, to a misspecifica-
tion of the model and to inappropriate predictions. In the recent literature much
importance has been given to this problem in the univariate context by the follow-
ing authors: Fox [10], Abraham and Box [1], Kitagawa [16], Chernick, Downing
and Pike [7], Martin [21], Yatawara [26], Abraham and Chuang [2], Abraham
and Yatawara [3], Tsay [24], Lattin [17], Li and Hui [18] and Ljung [20]. Li and
Hui [19] considered modeling multivariate time series via robust methods. Tsay,
Peña and Pankratz [25] considered this problem in the multivariate framework.
Then modern techniques have been applied to this problem like, for instance,
projection pursuit by Galeano, Peña and Tsay [11] or independent component
analysis by Baragona and Battaglia [5].
In this paper we consider the approach proposed by Tsay, Peña and Pankratz
[25] and its advantages. We also consider the usual solutions proposed in the
literature and suggest a new method of detecting outliers in multivariate time
series.

2. Outliers in the multivariate time series model

Let Xt = (X1t, · · · , Xrt)′ be a r-dimensional vector representing a multivariate
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VARMA time series (vector autoregressive moving average)

Φ(B)Xt = C + Θ(B)Et, with t = 1, · · · , n,(2.1)

where B is the r × r matrix backshift operator such that BXt = Xt−1 and

Φ(B) = I−Φ1B − · · · −ΦpB
p

Θ(B) = I−Θ1B − · · · −ΘqB
q

are matrix polynomials of orders p and q respectively, C is a r-dimensional con-
stant vector and Et = (E1t, · · · , Ert)′ is a sequence of independent white noise
vectors of means 0 and covariance matrices Σ.
If Xt is invertible, model (2.1) above can be written as

Π(B)Xt = CΠ + Et,

where Π(B) = Θ(B)−1Φ(B) = I −
∑∞

i=1 ΠiB
i and CΠ = Θ(1)−1C. Similarly

(2.1) can be written as:
Xt = CΨ + Ψ(B)Et

where Φ(1)CΨ = C and Φ(B)Ψ(B) = Θ(B) with Ψ(B) = I +
∑∞

i=1 ΨiB
i.

Given an observed multivariate time series Y = (Y′1, · · · ,Y′n)′ with Yt =
(Y1t, · · · , Yrt)′, the presence of outliers can be modelized as:

Yt = Xt +ααα(B)wI(h)
t ,(2.2)

where I(h)
t is an indicator variable characterizing the outlier at time h, that is

I
(h)
h = 1 and I

(h)
t = 0 if t 6= h, and w = (w1, · · · , wr)′ is its impact on the series

and Xt follows (2.1).

The outliers are then classified in four categories:

• The multivariate additive outliers (MAO) affect only one observation of
the series and not the future values.
In terms of polynomials the MAO are modelized by letting ααα(B) = I in
(2.2).
• The multivariate innovational outliers (MIO) have a temporary impact

on the series like an innovation.
Then we let ααα(B) = Ψ(B) in (2.2).
• The multivariate level shift (MLS) increase or decrease all the observa-

tions at a given point of the series by a constant.
In this case we have ααα(B) = (1−B)−1I in (2.2).
• The multivariate temporary change (MTC) increase or decrease drasti-

cally the level of the series which rapidly returns to its initial level expo-
nentially.
Then we have ααα(B) = (I− δIB)−1 with 0 < δ < 1 in (2.2).



OUTLIER DETECTION IN MULTIVARIATE TIME SERIES 21

In general, the MAO and the MIO are considered as non-typical observations
whereas the MTC and the MLS as structural changes.
The problem of outlier detection in multivariate time series is a complex problem
because the different components of Xt can be affected by different types of
outliers.

3. Outliers with respect to vector autocorrelation

Let Xt = (X1t, X2t, · · · , Xrt)
′

be a multivariate stationary time series of di-
mension r with

E(Xt) = 0,
E(XtX′t+k) = Γ(k) = (γij(k)) a r × r matrix and

E(XtX
′
t) = E(Xt+kX′t+k) = Γ(0) = (γij(0)) another r × r matrix.

We know that Γ(0) is symmetric but not Γ(k) for k 6= 0.

Consider the vector of dimension 2r, X =
(

Xt

Xt+k

)
with the 2r× 2r covariance

matrix Γ =
(

Γ(0) Γ(k)
Γ′(k) Γ(0)

)
.

Then the coefficient of vector autocorrelation is defined by (see Roy and Cléroux
[23] for example)

λ(k) =
trΓ(k)Γ′(k)
trΓ2(0)

,(3.1)

where tr(.) is the trace operator.

In some situations it may be convenient to let Yt = D−1/2Xt for each t where
D = diag(γii(0)). Then the covariance matrix of Yt is the correlation matrix
of Xt and the corresponding λ(k) is obtained from correlation matrices. The
influence function of a point Y or of a point X would be obtained in a similar
way.
Let F be a distribution function and F̃ = (1 − ε)F + εδX be a perturbation of
F by δX, the distribution function which assigns unit probability to the point
X. Let θ = T (F ) be any parameter expressed as a functional of the distribution
function F and let θ̃ = T (F̃ ). Hampel [12] defined the theoretical influence
function I(X; θ) at X as

I(X; θ) = lim
ε→0

( θ̃ − θ
ε

)
.(3.2)

The theoretical influence function can be used to determine the influence of the
point X on the parameter θ. Influence functions are important tools for out-
lier detection. They have been used by Devlin, Gnanadesikan and Kettenring
[9] in the context of bivariate correlation, by Campbell [6] for outlier detection
in discriminant analysis, by Cléroux, Helbling and Ranger [8] for outlier detec-
tion in multivariate data and in the multivariate linear regression model, and
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by Chernick, Downing and Pike [7] and Li and Hui [18] for outlier detection in
univariate time series data. The concept of influential functional, similar in spirit
to Hampel’s influence function, has been introduced by Martin and Yohai [22]
for univariate time series.
Using an approach similar to that in Cléroux, Helbling and Ranger [8] we obtain,
after lengthy algebraic manipulations, the theoretical influence function of λ(k):

I(X;λ(k)) = λ(k)
(2X′tΓ(k)Xt+k

trΓ(k)Γ′(k)
−

X′tΓ(0)Xt + X′t+kΓ(0)Xt+k

trΓ2(0)

)
.(3.3)

It can be seen that E[I(X;λ(k)] = 0 and if X has the multivariate normal dis-
tribution, then V ar[I(X;λ(k)] = 4λ2(k)σ2, where

σ2 = 1 +
trΓ4(0)

(trΓ2(0))2
+
trΓ(0)Γ(k)Γ(0)Γ′(k)

(trΓ2(0))2
+
trΓ(0)Γ(k)Γ(0)Γ′(k)

(trΓ(k)Γ′(k))2

− 2trΓ2(0)Γ(k)Γ′(k)
trΓ2(0)trΓ(k)Γ′(k)

− 2trΓ2(0)Γ′(k)Γ(k)
trΓ2(0)trΓ(k)Γ′(k)

.(3.4)

Let us note in passing that

i) if we let λ̂(k) =
trC(k)C′(k)
trC2(0)

where C(0) and C(k) are the usual esti-

mates, from a sample of size n, of Γ(0) and Γ(k) respectively, then the
asymptotic distribution, as n −→∞, of

√
n[λ̂(k)−λ(k)] is N(0, 4λ2(k)σ2)

where σ2 is given by (3.4), when 0 < λ(k) < 1 (see for example, Andrews
et al. [4], pp. 29-30).

ii) if r = 1 then λ(k) = ρ2(k) where ρ(k) is the autocorrelation coefficient of
lag k in a univariate time series. From (3.3) we obtain

I(X; ρ(k)) = ZtZt+k −
ρ(k)

2
(Z2

t + Z2
t+k),(3.5)

where Zt =
Xt√
γ(0)

and Zt+k =
Xt+k√
γ(0)

. Formula (3.5) is identical to that

obtained by Chernick, Downing and Pike [7].
iii) formulas (3.3) and (3.4) correspond to similar formulas obtained in Cléroux,

Helbling and Ranger [8] in a different context.

4. Methods of outlier detection

From the model of Section 2 we can consider a first method of detecting out-
liers. This method has been developed by Tsay, Peña and Pankratz [25] and
reformulated by Galeano, Peña and Tsay [11]. Here we mention the latter. It
is based on the following ideas. If all the parameters of model (2.1) for Xt are
known we obtain, from the observed series Yt, for t < h, the innovations

At = Π(B)Yt −CΠ.(4.1)
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Then the relation between the pure white noise Et and the computed innovations
At is

At = Et + Γ(B)wI(h)
t ,(4.2)

where Γ(B) = Π(B)ααα(B) = I−
∑∞

i=1 ΓiBi.
It is shown by Tsay, Peña and Pankratz [25] that the estimation of the impact w
of the outlier of type i (i = MAO, MIO, MLS, MTC) is the following when the
parameters of the model are known:

wi,h = −(
n−h∑
j=0

Γ′jΣ
−1Γj)−1(

n−h∑
j=0

Γ′jΣ
−1Ah+j),(4.3)

where Γ0 = −I.
The covariance matrix of this estimator is Σi,h = (

∑n−h
j=0 Γ′jΣ

−1Γj)−1. Under
the hypothesis H0 : w = 0 the statistics

Ji,h = w′i,hΣ
−1
i,hwi,h, i = MAO, MIO, MLS, MTC(4.4)

has the chi-squared distribution with r degrees of freedom. Another statistics
proposed by the same authors is

Ci,h = max{|wj,i,h|/
√
σj,i,h : 1 ≤ j ≤ r}, i = MAO, MIO, MLS, MTC

where wj,i,h is the jth element of wi,h and σj,i,h is the jth element of the main
diagonal of Σi,h.
Clearly, in practical situations, neither the parameters nor the time h, where the
outliers occur, are known. Thus the parameters are replaced by their estimators
and the time h to be used is obtained by taking a maximum:

Jmax(i, hi) = max
1≤h≤n

Ji,h and Cmax(i, h∗i ) = max
1≤h≤n

Ci,h

for each type of outliers i = MAO, MIO, MLS, MTC.

The detection of outliers can also be made using projection pursuit. Galeano,
Peña and Tsay [11] use this technique to find a linear function of the multivariate
time series which maximizes the coefficient of kurtosis in order to find the best
univariate representation of the multivariate signal. Afterwards the detection of
the times where outliers occur and the estimation of their amplitudes are made
using univariate methods.

The detection of outliers in the same framework can also be made by indepen-
dent component analysis. This method consists of extracting hidden components
(latent variables) of multivariate data under the sole hypothesis that the un-
known components are mutually independent. Clearly the distribution of these
independent components is assumed non gaussian in order to be in interest. It is
the case if outliers are present. The presence of an outlier and the time when it
occurs is revealed by observing the first few independent components. The search
of the independent components is made using algorithms associated with neural
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networks (Hyvärinen and Oja [13]) and the application to outlier detection in
multivariate time series is found in Baragona and Battaglia [5].

We now propose a new method of detecting outliers in multivariate time se-
ries based on the coefficient of vector autocorrelation and its influence function
obtained in Section 3.
In practice we can replace Γ(0) and Γ(k) in (3.3) by their usual estimators C(0)
and C(k) respectively to obtain Î(x;λ(k)) and then compute the influence of
each data point to pinpoint possible outliers. A simple heuristic would be to
consider xi as being an outlier if its estimated influence is, in absolute value,
greater than 6λ̂(k)σ̂, which is three times the estimated standard deviation of
I(X;λ(k)), where σ̂ is obtained from (3.4) by replacing Γ(0) and Γ(k) by C(0)
and C(k) respectively.
We can also obtain the exact distribution of the theoretical influence function
and propose an approximate test for outliers.

Formula (3.3) can be written as a quadratic form I(X;λ(k)) = X′AX, where
X′ = (X′t,X

′
t+k) and

A = λ(k)


−Γ(0)
trΓ2(0)

Γ(k)
trΓ(k)Γ′(k)

Γ′(k)
trΓ(k)Γ′(k)

−Γ(0)
trΓ2(0)

 .(4.5)

Now if X has the multivariate normal distribution, the distribution of I(X;λ(k))
is that of

∑2r
i=1 δiW

2
i where the Wi’s are independent identically distributed

N(0, 1) random variables and where the δi’s are the eigenvalues of

ΓA = λ(k)


−Γ2(0)
trΓ2(0)

+
Γ(k)Γ′(k)
trΓ(k)Γ′(k)

Γ(0)Γ(k)
trΓ(k)Γ′(k)

− Γ(k)Γ(0)
trΓ2(0)

Γ′(k)Γ(0)
trΓ2(0)

+
trΓ(0)Γ′(k)
trΓ(k)Γ′(k)

Γ′(k)Γ(k)
trΓ(k)Γ′(k)

− −Γ2(0)
trΓ2(0)

(4.6)

(see for example Johnson and Kotz [15], p. 150). The percentiles of the distribu-
tion of I(X;λ(k)) can be computed using the Imhof [14] algorithm.

However, the criterion for testing that an extreme observation is an outlier is
based on the extreme values of the influence function. The distribution of

I(1) = min
1≤i≤n

I(Xi;λ(k)) and of I(n) = max
1≤i≤n

I(Xi;λ(k))

are thus needed. I(1) will usually be negative and I(n) will usually be positive.
Since I(Xi;λ(k)) , i = 1, 2, · · · , n are independent it follows that the distribution
of I(n) is G(x) = [H(x)]n and that of I(1) is L(x) = 1− [1−H(x)]n where H(x)
is the distribution of I(X;λ(k)). A procedure for testing extreme observations as
significant outliers is the following:
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i) compute the eigenvalues δ̂i, i = 1, 2, · · · , 2r of Γ̂Â where Γ̂ and Â are
obtained from Γ and A by replacing Γ(0) and Γ(k) by C(0) and C(k)
respectively.

ii) obtain the data point xj such that Î(xj ;λ(k)) has the largest positive
value. Use the distribution G(x) above (with δ̂i in place of δi for all i) to
find the probability p1 of exceeding this value. If p1 < α1 then xj can be
considered as being an outlier at level α1.

iii) obtain the data point xl such that Î(xl;λ(k)) has the smallest negative
value. Use the distribution L(x) above (with δ̂i in place of δi for all i) to
find the probability p2 of not exceeding this value. If p2 < α2 then xl can
be considered as being an outlier at level α2.

5. Conclusion

In this paper we considered various methods for detecting outliers in multivari-
ate time series. Some methods are based on tests of hypotheses and others are
based on projection pursuit and independent component analysis. We introduced
the coefficient of vector autocorrelation, obtained its influence function together
with its distribution. We also proposed new methods of detecting outliers in the
multivariate time series model, a heuristic method based on the graph of the
influence function and another consisting of testing for the presence of outliers.
All the methods considered in this paper have been seen from a theoretical point
of view. Numerical comparisons would be interesting and remain to be done.
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Montréal, Canada H3C3J7

E-mail address: cleroux@dms.umontreal.ca


