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ON A PROBLEM BY N. KALTON AND THE SPACE lp(I)

NUNO C. FREIRE AND M. F. VEIGA

Abstract. We prove that each infinite dimensional quasi-Banach space has
a closed, proper infinite dimensional subspace, so answering the Atomic Prob-
lem by N. Kalton in the affirmative. We obtain applications concerning the
structure of the separable quasi-Banach spaces and of lp(I), 0 < p < 1.

1. Introduction

The Atomic Problem of N. Kalton in [4] is the question whether each infinite
dimensional quasi-Banach space X always has an infinite dimensional, proper
closed subspace or not. In this paper we obtain the answer in the affirmative.
In the Sec. 2, we give definitions and properties that we use to prove Theorem
3.1 and Theorem 3.2 in Sec. 3. Corollary 3.1 contains the result mentioned in
the abstract and we obtain corollaries on the structure of the quasi-Banach space
lp(I), I a set of indices whose cardinality is that of the continuum. All vector
spaces are assumed to be either real or complex.

2. Preliminaries

Definition 2.1 ([5]). For a vector space X over K a real functional q on X
having the properties

(qn1) q(x) � 0, q(x) = 0⇔ x = 0,

(qn2) q(λx) =| λ | q(x),

(qn3) q(x+ y) � c(q(x) + q(y)),
where c � 1 is a certain constant, for x, y ∈ X,λ ∈ K is said to be a quasi-norm
onX . The pair (X, q) is said to be a quasi-normed space and the smallest suitable
constant c in (qn3) is the quasi-norm constant.

Remark 1. A quasi-normed space (X, q) is a metrizable topological vector space.

Proof. It follows easily from Theorem 9.2 and Theorem 13.1 in [11] (pp. 96, 115)
that the class {εUq : ε > 0}, where Uq = {x ∈ X : q(x) � 1} is the base of
neighborhoods of 0 for a metrizable linear topology on X.
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Definition 2.2 ([5]). For a vector space X the functional ‖.‖ : X → [0,+∞) is
said to be a p-norm on X where, 0 < p � 1 if the following conditions are satified
for x, y ∈ X,λ ∈ K :

(1) ‖x‖ = 0⇔ x = 0,

(2) ‖λx‖ =| λ | ‖x‖,

(3) ‖x+ y‖p � ‖x‖p + ‖y‖p.

Lemma 2.1. Any p-norm on X is a quasi-norm, where we may take c = 21/p for
the constant in Definition 1. Conversely, if (X, q) is a quasi-normed space and c is

the quasi-norm constant, there is a p-norm ‖.‖ on X such that ‖.‖ � q � 21/p‖.‖,
where c = 21/p−1.

Proof. The first assertion follows easily. See [5], p. 47 to obtain the p-norm ‖.‖
on X.

Remark 2. The p-norm ‖.‖ as in Propositon 1 defining a linear topology on X
through the base of neighborhoods of zero {εU : ε > 0}, where U = {x ∈ X :
‖x‖ � 1}, this topology coincides with the topology of (X, q) as in Remark 1.

Proof. Analogously as in the proof of Remark 1 {εU : ε > 0} defines a linear
metrizable topology on X . The remark follows from the fact that ‖xn‖ → 0 if
and only if q(xn)→ 0, where (xn) is a sequence in X.

In what follows, (X, q) being a quasi-normed space, we consider X equipped
with the related p-norm ‖.‖ as in Lemma 2.1. We also denote the space by
(X, ‖.‖).

Definition 2.3 ([5]). A complete quasi-normed space (X, q) is called a quasi-
Banach space. Letting ‖.‖ stand for the p-norm on X as in Lemma 2.1, we also
say that (X, ‖.‖) is a p-Banach space.

Example 1 ([8]). The space Lp[0, 1[, 0 < p < 1 consisting of the scalar valued

Lebesgue measurable functions f on [0, 1[, such that
∫ 1
0 | f(t) |

p dt < ∞, is a
quasi-Banach space when equipped with the p-norm ‖f‖ = (

∫ 1
0 | f(t) |

p)1/p.

Example 2 ([6]). Let 0 < p < 1. The collection of all scalar-valued families
(αi)i∈[0,1] such that

∑
i | αi |p< ∞, where

∑
i | αi |p= s < ∞, if for each ε > 0

we can find a finite subset F of R such that |
∑
i∈F | αi |p −s |� ε, is a p-Banach

space when equipped with the p-norm ‖(αi)‖p = (
∑
i | αi |p)1/p. We denote this

p-Banach space by lp[0, 1].

Definition 2.4 ([8]). We say that a complete metrizable topological vector space
is an F-space.

Remark 3. Each quasi-Banach space X is an F-space. If N is a closed subspace
of X then the quotient X/N is an F-space, too.
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Proof. The first assertion follows from above. The second one follows from The-
orem 1.41 (d) in [8] (p.29).

Lemma 2.2. Each continuous linear bijection from an F-space onto another is
a linear homeomorphism.

Proof. This follows from Theorem 2.11 in [8] (p. 47).

Recall [11] that, X being a vector space, K the scalar field, a Hamel basis of
X is an infinite linearly independent set of vectors {uα : α ∈ A} ⊂ X such that,

each x ∈ X has a unique representation as a finite sum x =
∑n(x)
n=1 λnun (n(x)

depends on x). For sα being nonzero scalars, {sαuα : α ∈ A} is also a Hamel
basis. A Hamel basis always exists; also all Hamel bases of a vector space have
the same cardinality.

Remark 4. Denoting by dimX the cardinality of a Hamel basis of the vector
space X and c the cardinality of the continuum, we have that the cardinality of
X is c if dimX < c and it is dimX if c � dimX.

Proof. This follows from 2. in [11] (p.43).

Remark 5. For (X, q) a separable quasi-Banach space, each Hamel basis of X
has the cardinality of the continuum.

Proof. We first prove that X has no countable Hamel basis. In fact, if {un :
n ∈ N} is a countably infinite Hamel basis of X, then en = un/‖un‖ where,
‖.‖ is the p-norm on X as in Lemma 2.1, also form a Hamel basis. The series∑∞
n=1 en/2

n is convergent in the subspace E = {
∑∞
n=1 λnen :

∑∞
n=1 | λn |p<∞}.

We may consider the p-norm ‖.‖p on E defined by ‖
∑∞
n=1 λnen‖p = (

∑∞
n=1 |

λn |p)1/p. Clearly that each linear functional fk(
∑∞
n=1 λnen) = λk (k = 1, 2, ...)

is continuous on (E, ‖.‖p) and, the identity injection of (E, ‖.‖p) to (E, ‖.‖) is
continuous. Hence we have that fk(x) = 1/2

k �= 0 for infinitely many k, where
x =

∑∞
n=1 en/2

n and it follows that x is not a finite linear combination of the
vectors en, contradiction. Since (X, q) is separable, there exists a countably
infinite dense subset S = {xn : n ∈ N}. It follows that the cardinality of X is
not greater than the cardinality of the set of all sequences in S, that is, of the
continuum. Applying Remark 4, the case where c � dimX we conclude that the
cardinality of X is c, hence dimX = c.

Remark 6. The linear span of the set of families {(δk,i)i∈[0,1] : k ∈ [0, 1]}, δk,i
being the Kronecker symbol, is dense in the p-Banach space lp[0, 1].

Proof. It is clear that
∑
i | αi |= sup{

∑
i∈F | αi |: F ⊂ [0, 1], F finite} for

(αi)i∈[0,1] ∈ lp[0, 1], hence it follows by [7] (20., p. 38) that (αi) ∈ lp[0, 1] only if
the set of indices i such that αi �= 0 is countable. Now the limit in lp[0, 1] of the
family (αiχF (i)), where χF (i) = 1 (i ∈ F ),χF (i) = 0 (i /∈ F ) and F ranges over
the set of finite subsets of [0, 1], is precisely (αi)i∈[0,1] and the remark follows.
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Remark 7. The space lp[0, 1] is the closure of a subspace having a Hamel basis
whose cardinality is that of the continuum.

Proof. This follows from Remark 6, since the set {(δk,i)i∈[0,1] : k ∈ [0, 1]} is a
linearly independent subset of lp[0, 1] which has cardinality c.

3. The Results

Theorem 3.1. If (X, q) is a non separable quasi-Banach space, then X has a
proper closed infinite dimensional subspace.

Proof. If X is not separable it follows that X is not the closure of any subspace Y
that has a countable Hamel basis (otherwise the set of all linear combinations of
vectors in the basis with rational coefficients would be a countable dense subset
of X). Hence we may consider an uncountable Hamel basis B = {eα : α ∈ A}
of X . Some countably infinite subset B of B is a Hamel basis of span(B) and
span(B) is such a closed, proper subspace of X.

Theorem 3.2. Let (X, q) be an infinite dimensional separable quasi-Banach space.
Then there exists a proper closed infinite dimensional subspace of X.

Proof. Consider a separable infinite dimensional quasi-Banach space (X, q). Let
‖.‖ be the p-norm onX defining the topology as in Lemma 2.1, 0 < p < 1. Follow-
ing Remark 5, X has a Hamel basis {ek : k ∈ [0, 1]} such that ‖ek‖ = 1. Denoting
uk = (δk,i)i∈[0,1] in the proof of Remark 7, the linear operator T

∑m
n=1 λk(n)uk(n) =∑m

n=1 λk(n)ek(n) (k(1), ..., k(m) ∈ [0, 1]) is a continuous surjection on span{uk :
k ∈ [0, 1]} equipped with the induced topology onto (X, ‖.‖). Therefore, following
[10] (pp.18, 78), it extends to the continuous linear surjection T̃ : (lp[0, 1], ‖.‖p)→
(X, ‖.‖). Hence the quotient map T̃ /N(T̃ ) : lp[0, 1]/N(T̃ ) → (X, ‖.‖) is a linear
homeomorphism. Let f : lp[0, 1]→ K, f(αi)i∈[0,1] = α0. Then f is a continuous
linear functional and denoting N(f) = {(αi)i∈[0,1] : f(αi)i∈[0,1] = 0} we have
that N(f) is closed. Hence N(f) ∩ N(T̃ ) is closed. We find that u1/n ∈ N(f),
n = 1, 2, ... in the notation as above and, T

∑m
n=1 λnu1/n =

∑m
n=1 λne1/n = 0

implies λ1 = ... = λm = 0 for each m. Hence the dimension of the subspace

N(f)/N(f) ∩N(T̃ ) of lp[0, 1]/N(f) ∩N(T̃ ) is infinite. Also N(f)/N(f) ∩N(T̃ )
is complete (Remark 3), hence it is a closed subspace of lp[0, 1]/N(f) ∩N(T̃ ). It
follows that T̃ /N(T̃ )(N(f)/N(f)∩N(T̃ )) is a closed, proper infinite dimensional
subspace of (X, q) and the proof is complete.

Corollary 3.1. For (X, q), an infinite dimensional quasi-Banach space, there
exists a proper infinite dimensional closed subspace of X

Proof. This follows from Theorem 3.1, Theorem 3.2.

Corollary 3.2. Each separable quasi-Banach space (X, q) with quasi-norm con-

stant C is linearly homeomorphic to a quotient of lp[0, 1], C = 21/p−1. If (X, q)
is a separable Banach space, it is linearly homeomorphic to a quotient of l1[0, 1].
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Proof. This follows from the proof of Theorem 3.2.

Corollary 3.3. If 0 < p � 1, the space Lp[0, 1] is linearly homeomorphic to a
quotient of lp(0, 1).

Proof. In fact, the proof that each continuous real-valued function on [0, 1] is the
uniform limit of a sequence of step functions in [3] and the Lebesgue’s Dominated
Convergence Theorem in [9] applies to conclude that the set of all step functions
s =

∑m
i=1 siχ[a(i),b(i)] where, si ∈ Q, 0 � a(i) < b(i) � 1, a(i), b(i) are rational

numbers, is a countable dense subset of Lp[0, 1]. The corollary follows from
Corollary 3.2.

Recall [2] the Rademacher functions r0(t) = 1, rn(t) = sign(sin 2nπt) (t ∈
[0, 1]), rn ∈ Lp[0, 1] (p > 0).
Remark 8. If 0 < p < 1, the inequality

Ap(
∞∑

n=1

| an |2)1/2 � (
∫ 1

0
|
∞∑

n=1

anrn(t) |p dt)1/p � (
m∑

n=1

| an |2)1/2

holds. Lp[0, 1] contains a basic sequence.

Proof. We easily conclude the inequalities using the method for the proof of
Proposition 1 in [2], pp. 141-3. We conclude that (rn) is also a basic se-

quence in Lp[0, 1]. Whence it follows that (
∫ 1
0 |
∑m(1)
n=1 anrn(t) |p dt)1/p � (

∑m
n=1

| an |2)1/2 � (
∑m(2)
n=1 | αn |2)1/2 � A−1p (

∫ 1
0 | anrn(t) |p dt)1/p for all m(1) < m(2)

(see [2], Proposition 1, p. 81).

Remark 9. If the cardinality of I is that of the continuum, there is a quotient
of lp(I) having a basic sequence.

Proof. This follows, as in the proof of Remark 8, from Corollary 3.3.

Following Theorem 3.6 in [4], the above remark applies to conclude that the
space Lp[0, 1] has a descending sequence (Ln) of infinite dimensional closed sub-
spaces, such that

⋂∞
n=1{Ln} = {0}. Also, following [1], Lp[0, 1] is primary if

1 � p �∞, that is, whenever Lp[0, 1] = Y ⊕Z a topological direct sum, either Y
is linearly homeomorphic to Lp[0, 1] or Z is linearly homeomorphic to Lp[0, 1]. If
0 < p < 1, then Lp[0, 1] is also primary. In fact, if Lp[0, 1] = Y ⊕Z we have that
Y is not a closed hyperplane (otherwise Lp[0, 1] = Y ⊕Ke and the linear func-
tional f(y + λe) = λ, y ∈ Y , λ ∈ K is continuous by means of Theorem 3.1.4.
p.124 in [11], which is impossible, since there is no nonzero continuous linear
functional on Lp[0, 1], according to [8], p. 36). The closed graph theorem in [8]
applies to conclude that, taking z0 ∈ Z, we have Lp[0, 1] = (Y ⊕Kz0)⊕W , where
W = span(Z\{z0}) and the linear projection P : Lp[0, 1]→ Y ⊕Kz0 defined by
P (y + λz0 +w) = y + λz0 is continuous. Since f(y + λz0) = λ is a nonzero con-
tinuous linear functional on Y ⊕Kz0, the composite foP : Lp[0, 1] → K would
be continuous, which is a contradiction as we saw. Therefore Lp[0, 1] = Y ⊕ Z
implies Y = Lp[0, 1], Z = {0}.
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Recall [4] that a quasi-Banach space X has a proper closed weakly dense sub-
space (PCWD) if there is a proper closed subspace E such that the quotient X/E
has a trivial dual. We conclude

Corollary 3.4. If 0 < p < 1 and I is a set of indices whose cardinality is c, then
the space lp(I) has a primary quotient space. Also lp(I) has a PCWD subspace.

Proof. Clearly lp(I) is lp[0, 1]. The corollary follows from Corollary 3.1, namely,
the proof of Theorem 3.2. In fact, as for the first assertion, the dual of lp[0, 1]/N(f)∩
N(T̃ ) reduces to {0}, the space being linearly homeomorphic to Lp[0, 1] with a
trivial dual. Lp[0, 1] being primary as we saw, hence is lp[0, 1]/N(f)∩N(T̃ ). Anal-
ogously N(f)∩N(T̃ ) is a PCWD subspace of lp[0, 1]. The corollary is proved.
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