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ADDITIVE GROUP ACTIONS: QUOTIENTS, INVARIANTS,
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Dedicated to my parents, Edythe Finston and Harmon Finston,
on their 80th and 85th birthdays.

1. Proper actions and their quotients

The symbol Ga denotes the additive group of complex numbers, and X denotes
a complex quasiaffine variety. By an action of Ga on X we will mean an algebraic
action σ : Ga × X → X. Let

σ̄ : Ga × X → X × X

denote the graph morphism and

σ̂ : C[X ] → C[X, t]

σ̃ : C[X × X ] → C[X, t]
the induced map on coordinate rings.

The action is said to be proper if σ̄ is a proper morphism (i.e. if C[X, t]
is integral over the image of σ̃) [1]. For affine X properness is equivalent to
surjectivity of σ̃. In fact

Theorem 1.1. ([5]) A Ga action on an affine variety is proper if and only if σ̄
is a closed immersion.

If X is normal, since we are working over C, we have an equivalent formulation
of properness for an action of a Lie group L on the normal complex space X .
The action is proper if and only if for any sequences {xi} in X and {gi} in L:

If x0 is a limit point of {xi} and y0 is a limit point of {σ(gi, xi)} then there is
a limit point g0 of {gi} with σ(g0, x0) = y0.

Theorem 1.2. ([13]) The space of orbits X/L of a normal complex space X by a
proper action of a complex Lie group L admits the structure of a normal complex
space. In this case X/L is a quotient in the sense that:

1. The open mapping π : X → X/L is holomorphic and
2. For each L invariant holomorphic function f on an open subset U of X, there

is a holomorphic function f∗ on π(U) so that f = f∗ ◦ π.
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Theorem 1.3. ([22]) Given a proper action of an algebraic group G on a normal
variety X, there is a variety Z finite over X to which the action lifts, satisfying:

1. The extension of quotient fields qf(O(Z))/qf(O(X)) is Galois.
2. The action of the Galois group Γ of qf(O(Z))/qf(O(X)) commutes with the

action of G.
3. The space of orbits W = Z/G admits the structure of a normal variety,
4. W is a (locally trivial) geometric quotient in the sense that

(a) π : Z → W is open
(b) O(W ) = O(Z)G

(c) (Z has a cover by G stable open subsets Z = ∪iZi with

Zi
∼= π(Zi) × G).

5. If W is quasiprojective, then W/Γ is the geometric quotient of X by G.

Note that the quotient of a variety by a finite group need not be a variety.
Nevertheless, we have

Corollary 1.1. If G acts properly on X then the geometric quotient of X exists
as an algebraic space, namely W/Γ.

This leads to

Problem 1.1. Under what conditions does a proper action of an algebraic group
on a variety admit a (locally trivial) quotient which is an algebraic variety?

Even in the simplest cases this problem is subtle. Following are some positive
results for G = Ga

1. ([8]) A proper action on X = Cn admits a locally trivial quotient if the ring
of invariants C[X ]Ga is affine and regular.

2. ([3]) Assume that σ is a proper action on X = Cn with C[X ]Ga finitely
generated. Set

Y = SpecC[X ]Ga

and q : X → Y induced by the ring inclusion. Then σ admits a locally
trivial quotient if and only if for every x ∈ X , ÔY,q(x), the completion of the
local ring of q(x) on Y, is a UFD, e.g. if Y is smooth.

3. ([9]) A locally trivial action on a factorial affine variety X (i.e. C[X ] is a
UFD) admits a quasiaffine quotient and C[X ]Ga is finitely generated.

4. ([1]) A proper action on Cn for which C[X ]Ga defines a contractible vari-
ety admits a global trivialization, Cn ∼= Cn/Ga × Ga. (The case C[X ]Ga

isomorphic to a polynomial ring was generalized by Bonnet to actions of
Gp

a).
5. ([1]) Every proper action on a quasiaffine surface admits a geometric quo-

tient (which is an affine curve) .
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2. Local triviality and invariants

An action of the algebraic group G on the variety X is said to be locally trivial
in the Zariski topology if there is a cover of X by affine G stable open subsets
{Ui : i = 1, . . . , n} with

πi : Ui
∼= Vi × G

for some affine varieties Vi and G equivariant isomorphisms πi. Here G acts triv-
ially on Vi and by translation on G. In this circumstance the geometric quotient
X/G is obtained by gluing the Ui via the mappings πi. If Y is the geometric
quotient then the so determined morphism

π : X → Y

is an algebraic principal G bundle. If n = 1, i.e. X ∼= Y × G, we say that the
action admits a global trivialization.

The following are some useful observations about Ga actions on factorial affine
varieties:

1. ([3]) If X is smooth , then C[X ]Ga has discrete divisor class group, i.e. for
y a new variable, C[X ]Ga[[y]] is a UFD. As a consequence C[X ]Ga satisfies
S3, so for n 6 5, C[X ]Ga is Gorenstein when it is finitely generated.

2. Every action arises as

σ̂ = exp(tδ) : C[X ] → C[X, t].

for some locally nilpotent derivation δ of C[X ].
3. The action is locally trivial iff

[ker(δ) ∩ im(δ)]C[X ] = C[X ].

and admits a global trivialization iff

[ker(δ)∩ im(δ)]C[X ]Ga = C[X ]Ga.

When C[X ]Ga is finitely generated, these conditions correspond respectively
to flatness and faithful flatness of the morphism

X → SpecC[X ]Ga .

4. For a proper action, ker(δ)∩ im(δ) lies in no height one prime ideal of C[X ]
(or of C[X ]Ga).

5. If ker(δ) ∩ im(δ) lies in no height one prime ideal of C[X ], and C[X ]Ga is
affine and regular, then the action is locally trivial.

6. ([8]) A proper action admits a global trivialization iff V = V (ker(δ) ∩
im(δ)) ⊂ Cn has a component of codimension >2.

7. ([8]) Suppose that Y = Spec C[X ]Ga is affine and the action is not locally
trivial. Then the image of q : Cn → Y has nonempty intersection with the
singular locus of Y and nonempty fibers over singular points have dimension
>1.
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There are normal affine varieties with locally trivial Ga actions but nonfinitely
generated invariants [6]. To construct one, take any of the known locally nilpotent
derivations on Cn with nonfinitely generated kernel K. From Nagata (e.g. [19])
we know that K can be realized as the transform TI(N) of an affine normal
algebra N (by necessity not a UFD) with respect to a height 1 ideal I. The
algebra TI(N) is the subring of the quotient field Q(N) of N given by

TI(N) = ∪n>0{α ∈ Q(N)|Ina ⊆ N}

and consists of the rational functions on Spec N that are regular on the comple-
ment of the variety defined by I. From [16] we can assume that I is generated by
2 elements x, y. Then

A(m, n) ≡ N [u, v]/(xmv − ynu − 1)

admits the locally nilpotent derivation δ :

δ(N) = 0, δ(u) = xm, δ(v) = yn,

and
ker(δ) = T(x,y)N = K.

(Note that by 3 in the previous section A(m, n) is not a UFD.)
In low dimensions local triviality of Ga actions can be fairly well understood.

Surfaces

1. ([10]) Every fixed point free action on a factorial quasiaffine surface X (O(X)
is a UFD) admits a global trivialization X ∼= X/Ga × Ga .

2. ([1]) Every proper action on a normal quasiaffine surface admits a global
trivialization X ∼= X/Ga × Ga.

3. It is well known that the famous regular but nonfactorial Danielewski sur-
faces Xn : xnz − y2 = 1 can be realized as total spaces for principal Ga

bundles over the affine line with two origins. Indeed the defining polyno-
mial y2 − 2xnz − 1 is a Ga invariant for the action on C3 given by

σ : Ga × C3 → C3

σ(t)(x, y, z) = (x, y + txn, z + ty +
t2

2
xn).

The induced Ga action on Xn is improper.

Threefolds
From Zariski, for any Ga action on a normal affine 3-fold X , C[X ]Ga is finitely

generated.

1. ([12]) If Ga acts properly on a smooth complex affine 3-fold X , then the
action admits a locally trivial quasiprojective quotient. Here we use the
fact that a two dimensional smooth algebraic space is a scheme [21] and
facts about flat families of affine lines [20]. (Counterexamples for smooth,
rational, factorial 4-folds are given in [1]).
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2. ([12]) If in addition X is factorial and C[X ]Ga is regular, then for each
maximal ideal m C C[X ]Ga, with S = C[X ]Ga − m, we have either

S−1C[X ] = C[X ]Ga
m [u] or

S−1C[X ] = C[X ]Ga
m [u, v]/(au− bv − 1) with

√
(a, b) = m.

3. ([18]) If X = C3, then C[X ]Ga = C[f, g] for two algebraically independent
invariants.

4. ([17]) If X is contractible and Ga acts without fixed points, then X ∼=
X/Ga × Ga.

We defer a discussion of dimension 4. In dimensions 5 and higher, very little
is known. Two notable examples in this dimension are:

1. ([24]) The action

t · (x1, y1, x2, y2, z ) = (x1, y1, x2 + tx1, y2 + ty1, z + t(x1y2 − y1x2 + 1))

on C5 is locally trivial, but not a product, with quotient the non affine
complement of a surface in a smooth affine 4-fold.

2. ([7]) The action on C5 generated by the derivation

x1
∂

∂x2
+ y1

∂

∂y2
+ (1 + x1y

2
2)

∂

∂z

is proper, but not locally trivial, i.e. the quotient exists as an algebraic
space but not as a scheme. In this case, C[X ]Ga is affine, the singular locus
in the associated variety is pure of codimension 3 and lies in the image of
the map from C5. None of the completed local rings of the singular points
retains factoriality.

The situation in dimension 4 is completely unclear.

Conjecture 2.1. Every proper Ga action on C4 admits a locally trivial quotient.

In [4] this conjecture was proved for certain very special actions, namely those
for which the generating derivation δ is ”twin triangular, i.e. has the form:

δ = p(x1, x2)
∂

∂x4
+ q(x1, x2)

∂

∂x3
+ r(x1)

∂

∂x2
.

More generally, a triangulable action on Cn is conjugate to one generated by
a locally nilpotent derivation

δ =
n∑

i=2

pi(x1, . . . , xi−1)
∂

∂xi
.

By virtue of [2] we know that if Ga acts triangulably on C4 then C[X ]Ga is
finitely generated. On the other hand, finite generation of C[X ]Ga is not the
issue in example 2 of the above section. Moreover, by restricting that action to
certain Ga stable hypersurfaces, we obtain proper but not locally trivial actions
on smooth, rational, factorial affine fourfolds. These fourfolds are not isomorphic
(nor even homeomorphic) to C4.
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In fact a locally trivial triangulable action on C4 admits a global trivialization
[3] with quotient isomorphic to C3[25]. In particular, no example like the first one
of the above section can arise in lower dimensions. There is no known example
of a fixed point free action on any Cn which is not triangulable. In light of these
obervations the following weaker conjecture is also interesting:

Conjecture 2.2. Every proper triangular Ga action on C4 admits a global triv-
ialization.

The following remarks may prove useful in attacking these conjectures

1. Every nontrivial triangular derivation δ on C[x1, . . .xn] commutes with n−2
nontrivial triangular derivations. If δ(x1) = 1 this is clear. Otherwise one
can work over C(x1) where it is again clear. Thus

ker(δ) admits an action of Ga × . . .× Ga︸ ︷︷ ︸
n−2

.

2. As noted in section 1, the quotient of a proper triangular Ga action on C4

admits a geometric quotient C4/Ga which is a smooth algebraic space, and
contractible in the complex topology. The invariant coordinate function x1

induces a function
θ : C4/Ga → C

all of whose fibers are isomorphic to C2. Indeed each x1 fiber in C4 is iso-
morphic to a Ga stable C3 whose action admits a global trivialization with
quotient C2. For affine varieties the conditions satisfied by C4/Ga would
guarantee that it is isomorphic to C3 by a result of Kaliman [15]. Inciden-
tally, the aforementioned result in [25] can be deduced from this result since
there we have

C4 ∼= GaGa × Spec C[X ]Ga

C4/Ga
∼= Spec C[X ]Ga

3. Since C[X ]Ga is a UFD, the singular locus of

Y = Spec C[X ]Ga

has codimension at least 2 and lies in the closed subset V defined as the zero
locus of ker(δ) ∩ im(δ). We know of no example of a proper action where
the singular locus is of maximal dimension. In case n = 4 only finitely
many singular points can lie in the image of q : X → Y. Assuming that
Y has isolated singularities we have, by a result of Flenner and Zaidenberg
[27], that the singularities are rational (Y for a triangular action admits an
action of G2

a) hence canonical (since they are Gorenstein). On the other
hand, these singularities cannot be:
(a) Quotient singularities : For a quotient singularity y ∈ Y, The map q :

Cn − q−1(y) → Y −{y} restricted to N −{y}, for a good neighborhood
N of y, would factor through the topological universal covering space
of N −{y} with disconnected fibers. But fibers over the open set Y −V
are Ga orbits, hence connected.
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(b) Weighted homogeneous complete intersection: Such a singularity would
imply that ÔY,y is a UFD since OY,y is [26], and therefore a locally
trivial action. But such an action admits a global trivialization with
quotient isomorphic to C3.

3. Cancellation

In light of remark 2 in the section on threefolds, let m and n denote postive
integers and consider the affine hyperfurfaces in C4 given by

Xm,n : xmu − ynv = 1.

The Xm,n are affine total spaces for principal Ga bundles over Y = C2−{(0, 0)}.
In fact, the assignment

Xm,n 7→ 1
xmyn

∈ H1(Y, OY )

identifies the Xm,n with a vector space basis for the space of algebraic principal
Ga bundles over Y. Since the Xm,n are affine, indeed all total spaces of nontrivial
algebraic principal Ga bundles over Y are affine [12], the vanishing of H1(X, OX)
for X affine shows for all (m, n), (m′, n′) that

Xm,n × C ∼= Xm,n ×Y Xm′,n′ ∼= Xm′,n′ × C.

Problem 3.1. Do the Xm,n provide counterexamples to the Generalized Cancel-
lation Problem, i.e. . for affine varieties X and Z does X × C ∼= Z × C imply
X ∼= Z ? In particular, are the distinct Xm,n which are not obviously isomorphic
(e.g. Xm,n

∼= Xn,m) isomorphic as varieties?

A partial solution to this problem was given by A. Dobouloz (personal com-
munication):

Proposition 3.1. If m + n = m′ + n′ then Xm,n
∼= Xm′n′ .

Unlike Danielewski surfaces and related varieties, the total spaces Xm,n are
factorial and the base quasiaffine, in particular separated. As a consequence,
topologically all Xm,n are homeomorphic to Y ×C in the complex topology [23].
Moreover, it is easy to see that they all have trivial Makar-Limanov invariant,
i.e.

ML(C[Xm,n]) = C.

Topological tools and the Makar-Limanov have been the primary means by which
the Danielewski surfaces were exhibited as counterexamples to cancellation.

Note that Aut(Y ) can be identified with the group of origin preserving au-
tomorphisms of C2, a large group. Varieties closely related to the Xm,n, also
total spaces for algebraic principal Ga bundles, but over less symmetric bases,
are also interesting. For an example with a long and famous history, replace
Y = C2 − {(0, 0)} by Y = S − {(0, 0, 0)} where S ⊂ C3 is defined by

x2 + y3 + z5 = 0.
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S ∼= C2/G where |G| = 120, G is the binary icosahedral group viewed as a
subgroup of SL2(C). Define Xm,n(G) by

x2 + y3 + z5 = 0
xmu − ynv = 1

Problem 3.2. Are the distinct Xm,n(G) isomorphic? What is ML(C[Xm,n(G)])?

Note that:

1. Xm,n and Xm,n(G) are factorial.
2. XG

m,n
∼= Xm,n/G via C2 − {0} ×Y Xm,n → Xm,n(G), i.e. G acts trivially on

the right factor, and this map is an étale covering.
3. 2, 3, 5 are pairwise relatively prime, and 1

2 + 1
3 + 1

5 > 1.

In [11] it was shown that for pairwise relatively prime a, b, c satisfying 1
a + 1

b +
1
c < 1 (i.e. all other triples of relatively prime integers each greater than 1) the
varieties defined by

xa + yb + zc = 0
xmu − ynv = 1

are factorial counterexamples to generalized cancellation.
Counterexamples to generalized cancellation can easily be obtained from other

quotients of C2 − {(0, 0)} by finite subgroups of SL2(C). Let Y = S − {(0, 0, 0)}
where S ⊂ C3 is defined by

x2 + y2z + zc = 0, c > 3.

S ∼= C2/G where G is the binary dihedral group of order 4c. Define Xm,n(G)
analogously. Then:

1. Y and Xm,n(G) are not factorial, but ML(C[Xm,n(G)]) = C[Y ]. To see
this, let δ be locally nilpotent with kernel R, and K = qf(R). Then

K ⊗R C[Xm,n(G)] = K[s], δ(s) = 1.

If degs(z) > 0, then z(s) divides both x(s), y(s) contradicting xmu−ynv = 1.
Thus z ∈ R from which it follows that both x, y ∈ R.

2. Xm,n(G) ∼= Xm′,n′(G) if and only if (m, n) = (m′, n′). This follows from
arguments analogous to those in [11] and the fact that any automorphism
of C[Y ] sends

(x, y, z) 7−→ (µ1x, µ2y, µ3z)
for certain roots of unity µi.

3. C2 − {0} ×Y Xm,n → Xm,n(G) is an étale covering.

As a consequence of these examples we see that not all total spaces of algebraic
principal Ga bundles over Y can be isomorphic as varieties. This follows from
the fact that a finite subgroup of SL2(C) can act in essentially only one way on
C2 − {(0, 0)}.

The following question was raised by J-P. Furter at the International Confer-
ence on Polynomial Automorphisms in Hanoi:
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Problem 3.3. Let A and B be C algebras finite dimensional as C vector spaces
satisfying A[x] ∼= B[x]. Is A ∼= B?

In fact just assuming A and B to be artinian they must be isomorphic if
A[x] ∼= B[x]. This follows from a ”unique factorization” theorem for noetherian
algebras proved by Horst [14] and some straightforward localization arguments.
On the other hand, the following refinement of the question raised by P. Russell
has a negative answer:

Problem 3.4. With A and B artinian, in any isomorphism θ : A[x] ∼= B[x] must
θ(A) = B?

Indeed, let A be any algebra over the rational numbers admitting a non trivial
locally nilpotent derivation δ. (For example

A = C[x, y]/(x, y)2

δ = x
∂

∂y
.)

Then, as in the first section,

σ̂(a) ≡ exp(tδ)(a)

=
∑

i>0

ti

i!
δi(a)

defines an injective ring homomorphism σ̂ : A → A[t]. Arguing by induction on
the smallest power of δ that annihilates an element a ∈ A, it is easy to see that
A ⊂ σ̂(A)[t]. We therefore obtain an automorphism θ of A[t] via

θ|A = σ̂

θ(t) = t,

but θ(A) 6= A.
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