ON COFINITELY δ-SEMIPERFECT MODULES

L. V. THUYET, M. T. KOŞAN AND T. C. QUYNH

Abstract

Supplemented modules and \oplus-supplemented modules are useful in characterizing semiperfect modules and rings. Recently, the notion of cofinitely supplemented modules and δ-supplemented modules were introduced as generalizations of supplemented modules. In this paper, $\oplus-c o f_{\delta^{-}}$ supplemented and cofinitely δ-semiperfect modules are defined as generalizations of \oplus-cofinitely supplemented modules and cofinitely semiperfect modules. Several properties of these modules are obtained.

1. Introduction

Throughout this paper, we assume that R is an associative ring with unity, M is a unital right R-module. The symbols, " \leqslant " will denote a submodule, " \leqslant " a module direct summand, " $\leqslant e$ " an essential submodule and " $R a d$ " the radical of a module. The texts by Anderson and Fuller [2] and Wisbauer [15] are the general references for notion of rings and modules not defined in this work.

A submodule N of M is called small in M, denoted by $N \ll M$, if for every submodule K of M the equality $N+K=M$ implies $K=M$. Let M be a module and N, P be submodules of M. We call P a supplement of N in M if $M=P+N$ and $P \cap N$ is small in P. A submodule N of M has an ample supplement in M if every submodule L such that $M=N+L$ contains a supplement of N in M. A module M is called (amply, resp.) supplemented if every submodule of M has a (an ample, resp.) supplement. Supplemented modules have been discussed by several authors (see [5], [8], [15]).

If P and M are modules, we call an epimorphism $p: P \rightarrow M$ a small cover in case $\operatorname{Ker}(p) \ll P$. If P is projective, then it is called projective cover. An R-module M is called semiperfect if every factor module of M has a projective cover. If R_{R} is semiperfect, then R is called a semiperfect ring.

Following Zhou [16], a submodule N of a module M is said to be a δ-small submodule (denoted by $N<_{\delta} M$) if, whenever $M=N+X$ with M / X singular, we have $M=X$. In [11], δ-supplemented modules are introduced as generalization of supplemented modules. Let M be a module and N, P be submodules of M. According to [11, Lemma 2.9], P is called $a \delta$-supplement of N in M if $M=P+N$ and $P \cap N$ is δ-small in P. A module M is said to be a δ-supplemented module

[^0]if every submodule of M has a δ-supplement in M. A submodule N of M has δ-ample supplement in M if every submodule L such that $M=N+L$ contains a δ-supplement of N in M. A module M is called (amply, resp.) δ-supplemented if every submodule of M has a (an ample, resp.) δ-supplement. This type modules is used to characterize δ-semiperfect and δ-perfect rings introduced and discussed in [16]. In [16], a projective module P is called a projective δ-cover of a module M if there exists an epimorphism $f: P \longrightarrow M$ with $\operatorname{Ker}(f)<_{\delta} M$, and an R-module M is called δ - semiperfect if, for every submodule N of M, there exists a decomposition $M=A \oplus B$ such that A is a projective module with $A \leqslant N$ and $B \cap N<_{\delta} M$ (see [11]). A ring is called δ-perfect (or δ-semiperfect, resp.) if every R-module (or every simple R-module, resp.) has a projective δ-cover. For more discussion on δ-small submodules, δ-perfect and δ-semiperfect rings, we refer to [11] and [16].

A submodule N of M is called cofinite (in M) if M / N is a finitely generated module. A module M is called cofinite δ-supplemented module if every cofinite submodule of M has a δ-supplement in M.

By [3], an R-module M is called cofinitely semiperfect if every finitely generated factor module of M has a projective cover. Çalişici and Pancar gave some properties of semiperfect ring via cofinitely semiperfect modules. In this paper, we will use their techniques to obtain some properties of $\oplus-\operatorname{co} f_{\delta}$-supplemented modules.

2. $\oplus-\operatorname{cof}_{\delta}$-SUPPLEMENTED MODULES.

Definition 2.1. An R-module M is called $\oplus-\operatorname{co} f_{\delta}$-supplemented if every cofinite submodule of M has a δ-supplement that is a direct summand of M.

Clearly, every \oplus-supplemented module is $\oplus-c o f_{\delta}$-supplemented module. But in general the converse is not true.

Lemma 2.1. Let N and L be submodules of a module M such that $N+L$ has a δ-supplement H in M and $N \cap(H+L)$ has a δ-supplement G in N. Then $H+G$ is a δ-supplement of L in M.

Proof. Let H be a δ-supplement of $N+L$ in M and G be a δ-supplement of $N \cap(H+L)$ in N. Then $M=(N+L)+H$ such that $(N+L) \cap H \ll_{\delta} H$ and $N=[N \cap(H+L)]+G$ such that $(H+L) \cap G \ll_{\delta} G$. Since $(H+G) \cap L \leqslant$ $H \cap(L+G)+G \cap(L+H), H+K$ is a δ-supplement of L in M.

Corollary 2.1. Let M_{1}, M_{2} be submodules of M such that $M=M_{1} \oplus M_{2}$. If M_{1}, M_{2} are $\oplus-$ cof $_{\delta}$-supplemented modules, then M is also $a \oplus-\operatorname{cof}_{\delta}$ supplemented module.

Proof. Let $L \leqslant M$ such that M / L is finitely generated. Then $M=M_{1}+M_{2}+L$ has a δ-supplement 0 in M. We have

$$
M_{2} /\left[M_{2} \cap\left(M_{1}+L\right)\right] \cong\left(M_{1}+M_{2}+L\right) /\left(M_{1}+L\right) \cong M /\left(M_{1}+L\right)
$$

so that $M_{2} \cap\left(M_{1}+L\right)$ is a cofinite submodule of M_{2}. Since M_{2} is $\oplus-\operatorname{cof} f_{\delta^{-}}$ supplemented, there exists $H \leqslant M_{2}$ such that H is a δ-supplement of $M_{2} \cap$ $\left(M_{1}+L\right)$ in M_{2}. By Lemma 2.1, H is a δ-supplement of $M_{1}+L$ in M. Similarly, since M_{2} is $\oplus-\operatorname{cof}_{\delta}$-supplemented, there exists $K \leqslant{ }^{\oplus} M_{1}$ such that K is a δ-supplement of $M_{1} \cap(H+L)$ in M_{1}. Again applying Lemma 2.1, $H+K$ is a δ-supplement of L in M. Since $K \leqslant{ }^{\oplus} M_{1}$ and $H \leqslant{ }^{\oplus} M_{2}, K+H=K \oplus H$ is a direct summand of M.

Theorem 2.1. A direct sum $\bigoplus_{i \in I} N_{i}$ of $\oplus-\operatorname{cof} f_{\delta}$-supplemented modules N_{i} is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module.

Proof. Let $N=\bigoplus_{i \in I} N_{i}$ and $L \leqslant N$ such that N / L is finitely generated. Then there exists a finitely generated submodule H of N such that $N=L+H$. There exists a finite subset I^{\prime} of I such that $H \leqslant \bigoplus_{j \in I^{\prime}} N_{j}$ and so $N=L+\bigoplus_{j \in I^{\prime}} N_{j}$. By Corollary 2.1, $\bigoplus_{j \in I^{\prime}} N_{j}$ is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module. Let $L^{\prime}=\bigoplus_{j \in I^{\prime}} N_{j}$ and so $N=L+L^{\prime}$.

Note that

$$
N / L=\left(L+L^{\prime}\right) / L \cong L^{\prime} / L \cap L^{\prime}
$$

so that $L \cap L^{\prime}$ is a cofinite submodule of L^{\prime}. Since L^{\prime} is $\oplus-\operatorname{cof}_{\delta}$-supplemented, there exists $H \leqslant L^{\prime}$ such that $L^{\prime}=H+L \cap L^{\prime}$ and $H \cap L<_{\delta} H$. Now $N=L+L^{\prime}=L+H$ and $H \cap L \ll_{\delta} H$. Hence H is a δ-supplement of L in N and $H \leqslant{ }^{\oplus} N$ because $L^{\prime} \leqslant{ }^{\oplus} N$.

From this theorem we have the following example:
Example 1. Let $R=\mathbb{Z}, M_{i}=\mathbb{Z}\left(p^{\infty}\right)$ be the Prüfer p-group for all $i \in \mathbb{N}$. Then M_{i} are supplemented modules. Let $M=\bigoplus_{i \in \mathbb{N}} M_{i}$. By Theorem 2.1, M is $a \oplus-\operatorname{cof}_{\delta}$-supplemented module, but M is not \oplus-supplemented by [11, Example 2.14].

Proposition 2.1. Assume that M is $a \oplus-\operatorname{cof}_{\delta}$-supplemented module. Then every cofinite submodule of the module $M / \delta(M)$ is a direct summand of $M / \delta(M)$.

Proof. Let $N / \delta(M)$ be any cofinite submodule of $M / \delta(M)$. Since $(M / \delta(M)) /(N /$ $\delta(M)) \cong M / N$, we have M / N is finitely generated. Then N is a cofinite submodule of M. Since M is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module, there exist submodules K and K^{\prime} of M such that $M=N+K=K \oplus K^{\prime}$, and $N \cap K \ll_{\delta} K$. Since $N \cap K$ is also δ-small in $M, N \cap K \leqslant \delta(M)$. Thus $M=N+K$ and $M / \delta(M)=(N+K) / \delta(M)=N / \delta(M) \oplus[(K+\delta(M)) / \delta(M)]$. Hence $N / \delta(M)$ is a direct summand of $M / \delta(M)$.

Corollary 2.2. Assume that M is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module. If $\delta(M)$ is a cofinite submodule of M, then $M / \delta(M)$ is a semisimple module.

Let M be a module. A submodule X of M is called fully invariant if for every $h \in \operatorname{End}_{R}(M), h(X) \subseteq X$. The module M is called duo, if every submodule of M is fully invariant.

It is well known that if $M=M_{1} \oplus M_{2}$ is a duo module, then $A=\left(A \cap M_{1}\right) \oplus$ $\left(A \cap M_{2}\right)$ for any submodule A of M.
Proposition 2.2. Assume that M is $a \oplus-\operatorname{co} f_{\delta}$-supplemented duo module and $N \leqslant M$. Then M / N is $a \oplus-\operatorname{cof}_{\delta}$-supplemented module.

Proof. Let $N \leqslant K \leqslant M$ with K / N cofinite submodule of M / N. Then $M / K \cong$ $(M / N) /(K / N)$ is finitely generated. Since M is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module, there exist submodules L and L^{\prime} of M such that $M=K+L=L \oplus L^{\prime}$, and $K \cap L$ is δ-small in L. Note that $M / N=K / N+(L+N) / N$, by modularity, $K \cap(L+N)=(K \cap L)+N$. Since $K \cap L<_{\delta} L$, we have $(K / N) \cap(L+N) / N=$ $((K \cap L)+N) / N<_{\delta}(L+N) / N$ by [16, Lemma 1.3 (2)]. This implies that $(L+N) / N$ is a δ-supplement of K / N in M / N. Now $N=(N \cap L) \oplus\left(N \cap L^{\prime}\right)$ implies that

$$
(L+N) \cap\left(L^{\prime}+N\right) \leqslant N+\left(L+N \cap L+N \cap L^{\prime}\right) \cap L^{\prime}
$$

It follows that $(L+N) \cap\left(L^{\prime}+N\right) \leqslant N$ and $M / N=[(L+N) / N] \oplus\left[\left(L^{\prime}+N\right) / N\right]$. Then $(L+N) / N$ is a direct summand of M / N. Consequently, M / N is $\oplus-\operatorname{cof}_{\delta^{-}}$ supplemented.

A module M is called distributive if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of $M, N+(K \cap L)=(N+K) \cap(N+L)$ or $N \cap(K+L)=(N \cap K)+(N \cap L)$. A module M is said to have the summand sum property (SSP, for short) if the sum of any two direct summands of M is a direct summand of M. A module M has the summand intersection property (SIP, for short) if the intersection of two direct summands of M is again a direct summand of M.
Theorem 2.2. Let M be $a \oplus-c o f_{\delta}$-supplemented module and N a submodule of M.

1. If for every direct summand K of $M,(N+K) / N$ is a direct summand of M / N, then M / N is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module.
2. If M has the $S S P$, then every direct summand of M is $\oplus-\operatorname{cof}_{\delta}$-supplemented.
3. If M is a distributive module, then M / N is $a \oplus-\operatorname{cof}_{\delta}$ - supplemented module.

Proof. (1). Any cofinite submodule of M / N has the form T / N where T is a cofinite submodule of M and $N \leqslant T$. Since M is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module, there exists a direct summand D of M such that $M=D \oplus D^{\prime}=T+D$ and $D \cap T<_{\delta} D$ for some submodule D^{\prime} of M. Now $M / N=T / N+(D+N) / N$. By hypothesis, $(D+N) / N$ is a direct summand of M / N. Note that $(T / N) \cap$ $[(D+N) / N]=(T \cap(D+N)) / N=(N+(D \cap T)) / N$. Since $D \cap T<_{\delta} D$, $(N+(D \cap T)) / N \lll \delta(D+N) / N$. This implies that $(D+N) / N$ is a δ-supplement of T / N in M / N, which is a direct summand.
(2). Let N_{1} be a direct summand of M. Then $M=N_{1} \oplus N^{\prime}$ for some $N^{\prime} \leqslant M$. We want to show that M / N^{\prime} is $\oplus-\operatorname{cof}_{\delta}$-supplemented. In fact, assume that L is a direct summand of M. Since M has the SSP, $L+N^{\prime}$ is a direct summand of M. Let $M=\left(L+N^{\prime}\right) \oplus K$ for some $K \leqslant M$. Then $M / N^{\prime}=\left(L+N^{\prime}\right) / N^{\prime} \oplus\left(K+N^{\prime}\right) / N^{\prime}$. Therefore M / N^{\prime} is a $\oplus-c o f_{\delta}$-supplemented module by (1).
(3). Let D be a direct summand of M. Then $M=D \oplus D^{\prime}$ for some submodule D^{\prime} of M. Now $M / N=[(D+N) / N]+\left[\left(D^{\prime}+N\right) / N\right]$ and $N=N+\left(D \cap D^{\prime}\right)=$ $(N+D) \cap\left(N+D^{\prime}\right)$ by distributivity of M. This implies that $M / N=[(D+$ $N) / N] \oplus\left[\left(D^{\prime}+N\right) / N\right]$. By (1), M / N is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module.

Lemma 2.2 ([12], Corollary 18). Let M be a duo module. Then M has the SIP and the SSP.

As a result of Theorems 2.2 and Lemma 2.2, we obtain the following result:
Corollary 2.3. Let M be $a \oplus-c o f_{\delta}$-supplemented duo module. Then every direct summand of M is $\oplus-\operatorname{cof}_{\delta}$-supplemented.

A module M is called δ-small if it can be embedded as a δ-small submodule of some module. It is clear that:

1. Every small module is a δ-small module.
2. Any nonzero nonsingular injective semisimple module is a δ-small module, but not a small module.

Proposition 2.3. M is a $\delta-$ small module if and only if M is $\delta-$ small in $E(M)$.
Proof. Suppose M is a δ-small submodule of a module N. Then M is δ-small in $E(N)$ by $[16$, Lemma 2.1]. Since $E(M)$ is a direct summand of $E(N), M$ is a δ-small in $E(M)$ by [16, Lemma 1.5]. The converse is clear.

Let M, N be R-modules. We denote

$$
\overline{\delta(M)}=\bigcap\left\{\operatorname{Ker}(g): g \in \operatorname{Hom}(M, N), N<_{\delta} E(N)\right\}
$$

Clearly, in case $\overline{\delta(M)}=M$, the class

$$
\bigcap\left\{\operatorname{Ker}(g): g \in \operatorname{Hom}(M, N), N<_{\delta} E(N)\right\}
$$

is closed under homomorphic images.

Lemma 2.3.

1. Let M be a module with $\overline{\delta(M)}=M$. If N is a δ-small module with $N \leqslant M$, then $N \ll_{\delta} M$.
2. Let $B \leqslant A \leqslant M$. If A is a direct summand of M and $A / B<_{\delta} M / B$ then $A=B$.

Proof. (1). Let $M=N+K$ with M / K singular. Since $N /(N \cap K)$ is a homomorphic image of N, it is a δ-small module. Since $N /(N \cap K)$ is a homomorphic image of M, we have $\overline{\delta(N /(N \cap K))}=N /(N \cap K)$. Hence $N \cap K=N$ and so
$K=M$.
(2). Let $B \leqslant A \leqslant M$ and $M=A \oplus A^{\prime}$ for some submodule A^{\prime} of M. Then $M / B=A / B+\left(A^{\prime}+B\right) / B$ and $(M / B) /\left(\left(A^{\prime}+B\right) / B\right) \cong M /\left(A^{\prime}+B\right)$. Since $A / B<_{\delta} M / B$, we have two cases:
Case (i): Assume that $A^{\prime}+B \leqslant_{e} M$. Then $M=A^{\prime}+B$. By modularity, we have $A=A \cap M=A \cap\left(A^{\prime}+B\right)=B+\left(A \cap A^{\prime}\right)=B$.
Case (ii): Assume that $A^{\prime}+B$ is not essential in M. Then there exits a submodule X of M such that $\left(A^{\prime}+B\right) \oplus X \leqslant_{e} M$. This implies that $M=\left(A^{\prime}+B\right) \oplus X$, $A=A \cap\left(B+A^{\prime}+X\right)=B \cap\left(A+A^{\prime}+X\right)=B \cap M=B$.
M is said to satisfy (D3) if M_{1} and M_{2} are direct summands of M with $M=$ $M_{1}+M_{2}$, then $M_{1} \cap M_{2}$ is also a direct summand of M.

Theorem 2.3. Let M be a module.

1. Assume that M is $a \oplus-\operatorname{cof}_{\delta}$-supplemented module satisfying (D3). Then every cofinite direct summand of M is $\oplus-c o f_{\delta}$-supplemented.
2. Assume that M satisfies (D3). Let K and N be cofinite direct summands of M such that $\overline{\delta(M /(N \cap K))}=M /(N \cap K)$. If M / N is $a \oplus-\operatorname{cof}_{\delta}-$ supplemented module then $(N+K) / N$ is a direct summand of M / N.
3. Assume that M satisfies (D3) with $\overline{\delta(M)}=M$. If M is $a \oplus-\operatorname{cof}_{\delta^{-}}$ supplemented module then M has the SSP on cofinite direct summands.

Proof. (1). Let N be a cofinite direct summand of M. Then $M=N \oplus N^{\prime}$ for some submodule N of M. Let K be a cofinite submodule of N. Then K is a cofinite submodule of M. Since M is $\oplus-c o f_{\delta}$-supplemented, there exist submodules L, L^{\prime} of M such that $M=K+L=L \oplus L^{\prime}$ and $K \cap L<_{\delta} L$. This implies that $N=K+(N \cap L)$. By $\left(D_{3}\right), N \cap L$ is a direct summand of M and so is a direct summand of N. By [16, Lemma 1.3], we have $K \cap(N \cap L)=K \cap L \ll_{\delta} N \cap L$.
(2). Since $(K+N) / N$ is a cofinite submodule of M / N and M / N is a $\oplus-$ $\operatorname{cof}_{\delta}$-supplemented module, there exist submodules N_{1}, N_{2} such that $M / N=$ $N_{1} / N \oplus N_{2} / N=(K+N) / N+N_{2} / N$ and $[(K+N) / N] \cap\left(N_{2} / N\right)=(N+(K \cap$ $\left.\left.N_{2}\right)\right) / N \ll_{\delta} N_{2} / N$. This implies that $N=N_{1} \cap N_{2}$ and $M=N_{1}+N_{2}=K+N_{2}$. Note that $\left(N+\left(K \cap N_{2}\right)\right) / N$ is a δ-small module by definition. We consider the monomorphism $f:\left(\left(K \cap N_{2}\right)+N_{1}\right) / N_{1} \rightarrow\left(\left(K \cap N_{2}\right)+N\right) / N$ defined by $f\left(x+N_{1}\right)=x+N$ for all $x \in K \cap N_{2}$. Thus $\left(\left(K \cap N_{2}\right)+N_{1}\right) / N_{1}$ is a δ-small module. Then $\left(\left(K \cap N_{2}\right)+N_{1}\right) / N_{1} \cong\left(K \cap N_{2}\right) /(K \cap N)$ is a δ-small module. Hence $\left(K \cap N_{2}\right) /(K \cap N)<_{\delta} M /(N \cap K)$ by Lemma 2.3(1). Since N_{2} is a direct summand of M and M satisfies (D3), $\left(K \cap N_{2}\right)$ is a direct summand of M. We have $K \cap N_{2}=K \cap N$. Hence $(N+K) / N$ is a direct summand of M / N.
(3). Let N and K be cofinite direct summands of M. Then

$$
\overline{\delta(M /(N \cap K))}=M /(N \cap K) .
$$

By (1), M / N is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module, then $(N+K) / N$ is a cofinite direct summand of M / N by (2). Clearly $N+K$ is a direct summand of M.

Clearly, $S I P \Rightarrow(D 3)$. On the other hand, by [10, Lemma 2.6], every module satisfying (D3) with the $S S P$ has the $S I P$.
Lemma 2.4. Assume that M satisfies (D3). If M has the $S S P$ on cofinite direct summands then M has the SIP on cofinite direct summands.

Proof. Assume that M satisfies (D3) and M has the SSP on cofinite direct summands of M. Let N and K be cofinite direct summands of M. Then M / N and M / K are finitely generated and so $M /(N+K)$ is also finitely generated. Since M has the SSP on cofinite direct summands of M, then $N+K$ is also a direct summand of M. Let $M=(N+K) \oplus L$ for some submodule L of M. Note that $M /(N+L)$ and $M /(K+L)$ are finitely generated. Hence $N+L$ and $K+L$ are cofinite direct summands of M because M has the SSP. Since $M=(N+L)+(K+L)$ and M satisfies (D3), then $(N+L) \cap(K+L)$ is a direct summand of M. Let $M=[(N+L) \cap(K+L)] \oplus X$ for some submodule X of M. Since $M /(N \cap K)$ is finitely generated and $N \cap(K+L) \leqslant N \cap K$, then $M=(N \cap K) \oplus L \oplus X$.
Proposition 2.4. (1) Assume that M satisfies (D3) with $\overline{\delta(M)}=M$. If M is a $\oplus-\operatorname{cof}_{\delta}$-supplemented module then M has the SIP on cofinite direct summands.
(2) Assume that M is $a \oplus-\operatorname{cof}_{\delta}$-supplemented module with $\overline{\delta(M)}=M$. Then M satisfies (D3) if and only if M has the SIP on cofinite direct summands.
Proof. (1). It follows from Lemma 2.4 and Theorem 2.3.
(2). It is clear from definition of (D3) and (1).

3. Cofinitely δ-semiperfect modules

Definition 3.1. An R-module M is called cofinitely δ-semiperfect if every finitely generated factor module of M has a projective δ-cover.

Clearly, δ-semiperfect modules and cofinitely semiperfect modules are cofinitely δ-semiperfect. It is well-known that the δ-semiperfect module is not semiperfect. Thus a cofinitely δ-semiperfect module is not cofinitely semiperfect in general, see [16, Example 4.1].
Proposition 3.1. Let M be a module and U a fully invariant submodule of M. If M is a cofinitely δ-semiperfect module, then M / U is a cofinitely δ-semiperfect module. If, moreover, U is a cofinite direct summand of M, then U is also a cofinitely δ-semiperfect module.

Proof. Suppose that M is cofinitely δ-semiperfect and L / U is a cofinite submodule of M / U. Thus $M / L \cong(M / U) /(L / U)$ is a finitely generated module and hence L is a cofinite submodule of M. Since M is a cofinitely δ-semiperfect module, there exist submodules N and N^{\prime} of M such that $M=N \oplus N^{\prime}, M=N+L$ and $N \cap L<_{\delta} N$. It is easy to see that $(N+U) / U$ is a δ-supplement of L / U in M / U and $U=(U \cap N) \oplus\left(N \cap N^{\prime}\right)$. Thus we have $(N+U) \cap\left(N^{\prime}+U\right)=U$ and $\left.((N+U) / U) \oplus\left(\left(N^{\prime}+U\right) / U\right)\right)=M / U$ and hence $(N+U) / U$ is a direct summand of M / U. So M / U is a cofinitely δ-semiperfect module.

Now suppose that U is a cofinite direct summand of M. Then there exists a finitely generated submodule U^{\prime} of M such that $M=U \oplus U^{\prime}$. Let V be a cofinite submodule of U. Note that $M / V=\left(U \oplus U^{\prime}\right) / V \cong U / V \oplus U^{\prime}$ is finitely generated so that V is a cofinite submodule of M. Since M is a cofinitely δ-semiperfect module, there exist submodules K and K^{\prime} of M such that $M=K \oplus K^{\prime}, M=V+K$ and $V \cap K<_{\delta} K$. Thus $U=V+(U \cap K)$. But $U=(U \cap K) \oplus\left(U \cap K^{\prime}\right)$ and hence $U \cap K$ is a direct summand of U. Moreover, $V \cap(U \cap K)=V \cap K<_{\delta} K$. Then $V \cap(U \cap K)<_{\delta} U \cap K$ by [16, Lemma 1.3]. Therefore $U \cap K$ is a δ-supplement of V in U and it is a direct summand of U. Thus U is a cofinitely δ-semiperfect module.

Theorem 3.1. Let M be a projective module. Then M is cofinitely δ-semiperfect if and only if M is $\oplus-\operatorname{cof}_{\delta}$-supplemented.

Proof. (\Rightarrow) Let N be a cofinite submodule of M. Then M / N is finitely generated and so, by assumption, M / N has a projective δ-cover. Then by [16, Lemma 2.4], there are $M_{1}, M_{2} \leqslant M$ such that $M=M_{1} \oplus M_{2}$ with $M_{1} \leqslant N$ and $M_{2} \cap N<_{\delta} M$. Hence by [16, Lemma 1.3], $M_{2} \cap N<_{\delta} M_{2}$ or M_{2} is a δ-supplement of N in M.
(\Leftarrow) Let M / N be a finitely generated factor module of M. Then N is cofinite. Since M is $\oplus-\operatorname{cof}_{\delta}$-supplemented, there exist submodules K and K^{\prime} of M such that $M=N+K, N \cap K<_{\delta} K$, and $M=K \oplus K^{\prime}$. Clearly, K is projective. For the inclusion homomorphism $i: K \rightarrow M$ and the canonical epimorphism $\sigma: M \rightarrow M / N, \operatorname{Ker} \sigma i=N \cap K<_{\delta} K$.

Corollary 3.1. Let M be a projective module. Then the following conditions are equivalent:
(1) M is cofinitely δ-semiperfect.
(2) M is $\oplus-$ cof $_{\delta}$-supplemented.
(3) For each cofinite submodule N of M, there is a decomposition $M=K \oplus K^{\prime}$ such that $K \leqslant N$ and $K^{\prime} \cap N \ll_{\delta} K^{\prime}$.

Proof. (1) \Leftrightarrow (2). By Theorem 3.1.
$(2) \Rightarrow(3)$. Let N be a cofinite submodule of M. By hypothesis, there exist submodules K and K^{\prime} of M such that $M=N+K^{\prime}, K^{\prime} \cap N<_{\delta} K^{\prime}$ and $M=$ $K \oplus K^{\prime}$. Since M is projective, there exists a submodule $K^{\prime \prime} \leqslant N$ such that $M=K^{\prime \prime} \oplus K^{\prime}$ by [15, 4.14].
$(3) \Rightarrow(2)$ is clear.
Theorem 3.2. Let M be a projective module with $\delta(M)<_{\delta} M$. Then the following conditions are equivalent:

1. M is a cofinitely δ-semiperfect module.
2. For every cofinite submodule N of $M, M / N$ has a projective δ-cover.
3. Every cofinite submodule N of M can be written as $N=A \oplus S$ with $A \leqslant_{e} M$ and $S<_{\delta} M$.
4. M is $a \oplus-$ cof $_{\delta}$-supplemented module.
5. Every cofinite submodule of the module $M / \delta(M)$ is a direct summand of $M / \delta(M)$ and each cofinite direct summand of $M / \delta(M)$ lifts to a direct summand of M.

Proof. By Corollary 3.1.
Proposition 3.2. Every homomorphic image of a cofinitely δ-semiperfect module is cofinitely δ-semiperfect.

Proof. Let $f: M \rightarrow N$ be a homomorphism and M be a cofinitely δ-semiperfect module. Let $f(M) / U$ be a finitely generated factor module of $f(M)$. Consider the epimorphism $\psi: M \rightarrow f(M) / U$, defined by $m \mapsto f(m)+U$. Since M is cofinitely δ-semiperfect, by the natural isomorphism $M / f^{-1}(U) \cong f(M) / U$, we have $f(M) / U$ has a projective δ-cover. Hence $f(M)$ is cofinitely δ-semiperfect.

Corollary 3.2. Every factor module of a cofinitely δ-semiperfect module is cofinitely δ-semiperfect.

A module N is called a δ-small cover of a module M if there exists an epimorphism $f: N \rightarrow M$ with $\operatorname{Ker} f<_{\delta} N$.
Proposition 3.3. Every δ-small cover of a cofinitely δ-semiperfect module is cofinitely δ-semiperfect.

Proof. Let N be a δ-small cover of a module M and $f: N \rightarrow M$ be an epimorphism with $\operatorname{Ker} f \ll_{\delta} N$. For a finitely generated factor module N / U of N, the homomorphism $\varphi: N / U \rightarrow M / f(U)$, defined by $n+U \mapsto f(n)+f(U)$ is epic. We have $\operatorname{Ker} \varphi=(U+\operatorname{Ker} f) / U$. Let $L / U \leqslant N / U$ such that $(U+$ $\operatorname{Ker} f) / U+L / U=N / U$ and $(N / U) /(L / U)$ is singular. Then $L+\operatorname{Ker} f=N$ and $N / L \cong(N / U) /(L / U)$ is singular. This implies $L=N$ since $\operatorname{Ker} f<_{\delta} N$. Hence $\operatorname{Ker} \varphi \ll_{\delta} N / U$. Note that

$$
M / f(U)=\varphi(N / U) \cong(N / U) /((U+\operatorname{Ker} f) / U)
$$

so that $M / f(U)$ is finitely generated. Because M is cofinitely δ-semiperfect, $M / f(U)$ has a projective δ-cover $\pi: P \rightarrow M / f(U)$. Since P is projective, there is a homomorphism $h: P \rightarrow N / U$ such that the diagram

is commutative; i.e., we have $\pi=\varphi h$. Then $N / U=h(P)+\operatorname{Ker} \varphi$.
Since $\operatorname{Ker} \varphi<_{\delta} N / U$, there exists a semi-simple projective submodule Y of $\operatorname{Ker} \varphi$ such that $N / U=h(P) \oplus Y$. Let $\phi: P \oplus Y \longrightarrow N / U$, defined by $\phi(p, y)=$ $h(p)+y$. Then ϕ is an epimorphism and $\operatorname{Ker} \phi=\operatorname{Ker} h \oplus 0$. Because Kerh \leqslant
$\operatorname{Ker} \pi<_{\delta} P$, Kerh $<_{\delta} P$. This implies Kerh $\oplus 0 \ll_{\delta} P \oplus Y$. Thus $P \oplus Y$ is a projective δ-cover of N / U.
Corollary 3.3. If $N<_{\delta} M$ and M / N is cofinitely δ-semiperfect, then M is cofinitely δ-semiperfect.
Corollary 3.4. Let $\pi: P \longrightarrow M$ be a projective δ-cover of M. Then the following conditions are equivalent:
(1) M is cofinitely δ-semiperfect.
(2) P is cofinitely δ-semiperfect
(3) P is cofinitely δ-supplemented.

Proof. (1) \Leftrightarrow (2) By Proposition 3.3 and Proposition 3.2.
$(2) \Leftrightarrow(3)$ By Theorem 3.1.
Theorem 3.3. A direct sum $\bigoplus_{i \in I} P_{i}$ of projective modules P_{i} is a cofinitely δ semiperfect module if and only if every summand P_{i} is cofinitely δ-semiperfect.

Proof. (\Rightarrow). Let $P_{i}(i \in I)$ be a collection of projective R-modules and $P=\bigoplus_{i \in I} P_{i}$ be a cofinitely δ-semiperfect module. Since $P_{j} \cong P /\left(\bigoplus_{i \in I \backslash\{j\}} P_{i}\right)$ for all $j \in I$, by Corollary 3.2 , every P_{i} is cofinitely δ-semiperfect.
(\Leftarrow). Since every P_{i} is projective and cofinitely δ-semiperfect, by Theorem 3.1, every P_{i} is $\oplus-\operatorname{cof}_{\delta}$-supplemented and so P is $\oplus-\operatorname{cof}_{\delta}$-supplemented by Theorem 2.1. Thus P is cofinitely δ-semiperfect by Theorem 3.1.

Let M and N be R-modules. N is said to be (finitely) M-generated if there is an epimorphism $f: M^{(\Lambda)} \longrightarrow N$ for some (finite) index set Λ.
Lemma 3.1. Let M be a projective module. If M is δ-semiperfect then every M generated module is cofinitely δ-semiperfect. The converse holds if M is finitely generated.

Proof. If M is δ-semiperfect, then M is cofinitely δ-semiperfect by [16, Lemma 2.4]. By Theorems 3.1 and 3.3 , for every index set $\Lambda, M^{(\Lambda)}$ is cofinitely δ semiperfect. If M is a finitely generated and cofinitely δ-semiperfect module, then it is δ-semiperfect.

Theorem 3.4. For a ring R, the following conditions are equivalent:
(1) R is δ-semiperfect.
(2) Every free R-module is cofinitely δ-semiperfect.
(3) Every finitely generated free R-module is δ-semiperfect.

Proof. (1) $\Rightarrow(2)$. Assume that R is δ-semiperfect, R is cofinitely δ-semiperfect by Lemma 3.1. Thus every free R-module is cofinitely δ-semiperfect by Theorem 3.3.
$(2) \Rightarrow(3)$ is clear.
$(3) \Rightarrow(1)$. By hypothesis, R is cofinitely δ-semiperfect. Thus we have (1) by Lemma 3.1.

Acknowledgments

The authors would like to thank the referee for giving them many useful suggestions which help to modify the presentation of this article.

References

[1] R. Alizade, G. Bilhan and P. F. Smith, Modules whose maximal submodules have supplements, Comm. Algebra 29 (2001), 2389-2405.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
[3] H. Çalişici and A. Pancar, Cofinitely semiperfect modules, Siberian Math. J. 46 (2005), 359-363.
[4] K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
[5] D. Keskin, On lifting modules, Comm. Algebra 28 (2000), 3427-3440.
[6] D. Keskin, A. Harmanci and P. F. Smith, On \oplus-supplemented modules, Acta Math. Hungar. 83 (1999), 161-169.
[7] D. Keskin, P. F. Smith and W. Xue, Rings whose modules are \oplus-supplemented, Journal of Algebra 218 (1999), 470-487.
[8] S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Math. Soc. LNS 147, Cambridge Univ. Press, Cambridge, 1990.
[9] M. T. Koşan, \oplus-Cofinitely Supplemented Modules, Commun. Fac. Sci. Univ. Ank. Series A1 53 (2004), 21-32.
[10] M. T. Koşan, The Lifting ondition and fully invariant submodules, East-West J. of Mathematics 7 (2005), 99-106.
[11] M. T. Koşan, δ-lifting and δ-supplemented modules, Algebra Colloquium 14 (2007), 53-60.
[12] A. Leghwel, T. Koşan, N. Agayev and A. Harmancı, Duo modules and Duo rings, Far East J. Math. 20 (2006), 341-346.
[13] M. Rayar, On small and cosmall modules, Acta Math. Hung. 39 (1982), 389-392.
[14] P. F. Smith, Finitely generated supplemented modules are amply supplemented, The Arab. J. For Sci. Eng. 25 (2000), 69-79.
[15] R. Wisbauer, Foundations of module and ring theory; Gordon and Breach: Reading, 1991.
[16] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium 7 (2000), 305-318.

```
Department of Mathematics,
Hue University,
Hue City, Vietnam
E-mail address: lvthuyethue@gmail.com
Department of Mathematics,
Gebze Institute of Technology, 41400,
Çayirova - Gebze, Kocaeli- Turkey
E-mail address: mtkosan@gyte.edu.tr
Department of Mathematics,
DANANG UnivERSITY,
DANANG, ViEtNAM
E-mail address: tc_quynh@ud.edu.vn
```


[^0]: Received October 17, 2007; in revised form December 6, 2007.
 2000 Mathematics Subject Classification. 16L30, 16E50.
 Key words and phrases. $\oplus-\operatorname{cof}_{\delta}$-supplemented modules, cofinitely δ-semiperfect modules.

