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RECOGNITION OF THE LINEAR GROUPS

OVER THE BINARY FIELD BY THE SET

OF THEIR ELEMENT ORDERS

M. R. DARAFSHEH∗, Y. FARJAMI∗ AND A. MAHMIANI∗∗

Abstract. In this paper we will prove that the simple group PSL14(2) is
recognizable by the set of its element orders, that is to say if G is a finite
group with the same set of element orders as PSL14(2), then G ∼= PSL14(2).

1. Introduction

Let G be a finite group. The set of orders of elements of G is called the
spectrum of G and is denoted by ω(G). Obviously the set ω(G) is closed and
partially ordered by the divisibility relation, hence ω(G) is uniquely determined
by the set µ(G) of its maximal elements. For a subset Ω of the set of natural
numbers we define h(Ω) to be the number of isomorphism classes of finite groups
G such that ω(G) = Ω. We set h(G) = h(ω (G)) and call it the h−function on
G. The group G is called recognizable if h(G) = 1. Examples of recognizable
groups are given in [2], [3], [16] and [17]. The simple groups PSLn(2), 3 � n � 7,
are proved to be recognizable by the set of their element orders. In [4] it is also
proved that the group PSL8(2) is recognizable. Based on the above facts it is
natural to make the following assertion.

Conjecture. The simple groups PSLn(2) for all n � 3 are recognizable.
To support the above conjecture we proved in [5] and [6] that the groups

PSL11(2) and PSL13(2) are recognizable. In this paper we intend to prove the
same result for the group PSL14(2). Our main result is the following

Theorem. Let G be a finite group. Then ω(G) = ω(PSL14(2)) if and only if
G ∼= PSL14(2).
Our notation throughout the paper is standard. In particular Zn denotes the

cyclic group of order n and A : B denotes the semi-direct product of a group A
by a group B, and if B is a cyclic group of order b then the above semi-direct
product is denoted by A : b. In the case that both A and B are cyclic groups
of order a and b respectively, then the above semi-direct product is denoted by
a : b.
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2. Preliminaries

For a natural number n the set of prime divisors of n is denoted by π(n). If G
is a finite group, then we set π(G) = π(|G|). The Gruenberg-Kegel graph GK(G)
of a group G, or the prime graph of G, is a graph with vertex set π(G) such that
two distinct vertices p and q are joined by an edge if and only if pq ∈ ω(G). The
number of connected components of the graph GK(G) is denoted by s(G) and
its components are denoted by πi(G), 1 � i � s(G). Hence πi(G) is a connected
subgraph of GK(G) and if no confusion arises we usually denote its vertex set by
πi(G) again. If G is a group of even order, then we assume that 2 ∈ π1(G), and
we let π1 = π1(G). The classification of finite groups with non-connected prime
graphs was reduced to the same question about simple groups by K. Gruenberg
and O. Kegel in 1975(unpublished). But later in [19] the prime graph of all the
finite simple groups except the simple groups of Lie type in even characteristic
were classified. In [11] the same classification was obtained for the simple groups
of Lie type in even characteristic. Using the above classification many results
on recognizability of finite groups were obtained. These results depend on the
following theorem of Gruenberg and Kegel.

Gruenberg-Kegel’s Theorem (see [19]). If G is a finite group with non-
connected prime graph, then G has one of the following structures:
(a) Frobenius or 2-Frobenius,
(b) simple,
(c) an extension of a π1-group by a simple group,
(d) an extension of a simple group by a π1-group,
(e) an extension of a π1-group by simple by π1-group.

In the following we will explain some terminologies used in the above theorem.
If N � G and K = G

N , then G is called an extension of the group N by the group
K and it is denoted by G = N.K. If N is a π1-group (a group, whose prime
divisors are in π1) and K is a simple group then G = N.K is called an extension
of a π1-group by a simple group. Similarly a simple by π1-group or a π1 by simple
by π1-group is defined.

We remark that a group G is called 2-Frobenius if there exists a normal series
1 � H � K � G of G such that K is a Frobenius group with kernel H and
G
H is Frobenius group with kernel KH . Note that 2-Frobenius groups are always
solvable. This is because by Thompson’s theorem [18] the Frobenius kernel is a
nilpotent group. Hence H and K

H are nilpotent and therefore solvable groups,

implying that K is a solvable group. If
∣∣G
K

∣∣ is odd, then G
K is solvable, hence G

is solvable. Therefore we may assume that |GK | is even.
Now we assume that

∣∣G
K

∣∣ is even. In this case since the order of the Frobenius
complement in the Frobenius group G

H is even, by [14] KH must be abelian. But

then K
H is isomorphic to the direct product of its Sylow subgroups and, being a

Frobenius complement, by [14] KH is isomorphic to the direct product of cyclic

groups Ai where the Ai’s are the Sylow subgroups of G. In particular
G
H is cyclic.
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Now we put A = K
H and F = G

H , where A is a cyclic group. Since A is an

abelian Frobenius kernel we obtain CF (A) = A and therefore
F
A is isomorphic to

a subgroup of Aut(A). But since Aut(A) is abelian we conclude that FA is abelian.

Therefore F
A
∼= G

K is abelian and hence solvable. Now solvability of K implies
that G is solvable and we are done.

Now by Gruenberg-Kegel’s theorem we have the following further reduction.

Lemma 2.1. Let G be a finite group with non-connected prime graph. If G is
not a solvable group, then there is a normal series 1 � N � G1 � G such that N
and G

G1
are π1-groups and G :=

G1
N is a simple group.

Now we return to the group PSL14(2). We have |PSL14(2)| = 291 · 39 · 53 ·
74 · 11 · 13 · 17 · 23 · 312 · 43 · 73 · 89 · 1272 · 8191 and therefore π (PSL14(2)) =
{2, 3, 5, 7, 11, 13, 17, 23, 31, 43, 73, 89, 127, 8191}. In [11] and [19], s(G) for all finite
simple groups G are computed. According to this result we have

s (PSLn(2)) =

{
2, if n = p or p+ 1,
1, otherwise.

where p is a prime number. In the case that the Gruenberg-Kegel’s graph of
PSLn(2) is disconnected we have

π1 = π

(
2

p−1∏

i=1

(2i − 1)
)

or π1 = π

(
2(2p+1 − 1)

p−1∏

i=1

(2i − 1)
)
,

in the respective cases n = p or p + 1. In any case the other component is
π2 = π(2

p−1). Therefore for the group PSL14(2) we have π1 = {2, 3, 5, 7, 11, 13,
17, 23, 31, 43, 73, 89, 127} and π2 = {8191}.
In the next step we proceed to find the spectrum of PSL14(2). To do this

we will use the notation used in [9] for conjugacy classes of the general linear
group GLn(q), where q is the power of a prime number. Let A ∈ GLn(q) have
characteristic polynomial det(xI−A) = fk11 f

k2
2 · · · fkNN , where fi = fi(x), 1 � i �

N, are distinct monic irreducible polynomials over GF (q) and ki � 0. Here, of
course, we exclude the polynomial x for the reason of invertibility of A. In this
case A is conjugate to a block diagonal matrix of the form

diag(Uν1(f1), Uν2(f2), · · · , UνN (fN))
where ν1, ν2, · · · , νN are certain partitions of k1, k2, · · · , kN respectively, and
Uνi(fi) is a certain matrix which will be explained later. This conjugacy class of
A is denoted by the symbol c = (fν11 fν22 · · · fνNN ).

The order of c = (f ν11 fν22 · · · fνNN ) is equal to the least common multiple,
(l.c.m), of the orders of the matrices Uνi(fi), 1 � i � N. For each partition
(λ) ≡ l1 + l2 + · · · + lp, l1 � l2 � · · · � lp > 0, of a positive integer k and each
polynomial f = f(x) ∈ GF (q)[x] the matrix Uλ(f) is defined to be

Uλ(f) = diag(Ul1(f), Ul2(f), · · · , Ulp(f)).
Each matrix Uli(f) is defined as follows.
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Let f(x) = a0 + a1x+ · · ·+ ad−1xd−1 + xd be a monic polynomial of degree d
over GF (q) and let

U(f) = U1(f) =




0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1
−a0 −a1 −a2 . . . −ad−1




be its companion matrix. Then for any natural number m the matrix Um(f) is
defined by

Um(f) =




U(f) Id 0
0 U(f) Id · · ·
...

. . .

· · · · · · · · · U(f)




with m diagonal blocks U(f) where Id is the d× d identity matrix. The charac-
teristic polynomial of Um(f) is f(x)

m. It is easy to verify that the characteristic
polynomial of Uλ(f) is f(x)

k provided λ is a partition of k.

As mentioned earlier, the order of an element in the class c = (fν11 f ν22 · · ·
fνNN ) is equal to the l.c.m of the orders of the matrices Uνi(fi), 1 � i � N. But the
order of each Uνi(fi) is equal to the l.c.m of the orders of Uli1 (fi), Uli2 (fi), · · · ,
Ulip (fi), where {li1 , li2, · · · , lip} is the partition of ki associated to νi. Therefore
our task is to find the order of a matrix of the form Um(f). This is related to the
concept of order for polynomials over finite fields which is developed in [12].

Definition. Let f(x) be a polynomial over GF (q) with f(0) 
= 0. The least
positive integer e for which f(x) is a divisor of xe − 1 is called the order of f(x)
and is denoted by ord(f(x)).

In the following we will establish a relationship between ord(f) and the order of
its companion matrix. Note that ord(f) = e has the property that if f(x)

∣∣xk − 1 ,
then e|k.

Lemma 2.2. Let A ∈ GLn(q) have minimal polynomial f(x). Then the order of
A is equal to the order of f(x).

Proof. Assume ord(f) = e. Then by definition e is the smallest positive integer
such that f(x)|xe−1. Therefore there is g(x) ∈ GF (q)[x] with xe−1 = f(x)g(x).
Since f(x) is the minimal polynomial of A, we have Ae−I = 0. Thus if O(A) = k,
then k|e. Now Ak = I implies that A satisfies the polynomial xk− 1 over GF (q).
But since f(x) is the minimal polynomial of A we obtain f(x)|xk − 1, whence
e|k. Therefore e = k and the lemma is proved.

According to the above lemma the order of U(f) = U1(f) is equal to the
order of f(x). Now we will find a formula for the order of Um(f). Note that
the characteristic polynomial of Um(f) is f(x)

m where f(x) is the characteristic
polynomial of U(f), hence f(x)m is the minimal polynomial of Um(f). Therefore,
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by Lemma 2.2 the order of Um(f) is equal to the order of f(x)
m. In the case

where f(x) is irreducible over GF (q) the order of f(x)m can be obtained from
the following lemma taken from [11, page 86].

Lemma 2.3. Let f(x) ∈ GF (q)[x] be irreducible with f(0) 
= 0. Let q = pr be
the power of a prime p and ord(f) = e. Then ord(f(x)m) = ept where t is the
smallest integer such that pt � m.

Therefore, to find the order of an element A of the conjugacy class c = (fν11 fν22
· · · fνNN ) we assume the minimal polynomial of A is f(x) = f1(x)

n1 f2(x)
n2 · · ·

fN(x)
nN and then the order of f(x) can be computed using the following lemma

taken from [12].

Lemma 2.4. Let m(x) ∈ GF (q)[x], m(0) 
= 0, have the factorization m(x) =
af1(x)

n1 f2(x)
n2 · · · fN (x)nN in terms of distinct monic irreducible polynomials

fi(x) over GF (q), where q is the power of prime number p and a ∈ GF (q). Then
ord(m(x)) = ept where e is the l.c.m. of ord(f1), ord(f2), · · · , ord(fN) and t is
the smallest integer such that pt � max{n1, n2, · · · , nN}.

Now suppose A ∈ GLn(q) has characteristic polynomial m(x) = det(xI −
A) = fk11 f

k2
2 · · · fkNN where fi = fi(x), 1 � i � N, are distinct monic irreducible

polynomials over GF (q) and ki > 0. Conjugacy classes of GLn(q) whose elements
have characteristic polynomialm(x) are called conjugacy classes of type A. There
is a conjugacy class of type A with minimal polynomialm(x). This follows simply
by taking ν1 = k1, ν2 = k2, · · · , νN = kN as partitions of the respective ki’s. It
is obvious that if there is a conjugacy class of type A with minimal polynomial
t (x) = fn11 f

n2
2 · · · fnNN , then t (x) |m (x) and therefore ord (t (x)) |ord (m (x)) .

Hence as far as the maximum order of elements in the conjugacy classes of type A
is concerned we must calculate ord (m (x)) where m(x) is given by

∑N
i=1 kidi = n

where di = deg(fi), 1 � i � N.
By [11, page 84], if f(x) ∈ GF (q)[x] is an irreducible polynomial of degree d,

then ord(f)
∣∣qd − 1 . Furthermore, there is an irreducible polynomial over GF (q)

with order qd − 1. Therefore, from Lemma 2.4 we obtain the following corollary.

Corollary 2.1. Let m(x) ∈ GF (q)[x], m(0) 
= 0, q be the power of a prime
p, and let m (x) = f1(x)

n1f2(x)
n2 · · · fN(x)nN , where f1(x), · · · , fN(x) are dis-

tinct monic irreducible polynomials of degree di over GF (q), 1 � i � N. Then
ord(m(x)) divides pt× l.c.m(qd1 − 1, qd2 − 1, · · · , qdN − 1), where t is the smallest
non-negative integer such that pt � max {n1, n2, · · · , nN} .Moreover if

∑N
i=1 nidi =

n, then GLn(q) has an element with the above order.

Therefore, as far as µ(GLn(q)), the set of maximal elements of ω(GLn(q)), is
concerned, we first find all the irreducible polynomials of degree up to n over
GF (q) and call them f1, f2, · · · , fN . Then we consider all the possible factoriza-
tions of the form fn11 f

n2
2 · · · fnNN where ni � 0 and

∑N
i=1 nidi = n, di = deg(fi).

Finally numbers of the form pt× l.c.m(qd1 − 1, qd2 − 1, · · · , qdN − 1) are elements
of µ(GLn(q)) where t is explained above.
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In the following we will find µ (PSL14(2)) which is needed for our result.

Lemma 2.5. We have

µ (PSL14(2)) ={240, 336, 496, 504, 840, 1260, 1736, 2040, 3048, 3556,
3720, 4088, 4092, 5115, 5334, 5355, 6132, 6141, 6510,

7140, 7161, 7620, 7665, 7812, 7874, 7905, 8001, 8188,

8190, 8191, 11811, 13335, 14329, 15841, 16383}.

Proof. Obviously PSL14(2) = GL14(2), so elements of PSL14(2) are non-singular
14× 14 matrices and we use the notation used above for the conjugacy classes of
GL14(2). Since we use polynomials of the form fk11 f

k2
2 · · · fkNN , fi is irreducible

of degree di with the condition
∑N
i=1 kidi = 14 and the shape of the polynomial

is not important for us, we use the term [dk11 ][d
k2
2 ] · · · [d

kN
N ] to represent the above

polynomial.

Now in the following all the possible factorizations of polynomials of degree
14 with maximum orders are written. Note that the number of all possible
factorizations is equal to the number of partitions of 14 that is 135.

Polynomial Order Polynomial Order Polynomial Order

[114] 24 = 16 [18][32] 23 ·7 = 56 [16][2][32] 23 ·3·7=168
[112][2] 24 ·3 = 48 [18][23] 23 ·3 = 24 [16][24] 23 ·3=24
[111][3] 24 ·7 = 112 [17][7] 23 ·127=1016 [16][2][6] 23 ·63=504
[110][4] 24 ·15 = 240 [17][2][5] 23 ·3·31=744 [16][22][4] 23 ·15=120
[110][22] 24 ·3 = 48 [17][3][4] 23 ·7·15=840 [15][9] 23 ·511=4088
[19][5] 24 ·31 = 496 [17][22][3] 23 ·3·7 = 168 [15][2][7] 23 ·3·127=3048
[19][2][3] 24 ·3·7 = 336 [16][8] 23 ·255=2040 [15][3][6] 23 ·63=504
[18][6] 23 ·63 = 504 [16][3][5] 23 ·7·31=1736 [15][4][5] 23 ·15·31=3720
[18][4][2] 23 ·15 = 120 [16][42] 23 ·15=120 [15][22][5] 23 ·3·31=744

Polynomial Order Polynomial Order Polynomial Order

[15][2][3][4] 23 ·7·15=840 [14][2][3][5] 22 ·3·7·31=2604 [13][2][3][6] 22 ·63=252
[15][23][3] 23 ·3·7=168 [14][2][42] 22 ·15=60 [13][2][4][5] 22 ·15·31=1860
[15][33] 23 ·7=56 [14][23][4] 22 ·15=60 [13][23][5] 22 ·3·31=372
[14][10] 22 ·1023=4092 [14][22][32] 22 ·3·7=84 [13][22][3][4] 22 ·7·15=420
[14][2][8] 22 ·255=1020 [14][25] 22 ·3=12 [13][2][33] 22 ·3·7=84
[14][3][7] 22 ·7·127=3556 [14][32][4] 22 ·7·15=420 [13][24][3] 22 ·3·7=84
[14][4][6] 22 ·15·21=1260 [13][11] 22 ·2047=8188 [13][3][8] 22 ·7·255=7140
[14][52] 22 ·31=124 [13][2][9] 22 ·3·511=6132 [13][32][5] 22 ·7·31=868
[14][22][6] 22 ·63=252 [13][22][7] 22 ·3·127=1524 [13][3][42] 22 ·7·15=420

Polynomial Order Polynomial Order Polynomial Order

[13][4][7] 22 ·15·127=7620 [12][43] 22 ·15=60 [12][5][7] 2·31·127=7874
[13][5][6] 22 ·31·63=7812 [12][22][3][5] 2·3·7·31=1302 [12][22][8] 2·255=510
[12][12] 2·4095=8190 [12][3][4][5] 2·7·15·31=6510 [12][4][8] 2·255=510
[12][26] 23 ·3=24 [12][2][52] 2·3·31=186 [12][3][9] 2·511=1022
[12][23][32] 22 ·3·7=84 [12][23][6] 22 ·63=252 [12][2][10] 2·1023=2046
[12][34] 22 ·7=28 [12][32][6] 2·63=126 [1][13] 8191=8191

[12][24][4] 22 ·15=60 [12][2][4][6] 2·5·63=630 [1][25][3] 23 ·3·7=168
[12][2][32][4] 2·7·15=210 [12][62] 2·63=126 [1][22][33] 22 ·3·7=84
[12][22][42] 2·15=30 [12][2][3][7] 2·3·7·127=5334 [1][23][3][4] 22 ·7·15=420
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Polynomial Order Polynomial Order Polynomial Order

[1][33][4] 22 ·7·15=420 [1][2][5][6] 31·63=1953 [1][3][10] 1023·7=7161
[1][2][3][42] 2·7·15=210 [1][23][7] 3·127=381 [1][2][11] 3·2047=6141
[1][24][5] 22 ·15·31=1860 [1][32][7] 7·127=889 [14] 127·3·43=16 383
[1][2][32][5] 2·3·7·31=1302 [1][2][4][7] 15·127=1905 [27] 23 ·3=24
[1][22][4][5] 2·15·31=930 [1][6][7] 63·127=8001 [24][32] 22 ·3·7=84
[1][42][5] 2·15·31=930 [1][2][3][8] 7·255=1785 [2][34] 22 ·3·7=84
[1][3][52] 2·7·31=434 [1][5][8] 31·255=7905 [25][4] 23 ·15=120
[1][22][3][6] 2·63=126 [1][22][9] 2·3·511=3066 [22][32][4] 22 ·7·15=420
[1][3][4][6] 5·63=315 [1][4][9] 15·511=7665 [23][42] 22 ·15=60

Polynomial Order Polynomial Order Polynomial Order

[32][42] 2·15=30 [22][4][6] 2·5·63=630 [32][8] 2·7·255=3570
[2][43] 22 ·15=60 [42][6] 2·5·63=630 [2][4][8] 255=255

[23][3][5] 22 ·3·7·31=2604 [3][5][6] 31·63=1953 [6][8] 21·255=5355
[33][5] 22 ·7·31=868 [2][62] 2·63=126 [2][3][9] 3·511=1533
[2][3][4][5] 7·15·31=3255 [22][3][7] 2·3·7·127=5334 [5][9] 31·511=15 841
[22][52] 2·3·31=186 [3][4][7] 7·15·127=13 335 [22][10] 2·1023=2046
[4][52] 2·15·31=930 [2][5][7] 3·31·127=11 811 [4][10] 5·1023=5115
[24][6] 22 ·63=252 [72] 2·127=254 [3][11] 7·2047=14 329
[2][32][6] 2·63=126 [23][8] 22 ·255=1020 [2][12] 65·63=4095

From this table we can find µ(PSL14(2)) as indicated in the lemma.

Now it is easy to deduce ω(PSL14(2)) from µ(PSL14(2)). This is obtained as
follows:

ω (PSL14(2)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20,
21, 22, 23, 24, 26, 28, 30, 31, 33, 34, 35, 36, 39, 40, 42, 43, 44, 45, 46, 48, 51,
55, 56, 60, 62, 63, 65, 66, 68, 69, 70, 72, 73, 77, 78, 80, 84, 85, 89, 90, 91, 92,
93, 102, 105, 112, 117, 119, 120, 124, 126, 127, 129, 130, 132, 136, 140,
146, 153, 155, 161, 165, 168, 170, 178, 180, 182, 186, 195, 204, 210, 217,
219, 231, 234, 238, 240, 248, 252, 254, 255, 267, 273, 279, 280, 292, 310,
315, 336, 340, 341, 356, 357, 365, 372, 381, 390, 408, 420, 434, 438, 455,
465, 476, 496, 504, 508, 510, 511, 527, 546, 558, 584, 585, 595, 620, 623,
630, 635, 651, 680, 682, 714, 744, 762, 765, 819, 840, 868, 876, 889, 910,
930, 1016, 1020, 1022, 1023, 1071, 1085, 1095, 1116, 1143, 1170, 1190,
1240, 1260, 1270, 1302, 1364, 1365, 1428, 1524, 1533, 1581, 1638, 1705,
1736, 1778, 1785, 1860, 1905, 1953, 2040, 2044, 2046, 2047, 2170, 2263,
2380, 2387, 2540, 2555, 2604, 2635, 2667, 2730, 3048, 3066, 3255, 3556,
3570, 3720, 3810, 3906, 3937, 4088, 4092, 4094, 4095, 4445, 5115, 5334,
5355, 5461, 6132, 6141, 6510, 7140, 7161, 7620, 7665, 7812, 7874, 7905,
8001, 8188, 8190, 8191, 11811, 13335, 14329, 15841, 16383}

3. Properties of groups G with ω(G) = ω(PSL14(2))

In this section we will prove some results which are needed to prove our main
theorem.
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Proposition 3.1. If G is a simple group with

{2, 8191} ⊆ π (G) ⊆ {2, 3, 5, 7, 11, 13, 17, 23, 31, 43, 73, 89, 127, 8191}

then G ∼= PSL13(2), PSL14(2) or PSL2(8191).

Proof. Obviously G is a non-abelian simple group. By the classification of finite
simple groups, G is one of the alternating, sporadic or a finite simple group of
Lie type. By checking the orders of the sporadic simple groups in [1] we find out
that G cannot be a sporadic simple group. If G is isomorphic to an alternating
group An, then as 8191 ||G| we must have n � 8191 which contradicts the list
of prime divisors of |G| . Therefore it remains to consider the possibilities of the
isomorphism of G with a simple group of Lie type.

Suppose G is isomorphic to a simple group of Lie type in characteristic p. As
p| |G| we must have p ∈ π (G) . The orders of the simple groups of Lie type are
given in [1] and these are products of numbers of the form pe ± 1 or powers of p.
We distinguish two cases.

Case(1). p ∈ {7, 11, 13, 17, 23, 31, 43, 73, 89, 127, 8191} .
Let p = 8191. Since 81913±1 contain primes outside π(G) we conclude that only
pi ± 1, i = 1, 2, can divide |G| . But p2 − 1 = 8190 · 213 and G = PSL2(8191) is a
possibility.

Suppose then that p 
= 8191. Let p = 7. Since 8191| |G| we must have 8191|7e±1
for some e ∈ N. But by inspection we see that 76 ± 1 contains a prime divisor
outside π(G) and yet 8191 � 7i ± 1 for 1 � i � 6. This contradiction shows that
p = 7 is impossible. For the rest of possibilities of p similar investigation yields a
contradiction.

Case(2). p ∈ {2, 3, 5} .
First we assume p = 2. An easy calculation shows that there is no k ∈ N such
that 8191|2k + 1, and if 8191|2e − 1, e ∈ N, then 13|e. But 213 − 1 = 8191,
214 − 1 = 3 · 43 · 127, 215 − 1 = 7 · 31 · 151, hence G ∼= PSL13(2) and PSL14(2)
are the only possibilities in this case.

For p = 3 we observe that 37 − 1 = 2 · 1093 and 34 + 1 = 2 · 41 contain primes
outside π(G) yet 8191 � 3e ± 1 for e � 7. Therefore in this case we do not get a
possibility. Similar argument rules out p = 5 and the proposition is proved.

Lemma 3.1. Let G be a finite group with the same spectrum as PSL14(2). Then
G is neither a Frobenius nor a 2-Frobenius group.

Proof. First we will prove that G is a non-solvable group. Suppose G is a solvable
group. Let H be a {11, 13, 17}−Hall subgroup of G. By Lemma 2.5, H does not
contain elements of order 11 · 13, 11 · 17 or 13 · 17, hence by Theorem 4.1 in [10]
we must have π(H) � 2, a contradiction. Therefore G is a non-solvable group.
We already mentioned that 2-Frobenius groups are always solvable, hence G can
not be a 2-Frobenius group.
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Suppose G is a Frobenius group with kernel A and complement B. If B is a
solvable group, then G will be solvable which is not the case. Therefore B is non-
solvable and by the structure of non-solvable Frobenius complements given in [14]
B has a normal subgroup B0 such that [B : B0] � 2 and B0 ∼= SL2(5)×Z, where
every Sylow subgroup of Z is cyclic and π(Z) ∩ {2, 3, 5} = ∅. By Lemma 2.5
G does not contain elements of order 5 · 23 and 5 · 43. Hence we must have
{23, 43} ⊆ π(A), and since A is nilpotent we conclude that it must contain an
element of order 23 · 43 which is impossible by Lemma 2.5. This contradiction
proves that G is not a Frobenius group and the lemma is proved.

4. Proof of the main theorem

Our main theorem states that if G is a finite group with the same spectrum as
PSL14(2), then G is isomorphic to PSL14(2). Since PSL14(2) has a disconnected
Gruenberg-Kegel graph, we can deduce the structure of G from the Gruenberg-
Kegel’s theorem stated earlier. Since by Lemma 3.1 G is not a solvable group,
we have by Lemma 2.1 that there is a normal series of G

1 � N � G1 � G

such that N and G
G1
are π1− groups and G1 = G1

N is a non-abelian simple group.

Our aim is to prove that N = 1 and G ∼= PSL14(2). Keeping the above notation
fixed we continue our proof with a series of results.

Proposition 4.1. Aut (PSL14(2)) contains an element of order 86.

Proof. The mapping θ : PSL14(2) → PSL14(2) defined by θ(A) =
(
A−1

)t
,

∀A ∈ PSL14(2), is an outer automorphism of the group PSL14(2) and therefore
we can write G+ = Aut (PSL14(2)) = PSL14(2) :< θ > . By Theorem 4.1
in [7] the group Aut (PSL14(2)) has two conjugacy classes of elements of order
2 with representatives θI and θJ. By the proof of Theorem 4.1 in [7] we have
|CG+(θJ)| = 2 |SP14(2)| , hence

|CG+(θJ)| = 250 · 39 · 53 · 72 · 11 · 13 · 17 · 31 · 43 · 127

and from the above it is evident that G+ has an element of order 2 · 43 = 86 and
the proposition is proved.

By Lemma 2.5 the group PSL14(2) does not contain elements of order 86,
hence by Proposition 4.1 we obtain ω (Aut (PSL14(2))) 
= ω (PSL14(2)) .
Before proceeding to the next result, Lemma 2.1 of [13] is useful and it will be

stated below.

Theorem 4.1. Let N be a normal subgroup of the finite group H. Assume that
H
N is a Frobenius group with Frobenius kernel A and cyclic Frobenius complement

B. If (|A| , |N |) = 1 and A is not contained in NCH (N)
N then p |B| ∈ ω(H), for

some prime divisor p of |N | .
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Since our proof depends on the existence of suitable Frobenius groups we men-
tion a few of them.

Lemma 4.1. Let F be a field and C be a multiplicative subgroup of F ∗. Then

G = {λa,b : F → F | λa,b(x) = ax+ b, a ∈ C, b ∈ F, x ∈ F}
is a Frobenius group with kernel isomorphic to F and complement C. If F is

a finite field, then G has |C| linear characters and |F |−1
|C| irreducible complex

characters of degree |C| . Moreover if p is a prime number and p � |F | |C| , then
the non-linear characters of G may be realized over Zp.

Proof. Clearly G is a group acting transitively on F. The stabilizer of 0 ∈ F is
G0 = {λa,0 | a ∈ C} ∼= C and for any 0 
= t ∈ F we have G0,t = 1. Therefore G is
a Frobenius group with complement C. The kernel is {λ1,b| b ∈ F} ∼= F. The rest
of proof follows from [7, page 68, Theorem 4.13.8].

If F is a finite field with q elements, the Frobenius group G constructed above
is denoted by q : q−1|C| where |C| is any proper divisor of q − 1.

Lemma 4.2. G1 ∼= PSL14(2).

Proof. Since G and PSL14(2) have the same spectrum, the Gruenberg-Kegel
graph of G has two components and they are π1 = {2, 3, 5, 7, 11, 13, 17, 23, 31,
43, 73, 89, 127} and π2 = {8191} . By the conditions stated before Proposition 4.1
we deduce that π2 is a component of the Gruenberg-Kegel graph of G1, hence
{2, 8191} ⊆ π

(
G1
)
⊆ π(G). Now by Proposition 3.1 we have one of the possibil-

ities G1 ∼= PSL2(8191), PSL13(2) or PSL14(2). We will rule out the first two
possibilities as follows.

Case(1). G1 ∼= PSL2(8191).
We have G1 =

G1
N
∼= PSL2(8191). If N = 1, then the normal series mentioned

at the beginning of section 4 reduces to 1 � G1 � G. Since the Gruenberg-Kegel
graph of G has two components, we obtain CG(G1) = 1, hence G is isomorphic
to a subgroup of Aut(PSL2(8191)). But |Aut(PSL2(8191))| = 2 |PSL2(8191)| =
8192.8191.8190 and we see that Aut(PSL2(8191)) does not contains an ele-
ment of order 43, contradicting Lemma 2.5. Therefore we assume N 
= 1.
By Lemma 4.1, the group G1 =

G1
N
∼= PSL2(8191) has a Frobenius subgroup

H
N = 8191 : 8191−12 = A : B where A and B are cyclic groups of orders 8191
and 4095 respectively. Since 8191 � |N | we have (|A| , |N |) = 1. Moreover if

A is contained in NCH(N)
N

∼= CH(N)
N∩CH(N) , then 8191 divides |CH(N)| . But this will

imply that G1 contain an element of order 8191p, where p is a prime divisor of
|N | , contradicting Lemma 2.5. Now all the conditions of Theorem 4.1 are ful-
filled, hence 43 |B| = 43 ·4095 ∈ ω(H) again contradicting Lemma 2.5. Therefore
Case(1) leads to a contradiction.

Case(2). G1 ∼= PSL13(2).
As we mentioned in case(1), we have 43 | |N | . Since π(N) ⊆ π1, hence 8191 � |N | .



RECOGNITION OF THE LINEAR GROUPS 37

By Lemma 4.1 the group PSL13(2) has a Frobenius subgroup of shape 8191 :
8191−1
630 = 8191 : 13. We denote this group by H

N = A : B where A ∼= Z8191 and
B ∼= Z13. With the same reasoning as in case(1) we see that all the conditions of
Theorem 4.1 are fulfilled, hence 43 · 8191 ∈ ω(H) contradicting Lemma 2.5.
This final contradiction leaves the remaining case, i.e. G1 ∼= PSL14(2), as the

only possibility and the proof is complete.

Lemma 4.3. N = 1.

Proof. We have the normal series

1 � N � G1 � G

such that N and G
G1
are π1−groups and by Lemma 4.2 G1 = G1

N
∼= PSL14(2).

Suppose N 
= 1. Without loss of generality we may assume that N = Or(G) for
some prime r ∈ π1 with N an elementary abelian group and CG1(N) = N.

The group PSL14(2) = GL14(2) has the following subgroup. Let A be an
element of order 213 − 1 in PSL13(2). The set

L =

{�
1 a1 a2 · · · a13
0 X

]
|ai ∈ Z2, X ∈< A >, 1 � i � 13

}

is a subgroup of PSL14(2). It is easy to verify that L is a Frobenius group of the
shape L = 213 : (213 − 1). Now if r 
= 2, then by Theorem 4.1 the group G would
contain an element of order (213 − 1)r, contradicting Lemma 2.5.
Thus we assume r = 2. Because of our assumption N is an elementary abelian

2-group of order 2k and G1 =
G1
N is isomorphic to PSL14(2) = GL14(2). The

group GL14(2) has a subgroup isomorphic to GL3(2) × GL11(2) and if σ is an
element of order 7 in GL14(2), then it is easy to see that CGL14(2)(σ)

∼=< σ >
×GL11(2). Modules N for the group GL3(2) = L3(2) can be constructed using
the Group Algorithm Programming [15]. Using these modules we deduce that
CN (σ) = K 
= 1 for any module N of GL3(2). But considering K as a module
for GL11(2) we form the subgroup H = KGL11(2) of G1 and since

H
K
∼= GL11(2),

by [5] it has a Frobenius subgroup of the shape 23:11, hence by Theorem 4.1
we deduce that KGL11(2) has an element of order 22. But since KGL11(2) is
centralized by σ this implies thatG1 = NGL14(2) has an element of order 7×22 =
154, contradicting lemma 2.5. This final contradiction shows that N = 1 and the
lemma is proved.

Proposition 4.2. G ∼= PSL14(2).

Proof. By Lemma 4.3 we have N = 1. Hence the normal series reduces to
1 � G1 � G. Since the Gruenberg-Kegel graph of G has two components
we obtain CG(G1) = 1. Hence G is isomorphic to a subgroup of Aut(G1) =
Aut (PSL14(2)) = PSL14(2) : 2. Therefore PSL14(2) � G � PSL14(2) : 2. By
Proposition 4.1 we have ω (PSL14(2) : 2) 
= ω(G), thus G = PSL14(2) as claimed.
Therefore the proposition and our main result are proved.
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