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A NOTE ON A NOTE BY MUTSUO OKA

PIERRETTE CASSOU-NOGUÈS

1. Introduction

Consider a polynomial mapping (f, g) from C2 to C2, where f(x, y), g(x, y)
are polynomials in two variables with coefficients in C. The Jacobian conjecture
asserts that if the jacobian of f and g is a non zero constant then the map (f, g)
is an automorphism.

In “Note on boundary obstruction to jacobian conjecture of two variables” [4],
M. Oka suggests a strategy to prove the jacobian conjecture in two variables. He
proved

Theorem 1.1. Assume that f is a strictly reduced polynomial which has a ja-
cobian partner polynomial g (J(f, g) = 1). Then the following conditions are
necessary.

1. f : C2 → C has no critical point.
2. ∆(f ; x, y) is convenient.
3. ∆(f ; x, y) has no boundary obstruction.
4. The outside boundary multiplicity mult∞(f) is strictly greater than 1.

He suggests to prove that there is no polynomial f which satisfies the four
conditions of the theorem.

In this article we will prove that indeed such polynomials exist. The simplest
polynomial we found has degree 18.

Some years ago, Kaliman [3] suggested that to prove the jacobian conjecture
one could try to prove that there do not exist polynomials with no critical point
and whose fibers are all irreducible. Such polynomials exist [1]. Then mixing the
two suggestions one can ask if there exist strictly reduced polynomials whose all
fibers are irreducible and satisfying the four above conditions. The polynomial of
degree 18 has one reducible fiber. But we prove that they do exist. The simplest
example we found has degree 27.

In the first part of the article, we will recall the definitions we need to under-
stand Oka’s theorem, and in the second part we will describe our polynomials
satisfying all the conditions of the theorem.
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2. Definitions

A polynomial h(x, y) is called a weighted homogeneous polynomial of degree d
with respect to the weight vector P = (a, b), if it satisfies the equality h(xta, ytb) =
tdh(x, y). We call d the degree of h with respect to the weight P . A rational
function h(x, y) = h1(x, y)/h2(x, y) is called a weighted homogeneous rational
function of degree d if h1, h2 are weighted homogeneous polynomials of degree d1,
d2 with respect to a weight P , and d = d1 − d2.

Let f(x, y) =
∑

ν=(ν1 ,ν2) cνx
ν1yν2 be a polynomial. The Newton diagram

∆(f ; x, y) is the convex hull of integral points ν = (ν1, ν2), such that cν 6= 0.
A face Ξ ∈ ∂∆(f ; x, y) is called an outside face if the line supporting Ξ does not
pass through the origin and ∆(f ; x, y) and the origin are in the same half plane.

Let Ξ be an outside face of ∆(f ; x, y) and let fΞ(x, y) =
∑

ν∈Ξ cνx
ν1yν2 . Then

fΞ is a weighted homogeneous polynomial for a weight vector P = (a, b) associated
to Ξ. We say that the face Ξ is strictly positive if a and b are strictly positive, that
it is horizontal (resp. vertical) if P = (0, 1) (resp. P = (1, 0)). An elementary
horizontal face is a face Ξ such that fΞ(x, y) = eyq(x + c)p with c 6= 0, p 6= q,
e 6= 0.

We say that f is strictly reduced if f is not a linear function, and ∆(f ; x, y)
has neither strictly positive, nor elementary horizontal, nor elementary vertical
outside faces.

The Newton diagram ∆(f ; x, y) is convenient if f(x, 0), f(0, y) are non constant
polynomials.

One says that ∆(f ; x, y) has no boundary obstructions if for any outside face
Ξ with a weight vector P there exists a weighted homogeneous rational function
φ(x, y) with weight P , such that J(fΞ, φ) = 1.

Let Ξ be an outside face of ∆(f ; x, y), one can factorize fΞ(x, y) as

fΞ(x, y) = cxpyq
i=m∏

i=1

(xb + ciy
a)νi

if Ξ is strictly positive,

fΞ(x, y) = cxpyq
i=m∏

i=1

(xby−a + ci)νi

if a 6 0 < b. The face multiplicity m(f, Ξ) is the greatest common divisor of the
integers p, q, ν1, · · · , νm. The outside boundary multiplicity m∞(f) is defined by
the greatest common divisor of m(f, Ξ) for all outside face Ξ of ∆(f ; x, y).
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3. The first example

We start with the following polynomial:

f = (x2y + x)2 + (x2y + x) + xy.

This polynomial has two critical points (0,−1) and (−1, 1). The equation of the
line going through these points is −2x − y = 1.

Make the change of variables X = −2x − y − 1. Let f1(X, y) = f(−(X + 1 +
y)/2, y). The two critical points are on the line X = 0.

Now, as in [2], consider f2(v, w) = f1(1/v, 2v+v2w) ∈ C[v, w]. This polynomial
has no critical point.

Its equation is

f2 =
1
16

[v6(vw + 2)6 + w2(v3w + 1)4 − v12w6 + g]

where

g = 4v10w5 + (12v7 + 42v8 + 40v9)w4 +
(12v4 + 48v5 + 92v6 + 176v7 + 160v8)w3 +
(4v + 18v2 + 60v3 + 137v4 + 264v5 + 368v6 + 320v7)w2 +
(8 + 20v + 88v2 + 164v3 + 336v4 + 384v5 + 320v6)w −
4 + 32v + 68v2 + 160v3 + 160v4 + 128v5.

The Newton polygon of a generic fiber has vertices O = (0, 0), A = (0, 2), B =
(12, 6), C = (6, 0). The Newton polygon is convenient, and f2 is strictly reduced.
There are two outside faces and the corresponding face polynomials are v6(vw +
2)6 and w2(v3w + 1)4. So the outside boundary multiplicity is 2. Now we look
at the boundary obstructions. From Lemma 14 in [4], the boundary obstruction
is satisfied for the weight (1,−1). One has to check the obstruction for the other
face. We have

J(w2(v3w + 1)4,−1/2vw−1(v3w + 1)−3) = 1.

Then the boundary obstructions are satisfied.

4. Example with irreducible fibers

We start with the following polynomial

f = (x2y + x/4) + xy − y/2 + y2.

This polynomial has two critical points (−1, 1/4) with Milnor number 2 and
(1/2,−1/8) with Milnor number 1.

Let f1(X, y) = f(X + y, y) and f2(v, w) = f1(1/v,−1/4v + v2w). Then f2

has also two critical points (8/5, 55/112), (−4/5, 5/64). The equation of the line
going through them is −5/36v + 512/45w− 1 = 0. Then we consider f3(V, w) =
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f2(−(V + 1− 512/45w)36/5, w) and finally f4(x, y) = f3(1/x,−5/144x + x2y) ∈
C[x, y]. The polynomial f4 has no critical point.

We have

f4 = 266/512y3(x3y − 45/512)6 + 266/512x9(xy − 5/144)9 − 266/512x18y9 + g

where g is a polynomial whose Newton polygon is strictly contained in the Newton
polygon of f4.

The Newton polygon of the generic fiber of f4 has vertices O = (0, 0), A =
(0, 3), B = (18, 9), C = (9, 0).The Newton polygon is convenient, and f4 is strictly
reduced. There are two outside faces and the corresponding face polynomials are
x9(xy − 5/144)9 and y3(x3y − 45/512)6. So the outside boundary multiplicity is
3. Now we look at the boundary obstructions. Again the boundary obstruction
is satisfied for the weight (1,−1). One has to check the obstruction for the other
face. We have

J(y3(x3y − 45/512)6, 512/135xy−2(x3y − 45/512)−5) = 1.

Then the boundary obstructions are satisfied.
The polynomial f has all its fibers irreducible, then also the polynomial f1

does. Then the polynomial f2 could only have v = 0 as a component of a fiber.
It is easy to check that it is not possible. Then the polynomial f2 has all its fibers
irreducible, and f3 as well. Then the only possible component of f4 is x = 0 and
again one checks that this is not possible. Then all fibers of f4 are irreducible.

References

[1] E. Artal Bartolo, P. Cassou-Noguès and I. Luengo Velasco, On polynomials whose fibers are
irreducible with no critical points, Math. Ann. 299 (1994), 477-490.

[2] P. Cassou-Noguès, The effect of rational maps on polynomial maps, Ann. Polon. Math. 76
(2001), 21–31.

[3] S. Kaliman, On the jacobian conjecture, Proc. Amer. Math. Soc. 117 (1993), 45-51.
[4] M. Oka, Note on boundary obstruction to jacobian conjecture of two variables. Acta Math.

Vietnam. 32, (2007), 125-140, (this issue).

IMB, Université Bordeaux I,
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