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ON THE METHODS TO CONSTRUCT UFD
COUNTEREXAMPLES TO A CANCELLATION PROBLEM

STEFAN MAUBACH

Abstract. In a previous paper [3] the author together with prof. dr. Finston
constructed a class of UFDs An,m where n,m ∈ N∗. These rings are all
stably equivalent (An,m[T ] ∼= Ap,q[T ] for all n,m, p, q) but are only isomorphic
themselves if (n,m) = (p, q). These examples are the first UFD examples
over a characteristically closed field satisfying this behavior. In this paper, we
describe the methods used in this article, and show that they are very general,
enabling the reader to construct many more such examples, based on the same
principles.

1. Introduction

This paper zooms in on what is essential in the example in the paper [3]. Let
us repeat a typical example of this paper: (we write R[1] for a polynomial ring in
one variable over R.)

Define R : C[x, y, z] := C[X, Y, Z]/(X2 + Y 3 + Z7), and let An,m := R[u, v] =
R[U, V ]/(xmU − ynV − 1) where n, m are positive integers. Now it is shown in
[3] that A

[1]
n,m

∼= A
[1]
n′ ,m′ for any positive integers n, m, n′, m′, while An,m

∼= An′ ,m′

implies that (n, m) = (n′, m′). This is a UFD-counterexample to the so-called
generalized cancellation problem, which states: does R[1] ∼= S [1] imply that R ∼= S?
The mentioned example is the “best worst” example yet, being the “nicest” rings
R and S for which the generalized cancellation problem does not hold. The big
conjecture at the moment is what nowadays is called “the” cancellation problem:
the case that S = C[n]. I.e. does R[1] ∼= C[n+1] imply R ∼= C[n]? (This problem is
still open for n > 4.)

However, it seems like in this type of counterexample to the generalized can-
cellation problem, the ring R can be chosen much more freely. For a ring R and
elements r, s ∈ R, write Ar,s := R[U, V ]/(rU − sV − 1). So we are looking for a
ring R and elements r, s, r′, s′ in R such that (1) Ar,s 6∼= Ar′,s′ , while A

[1]
r,s

∼= A
[1]
r′s′ ,

(2) Ar,s and Ar′s′ are C-algebra UFDs of dimension 3.
It is not our goal to classify which rings R have elements r, s, r′, s′ having the
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above properties, but we want to discuss properties that enable us to give ex-
amples. These properties are mainly for the part of showing that Ar,s is not
isomorphic to Ar′ ,s′ , except 2.6.

1.1. Notations. If R is a ring, then R[n] denotes the polynomial ring in n vari-
ables over R. We will use the letter k for a field of characteristic zero, and K for a
fixed algebraic closure. When X, Y, . . . are variables in a polynomial ring of ratio-
nal function field, denote by ∂X , ∂Y , . . . the derivative with respect to X, Y, . . ..
Very often, we will use small caps x, y, z, . . . for residue classes of X, Y, Z, . . .
modulo some ideal.

2. Useful properties of the rings R and Ar,s

2.1. R must be a UFD, and Ar,s must be a UFD. It is not true that R must
be a UFD to make Ar,s into a UFD. For example, if Rp,q := C[X, Y, Z]/(XpY −Zq)
and Ap,q,m,n = Rp,q[U, V ]/(xmU − ynV − 1) then one can show that Ap,q,m,n

∼=
C[X, Z, V,X−1] for any choice of p, q, m, n ∈ N∗, which is a UFD.(Proofsketch:
Ap,q,m,n can be seen as a subring of C[X, Z, V, X−1] where Y = ZqX−p and
U = (Y nV + 1)X−m. Define Ỹ := Xp−1Y, Ũ := Xm−1U . If q > n consider
Ũ − Ỹ V Xq−n, if q 6 n then X−1 = X q−nŨ − Ỹ V .

Even though R does not need to be a UFD, we require it as computations are
much easier (it might be dropped, though). In order to prove that a ring is a
UFD, it is sometimes necessary to compute the class group (see [5]). The class
field group tells one “how far” a ring is from being a UFD, as being a UFD is
equivalent to the class group being trivial, for integrally closed noetherian rings.
It is not always an easy task to do that, however. We will quote a few useful
tools:

Theorem 2.1. (Corollary 10.3 of [5]) Let A = A0 + A1 + . . . be a graded noe-
therian Krull domain such that A0 is a field. Let m = A1 + A2 + . . .. Then
Cl(A) ∼= Cl(Am), where Cl is the class group.

Theorem 2.2. ([6]) A local noetherian ring (A, m) with characteristic A/m =
0 and an isolated singularity is a UFD if its depth is > 3 and the embedding
codimension is 6 dim(A)− 3.

The latter two theorems can be used to show that the hypersurface Xd1
1 +

Xd2
2 + . . . + Xdn

n is factorial if n > 5 and any di ∈ N∗ (see for example [4] for
a proof). However, theorem 2.2 is not that useful here, if one wants to have a
2-dimensional UFD.

One of the more straightforward tools is

Theorem 2.3. (Nagata) Let A be a domain, and let x ∈ A be a prime element.
If A[x−1] is a UFD, then A is a UFD.

This is especially useful in showing that Ar,s is a UFD, depending on what r
and s are.
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Lemma 2.1. Let r or s be a prime element in R, assume R is a noetherian
UFD, and assume r and s share no common factor. Then Ar,s is a UFD.

Proof. Write r = r1r2 . . . rk where the ri are irreducible (which can be done since
R is noetherian) and prime (which follows since R is a UFD). We will proceed
by induction to k. If k = 0 then r is invertible and Ar,s

∼= R[V ].
Now rk is prime in Ar,s, since

Ar,s/(rk) ∼= R[U, V ]/(rk,−sV − 1) = (R/rk)[1/(s mod rk)]

which is a domain. Ar,s[r−1
k ] = R[r−1

k ][U, V ]/(rU − sV − 1), which is a UFD by
induction (as r ∈ R[r−1

k ] has fewer irreducible factors) and Nagata’s theorem.

2.2. R∗ = A∗. This also implies that r and s do not share a common factor other
than a unit, as this common factor will become invertible in Ar,s.

2.3. R is rigid, ML(Ar,s) = R. R being rigid is defined as LND(R) = {0}, i.e.
there are no nontrivial Ga-actions on the variety associated to R. An equivalent
definition is that the Makar-Limanov invariant is maximal, i.e.ML(R) = R. This
is not a necessary property for a counterexample to generalized cancellation, but
it is very useful in making sure that Ar,s has few automorphisms. Interesting
to note is that this is the point where we already rule out the possibility for
constructing a counterexample to “the” cancellation problem, as having few au-
tomorphisms contradicts being isomorphic to Cn. The reason that we require this
here, is that we will want to distinguish Ar,s and Ar′,s′ later on by computing
their automorphism groups. Also, this will automatically take care of the next
requirement.

In order to make a rigid ring, we bump into a strange phenomenon. It seems
like “almost any” ring is rigid, but it is in general hard to prove that a ring is rigid.
Note also that, through this difficulty, it is very dangerous to make statements as
“almost any” ring is rigid, as it is hard to prove any such statement. On a side
note, no examples are known of rigid rings R for which ML(R[n]) 6= ML(R), we
refer to [1, 2] for comments on this difficult problem (“losing rigidity”). This is
connected with the additional requirement that ML(Ar,s) = R: we have an ex-
tension A of the rigid ring R, and in general, ML(A) can be anything: equal to R,
strictly containing R (like being rigid itself), and we even cannot exclude ML(A)
being strictly contained in R. Note that, in this case, we do have ML(Ar,s) ⊆ R
as s∂u + r∂v ∈ LND(Ar,s), which has kernel R as can be easily checked. Here
we can view ∂u (resp. ∂v) as the restrictions to Ar,s of the partial derivatives
with respect to U (resp. V ) on Q(R)[U ] (resp. Q(R)[V ]) where Q(R) denotes
the quotient field of R.

There are a few ways of constructing and proving that a ring is rigid. A very
useful lemma is the following (Lemma 2.2 in [4]):

Lemma 2.2. Let D be a nonzero locally nilpotent derivation on a domain A
containing Q. Then A embeds into K[S] where K is some algebraically closed
field of characteristic zero, in such a way that D = ∂S on K[S].
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For example: one has a domain R := C[n]/(F ) where F ∈ C[n]. If there exists
some nontrivial D ∈ LND(R), then we can see the elements and also variables of
R as elements in K[S]. So, F = 0, but also 0 = ∂S(F ) =

∑
(∂SXi(S)) ∂F

∂Xi
. These

two equations can yield that each Xi(S) is constant in S. If that is the case, then
D is the zero map, and one has a contradiction. This is exploited in both [3] and
[4], using (an extension of) Mason’s Theorem.

Incidentally, one can also use this method to construct rings with a restricted
supply of LNDs. See [4] and [7].

2.4. R must be a characteristic subring of Ar,s. A characteristic subring is
a subring which stays invariant under all automorphisms. If ML(Ar,s) = R, then
Ar,s will have this property:

Lemma 2.3. The Makar-Limanov invariant of a ring B is a characteristic sub-
ring of B.

For a proof, see for example [3] lemma 4. This does imply that

Corollary 2.1. Any ϕ ∈ AutC(Ar,s) satisfies ϕ(R) = R.

Lemma 2.4. LND(Ar,s) = RE where E = s∂u + r∂v.

Proof. Since ML(Ar,s) = R, any D ∈ LND(Ar,s) will satisfy D(r) = D(s) = 0.
Therefore, 0 = D(ru − sv − 1) implies rD(u) = sD(v). Now here it is handy
if one knows Ar,s to be a UFD (otherwise the following may still be true, but
much more complicated) as we can conclude that D(u) = st, D(v) = rt for some
t ∈ Ar,s (since r, s share no common factor). So D = tE, and now we can use the
well-known result that if fD ∈ LND(B) for some ring B, then D ∈ LND(B)
and D(f) = 0. This implies D ∈ RE.

2.5. The restriction F : AutC(Ar,s) −→ AutC(R) must be surjective. Note
that this restriction F exists because of corollary 2.1. What we require here is
surjectivity. This property moves the problem to determining AutR(Ar,s).

2.6. (r, s) is a height 2 ideal of R. We will need in lemma 3.2 that (r, s) 6= R,
which is implied by this requirement, but we mainly need this requirement for
the following:

Lemma 2.5. If rad(r, s) = rad(r′, s′) then A
[1]
r,s

∼= A
[1]
r′,s′.

Proof. Let us write Xr,s for the variety associated to Ar,s. We have a Ga-action
on Ar,s (associated to s∂u + r∂v).

The Ga-action is locally trivial (in fact the basic open subsets DX(r) and DX(s)
cover Xr,s and satisfyDX(s) = DspecR(s)×C, DX(r) = DspecR(r)×C). Therefore
Xr,s is the total space of an algebraic principal Ga-bundle over spec(R)\V where
V is the set of all prime ideals containing (r, s). The same for Xr′,s′ . Now we
can take their fiber product over the base: Xr,s ×spec (R)\V Xr′,s′ . By standard
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arguments, since Xr,s and Xr′,s′ are affine, this is isomorphic to Xr,s × C as well
as Xr′,s′ × C. So A

[1]
r,s = O(Xr,s × C) = O(Xr′,s′ × C) = A

[1]
r′ ,s′ .

3. The R- automorphism group of As,t

If one has R, Ar,s satisfying everything in the previous section, then there are
some things which come for free. To be more precise, AutR(Ar,s) can be described,
and we can give a simple requirement such that Ar,s 6∼= Ar′,s′ .

Lemma 3.1. Let ϕ ∈ AutC(Ar,s). Then ϕ−1Eϕ = λE where λ ∈ R∗.

Proof. ϕ−1(LND(Ar,s))ϕ = LND(Ar,s), as can be easily proved since conjugating
an LND yields another LND (showing ⊆), and conjugating with ϕ−1 gives ⊇.
Therefore, RE = R(ϕ−1Eϕ) and the result follows.

Lemma 3.2. ϕ ∈ AutRAn,m if and only if ϕ is an R-homomorphism satisfying
ϕ(u, v) = (ts+u, tr+v) = exp(tE) for some t ∈ R. Consequently, AutRAn,m

∼=<
R, + > as groups.

Proof. We know by corollary 3.1 that ϕ−1(E)ϕ = λE for some λ ∈ R∗. De-
fine (F, G) := (ϕ(u), ϕ(v)) and denote this by ϕ(u, v). Similarly, E(F, G) :=
(E(F ), E(G)). Also, ϕ|R = Id.. So now

(λs, λr) = ϕ(λs, λr)
= ϕλE(u, v)
= ϕ(ϕ−1Eϕ)(u, v)
= E(F, G)
= (sFu + rFv, sGu + rGv)

where the subscript denotes partial derivative.
Let us consider the first equation,

λs = sFu + rFv .

Defining H := F − λu, we see that −sHu = rHv. By the following lemma 3.3
we see that H = p ∈ R, so

F = p + λu.

The second equation yields λr = sGu + rGv. Defining H := G − λv, yields
−rHv = sHu, which by the following lemma 3.3 yields H = q ∈ R and thus
G = q + λv. Now

0 = ϕ(ru− sv − 1)
= rϕ(u)− sϕ(v)− 1
= rF − sG − 1
= r(p + λu)− s(q + λv)− 1
= rp − sq + λ(ru− sv) − 1
= rp − sq + λ− 1.

Now due to 2.6, 1−λ = rp−sq are in a maximal ideal, hence λ = 1. Therefore,
rp = sq, and since r and s share no common factor, and R is a UFD, we get



220 STEFAN MAUBACH

that p = st and q = rt for some t ∈ R. Thus any automorphism must have the
given form. It is not difficult to check that maps of this form are well-defined
homomorphisms which are automorphisms.

Lemma 3.3. If H ∈ Ar,s such that −sHu = rHv, then H ∈ R.

Proof. We can find polynomials pi(v) ∈R[v] such that H =
∑d

i=0 piu
i for some

d ∈ N. Requiring that r does not divide coefficients of pi(v) if i > 1 (which we can
do as ru = sv + 1) we force the pi to be unique. The equation −ynHu = xmHv

yields
d−1∑

i=0

−(i + 1)spi+1u
i =

d∑

i=0

rpi,vu
i

where pi,v ≡ ∂pi
∂v . Substitute sv + 1 for ru to obtain a unique representation:

∑d−1
i=0 −(i + 1)spi+1u

i = rp0,v +
∑d−1

i=0 (sv + 1)pi+1,vu
i,

so
−sp1 = rp0,v + (sv + 1)p1,v

and
−(i + 1)spi+1 = (sv + 1)pi+1,v

for each i > 1.
Let i > 1 and assume that pi+1 has degree k with respect to v. Let α ∈ R be

the top coefficient of pi+1, seen as a polynomial in v. Then −(i+1)sα = skα, but
that gives a contradiction. So for each i > 1 : pi+1 = 0. This leaves the equation
0 = rp0,v which means that p0 ∈ R. Thus H = p0u

0 ∈ R.

Theorem 3.1. Let R, Ar,s, Ar′,s′ satisfy the requirements of the previous section.
Suppose that Ar,s

∼= Ar′,s′. Then there exists ϕ ∈ AutC(R) such that ϕ(r)R +
ϕ(s)R = r′R + s′R.

Proof. Let σ : Ar,s −→ Ar′,s′ be an automorphism. Since σ(ML(Ar,s) = ML(Ar′,s′)
we know that σ(R) = R. Since any automorphism of R is the restriction of an
automorphism of Ar′,s′ by 2.5 (this is exactly the spot where we use this require-
ment), we can compose σ by an appropriate automorphism ϕ of Ar′ ,s′ , and can
assume that Φ := σϕ is the identity on R. Write r̃ := ϕ(r), s̃ := ϕ(s).

Now set K := Q(R), the quotient field of R. Identify K ⊗R Ar̃,s̃ with K[v],
K ⊗R Ar′,s′ with K[v′], and note that Φ can be extended to a K-isomorphism
K[v] −→ K[v′]. So we can assume that Φ(v) = αv′ + β where α ∈ K∗, β ∈ K.

Of each ring Ar̃,s̃ and Ar′,s′ we know the set of locally nilpotent derivations. Let
LND(Ar̃,s̃) = RE and LND(Ar′,s′) = RE ′, where E(u) = s̃, E(v) = r̃, E ′(u′) =
s′, E ′(v′) = r′. Since Φ−1 LND(Ar′,s′)Φ = LND(Ar̃,s̃), we must have Φ−1E ′Φ =
λE where λ ∈ A∗

r̃,s̃ = R∗.
A computation shows that

λr̃ = λE(v) = Φ−1E ′Φ(v) = αr′

and thus α = λr̃/r′.
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Now αV ′ + β ∈ R[V ′, s′V ′+1
r′ ] (where we identified U = s′V ′+1

r′ ). It is not
that difficult to see that then there exist a, b, c ∈ R such that αV ′ + β = aV ′ +
b s′V ′+1

r′ + c. This means that α = a + b s′

r′ , thus λ r̃
r′ = a + b s′

r′ . This means that
λr̃ = ar′ + bs′, and since λ ∈ R∗ this means r̃ ∈ r′R + s′R. Of course, the same
method will also yield s̃ ∈ r′R + s′R, r′, s′ ∈ r̃R + s̃S, hence the ideals (r̃, s̃) and
(r′, s′) are equal. The theorem is proved.

4. Conclusions and new examples

Combining 2.5 and 3.1 it is possible to construct a wider class of UFD coun-
terexamples to generalized cancellation. To give a new example, take R a rigid
ring from [3], like R := C[X, Y, Z]/(X2+Y 3+Z7). (There are few rings known to
be rigid! That’s why we recycle this ring.) Now choose r := p(x), s = q(y), r′ :=
p̃(x), s′ = q̃(y) where p, q, p̃, q̃ are polynomials in one variable. Require that p, p̃
(resp. q, q̃) have the same zeroes (i.e. their radicals are the same), to make sure
that they are stably isomorphic. Possible choices are p = x(x − 1), q = y, p̃ =
x2(x − 1), q̃ = y, but also p = x, q = y, p̃ = 2x, q̃ = y. In [3] it is shown that
an automorphism of R sends (x, y, z) to (λx, µy, νz) where λ, µ, ν ∈ C. This can
be used to show that there exists no automorphism sending p to p̃ and q to q̃ in
general. In particular, the case p = x(x − 1), q = y, p̃ = x2(x − 1), q̃ = y gives a
new counterexample to generalized cancellation.

As mentioned before, it is not possible this way to find a counterexample to
“the” cancellation problem ( If A[1] = C[n], then A ∼= C[n−1]) as Ar,s can never be
a polynomial ring. However, the reader may wonder if some of the choices made
in section 2 can be improved upon.
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