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THE JACOBIAN VARIETY

RONEN PERETZ

1. Introduction

We consider a possible approach to the Jacobian conjecture. We define the
Jacobian variety of Cn of degree d, denoted by J(n, d), whose points parametrize
the set of all the n-Jacobian tuples of total degree at most d normalized to map 0 ∈
Cn onto itself. We use the term ”variety” as a not necessarily irreducible algebraic
set. The set Aut0,d(Cn) of all the polynomial automorphisms of Cn of total degree
at most d that map 0 onto itself corresponds to a subset of the Jacobian variety
of degree d. This subset is in fact a subvariety, i.e. it is a Zariski closed subset
of the variety. This might be significant to settle the Jacobian conjecture. For
instance, if the jacobian variety of degree d is irreducible, then it reduces the
problem to computing the dimensions of these two varieties. The conjecture is
true if and only if the two dimensions are equal. Otherwise, almost any point on
the Jacobian variety will serve as a counterexample to the Jacobian conjecture.
Using results of Magnus, Appelgate, Onishi and Nagata, [1, 2, 12, 14, 15, 16], we
show that if the Jacobian variety in two variables and of degree d = p a prime
integer or d = pq a product of two prime integers, has a dimension which equals
that of its subvariety Aut0,d(C2).

We turn to the computation of the dimension of Aut0,d(C2). Here the main
tool is the Jung-van der Kulk Theorem that gives us the structure of Aut0,d(C2)
as the amalgamated product of affine mappings and of de Jonquiéres mappings.
It also indicates the useful relation between the degrees of the factors in the
amalgamated product and the degree of the resulting automorphism, [11, 4].
The computation was performed in [5, 6].

Thus for future advance on the problem we will have to find a way to compute
the dimension of the Jacobian variety, or at least get a very good lower bound
for it.

The new results of our paper appear on sections 4 and 6 were we show that for a
natural number d which is a prime number or a product of two prime numbers the
dimensions of the Jacobian variety J(2, d) and of Aut0,d(C2) coincide. Moreover,
if d is also at least 4 then J(2, d) must be reducible.
Hence S(J(2, d)) the singular locus of the variety J(2, d) is non-empty, and we
prove that it contains SL2(C).
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The ideas described above have origins in the work of Jean-Philippe Furter.
In his beautiful paper [5] he proved that Aut0,d(C2) is irreducible if and only if
d 6 3. He also computed the number of irreducible components of Aut0,d(C2)
when d 6 9.

Going further to the union of all the Jacobian varieties of Cn,

J(n) =
∞⋃

d=1

J(n, d),

one arrives at an interesting object known as an ind-affine scheme. These struc-
tures were discussed by Igor Shafarevich,[18, 19]. In [8], Tatsuji Kambayashi
outlined another approach to the Jacobian Conjecture based on these infinite
dimensional algebraic varieties. This motivated him to investigate these objects
in [9, 10]. One open challenge here is to give a good definition of the regular
points of these infinite dimensional varieties. The definition given by Shafarevich
in [18, 19], turned out not to be satisfactory. An example of Burt Totaro, [9],
demonstrates this.

2. Generic polynomials and the Jacobian varieties

We consider C[X1, . . . , Xn], the C-algebra of polynomials in the n indetermi-
nates X1, . . . , Xn, n ∈ Z+. A typical element (polynomial) in C[X1, . . . , Xn] has
the form

P (X1, . . . , Xn) =
∑

i1+...+in6d

αi1 ,...,inX
i1
1 . . .X in

n .

Here αi1 ,...,in ∈ C are the coefficients of P . If there exist i1, . . . , in such that
i1 + . . .+ in = d and αi1,...,in 6= 0 we say that the total degree of P is d and we
write degP = d. We will sometimes denote the sequence {X1, . . . , Xn} by X.

Remark 1. The number of multi-indices i1, . . . , in such that i1 + . . .+ in = j
equals (

n− 1 + j
j

)
=

(
n − 1 + j
n− 1

)
.

We conclude that if degP = d, then the total number of its coefficients is

Nd =
d∑

j=0

(
n− 1 + j

j

)
=

d∑

j=0

(
n − 1 + j
n− 1

)
.

We should have indicated the dependency of Nd also on n. However, in our
applications n will be fixed and so we ignore that.

Definition 2.1. A generic polynomial in the n indeterminates X1, . . . , Xn and
of a total degree at most d has the form

Q =
∑

i1+...+in6d

ai1 ,...,inX
i1
1 . . .X in

n ,

where ai1 ,...,in are Nd new indeterminates.
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Remark 2. We formally have

Q ∈ C[X1, . . . , Xn; ai1,...,in | i1 + . . .+ in 6 d],

where the X-degree, degX Q = d, and where Q is a linear combination of ai =
ai1,...,in over the X-monomials X i = X i1

1 . . .X in
n .

A polynomial mapping over C is an n-tuple of polynomials over C. Thus it is
F = (P1, . . . , Pn) ∈ C[X1, . . . , Xn]n.

Definition 2.2. A generic polynomial mapping of degree d is an n-tuple of
generic polynomials in the indeterminates X1, . . . , Xn and of degree (at most)
d. Thus it is

G = (
∑

i1+...+in6d

a
(1)
i1...in

X i1
1 . . .X in

n , . . . ,
∑

i1+...+in6d

a
(n)
i1 ...in

X i1
1 . . .X in

n ).

The total number of (generic) coefficients of G is n ·Nd. The generic Jacobian
matrix is

JG =
(
∂Gi

∂Xj

)
i = 1, . . . , n
j = 1, . . . , n

where Gk =
∑

i1+...+in6d a
(k)
i1...in

X i1
1 . . .X in

n . The determinant of JG, det JG, is a
polynomial of degree n(d− 1) in X. The coefficients of detJG are all multi-linear
of degree n in the a(k)

i . The number of the coefficients of det JG is thus, Nn(d−1).

Definition 2.3. The Jacobian condition is the equation det JG ≡ 1, where JG is
the generic Jacobian matrix and where we think of detJG as on a polynomial in
X.

Remark 3. The Jacobian condition gives a system of Nn(d−1) equations in the

n(Nd−1) indeterminates a(k)
i1 ,...,in

, 0 < i1 + . . .+ in 6 d, 1 6 k 6 n. Each equation

is homogeneous multi-linear of degree n in the a(k)
i except for the single equation

∣∣∣∣∣∣∣∣∣∣

a
(1)
10...0 a

(1)
010...0 . . . a

(1)
0...01

a
(2)
10...0 a

(2)
010...0 . . . a

(2)
0...01

...
... . . .

...
a

(n)
10...0 a

(n)
010...0 . . . a

(n)
0...01

∣∣∣∣∣∣∣∣∣∣

= 1.

The following sets of polynomial mappings will be useful.

Definition 2.4.

et0,d(Cn) := {G = (G1, . . . , Gn) ∈ C[X ]| detJG(X) ≡ 1, G(0) = 0, degG 6 d}.
Aut0,d(Cn) is the set of all the invertible polynomial mappings on Cn that lie in
et0,d(Cn).

et0(Cn) :=
∞⋃

d=1

et0,d(Cn), Aut0(Cn) =
∞⋃

d=1

Aut0,d(Cn).
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The étale non-proper mappings are the following

np0(Cn) = et0(Cn)− Aut0(Cn),

np0,d(Cn) = et0,d(Cn)− Aut0,d(Cn).

Remark 4. The number of defining equations in the Jacobian condition equals
Nn(d−1). The number of unknowns in these equations is n · (Nd − 1). Since we
have n · (Nd − 1) << Nn(d−1) the system is overdetermined and so initially we
expect few solutions. However we clearly have the following,

Proposition 2.1. For any values n, d ∈ Z+ the solution set of the Jacobian
condition contains the sets of the coefficients of all the mappings in Aut0,d(Cn).

Definition 2.5. The set of all the solutions of the Jacobian condition, det JG ≡ 1
for generic mappings that map 0 onto itself and of degree at most d will be
denoted by J(n, d). It will be called the Jacobian variety of degree d. We will
denote J(n) = ∪∞

d=1J(n, d) and will call J(n) the Jacobian variety.

Remark 5. Calling J(n, d) an algebraic variety is fully justified (it is the zero
set of finitely many polynomial equations). Not so with J(n)!

Remark 6. As usual we can endow J(n, d) with two different topologies, the
complex topology and the Zariski topology. Also we should note that our de-
scription of J(n, d) uses an embedding in Cn(Nd−1).

Remark 7. The Jacobian conjecture states that et0,d(Cn) = Aut0,d(Cn) for all
n, d ∈ Z+. Alternatively, it states that np0,d(Cn) = ∅.

Remark 8. We have monotonicity of the following two d-sequences

J(n, d) ⊂ J(n, d+ 1), Aut0,d(Cn) ⊂ Aut0,d+1(Cn).

In this paper ⊂ means strict inclusion.

Here are a few natural questions about Jacobian varieties:

1. What are dim J(n, d) and dim Aut0,d(Cn)? (We soon will show that Aut0,d(Cn)
can be represented as a sub-variety of J(n, d)).

2. Are the J(n, d) connected in both topologies?

3. Are the J(n, d) non-singular?

4. Are the J(n, d) irreducible?

Regarding question 2 we have

Proposition 2.2. ([9]) For any n, d ∈ Z+ the algebraic varieties J(n, d) are
connected both in the complex and in the Zariski topologies.
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Proof. The space SLn(C) is connected in the complex topology. It can be re-
garded as a subspace of J(n, d) for any d. Let P ∈ J(n, d) represent F ∈ et0,d(Cn).
Then JF (0) ∈ SLn(C). Let P0 be the point in J(n, d) that represents JF (0). Let
F = (F1, . . . , Fn) ∈ C[X]n. We have detJF (X) ≡ 1. We take a parameter t ∈ C×

and define
Ft(X) =

1
t
F (tX).

Then by the chain rule det JFt(X) ≡ 1. So for each t we have Ft ∈ et0,d(Cn). Let
LF be the linear part of F . Then P0 represents LF . The following two identities
are clear:

Ft=1 = F, Ft=0 = lim
t→0

Ft = LF .

Hence we found a path inside et0,d(Cn) that joins F to LF . Thus there is a path
inside J(n, d) that joins P to P0. This proves that J(n, d) is connected in the
complex topology.
Finally, we recall that if X is an algebraic variety over C and if Xan is the
associated complex space, then X is connected in the Zariski topology if and only
if Xan is connected. This is a result of Serre, [17]. It concludes the proof.

Remark 9. As indicated in the introduction answering questions 1 and 3 is re-
lated to settling the Jacobian conjecture. See [3]. Thus it makes sense to recall
few more results of Serre from [17]:

dimX = dimXan.

X is irreducible if and only if Xan is irreducible.

X is non-singular if and only if Xan is a complex manifold.

By fixing an order on the monomials in X we created a canonical identification
between the mappings in et0,d(Cn) and the points of the Jacobian variety of
degree d, J(n, d). Let us denote this canonical idenification by

C(n, d) : et0,d(Cn) → J(n, d).

3. Closedness of the sub-variety of the automorphisms

Theorem 3.1. ([3, 5, 8]) For any n, d ∈ Z+, the set C(n, d)(Aut0,d(Cn)) is
Zariski closed in the algebraic variety J(n, d).

Proof. If F ∈ et0,d(Cn) then the local inverse F−1 at 0 is given by a well known
formal power series expansion, the so called Abhayankar formula. Clearly F ∈
Aut0,d(Cn) if and only if this expansion of the inverse has only finitely many
non-zero coefficients. If this is the case then deg F−1 6 (degF )n−1 by Gabber,
[3]. There exists a number w(n, d) depending on n and d only such that if all the
coefficients of F−1 that correspond to monomials in F−1 of degrees greater than
(degF )n−1 and smaller than w(n, d) vanish, then in fact F−1 is polynomial. This
follows by results of D. Wright on his tree expansions.
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Hence we can characterize all the points of C(n, d)(Aut0,d(Cn)) by finitely many
polynomial equations.

A few remarks are in order.

Remark 10. We could have avoided the use of Wright’s result as follows: by
Gabber’s degree bound, Aut0,d(Cn) is a subset of the ideal that is generated by
the coefficients of F−1 that correspond to monomials of degree greater than dn−1.
By Hilbert’s finite basis theorem this ideal is finitely generated and hence we are
done.

Remark 11. A different approach, is to write down a finite set of defining equa-
tions for C(n, d)(Aut0,d(Cn)) in J(n, d) using the resultant reformulation of the
Jacobian conjecture.
Another way to see the closedness of C(n, d)(Aut0,d(Cn)) originates in elimi-
nation theory, i.e. by considering systems of polynomial equations of the form
F ◦G(X) = X for the coefficients of the polynomials in F . The fact that there ex-
ists such a G of a bounded degree says that the coefficients of F are the solutions
of some system of polynomial equations.

One conclusion of Theorem 3.1 is that C(n, d)(np0,d(Cn)) is Zariski open in
J(n, d). So if np0,d(Cn) 6= ∅, and if the variety J(n, d) is an irreducible variety,
then np0,d(Cn) is a huge subset of et0,d(Cn). In other words almost any étale
mapping will serve as a counter example to the Jacobian conjecture.

We can now state a few claims that imply the Jacobian conjecture. For exam-
ple, to show that the Jacobian conjecture holds true for the parameters (n, d) it
is sufficient to show that C(n, d)(Aut0,d(Cn)) contains an interior point in J(n, d)
relative to the complex topology and that J(n, d) is an irreducible variety. The
first half of the condition could be phrased in terms of mappings as follows:

Find F ∈ Aut0,d(Cn) such that ∃ ε > 0 so that if ||G − F ||2 < ε and G ∈
et0,d(Cn), i.e. detJG ≡ 1, then G ∈ Aut0,d(Cn).

This formulation is of the type of the Hurwitz Theorem on schlicht functions
of one complex variable. Though interesting, there is no reason to expect that it
will not be hard to prove that formulation.

Thus we are naturally led to consider a different approach. Namely, try to
answer question 1 in the list of questions that comes after Remark 8. In view of
Theorem 3.1 we conclude that the Jacobian conjecture is true for the parameters
(n, d) if J(n, d) is irreducible and

dimC(n, d)(Aut0,d(Cn)) = dimJ(n, d).

The Jacobian conjecture is false for the parameters (n, d) if

dimC(n, d)(Aut0,d(Cn)) < dimJ(n, d).

So that even if exact computations of these two dimensions are difficult, it might
suffice to compute a good upper bound for dimC(n, d)(Aut0,d(Cn)) and a good
lower bound for dimJ(n, d). If the first is smaller than the second it will show
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that the Jacobian conjecture is false for the parameters (n, d). One might hope
to get a strict inequality using asymptotic estimates on these bounds by letting
n or d tend to ∞.

4. The variety J(2, d) for d a product of at most two prime integers

Theorem 4.1. (1) If d = p is a prime integer or d = pq is a product of two
prime integers, then dim J(2, d) = dimC(2, d)(Aut0,d(C2)).
(2) If d = p is a prime integer or d = pq is a product of two prime integers, and
d > 4, then J(2, d) is reducible.

Proof. First we note that (1) ⇒ (2). For C(2, d)(Aut0,d(C2)) is an affine sub-
variety of J(2, d) (by Theorem 3.1) and by (1) the two varieties have equal di-
mension. If the super-variety J(2, d) is irreducible then the two varieties coincide.
Thus Aut0,d(C2) is irreducible. Hence by a result of Jean-Philippe Furter, [5],
d 6 3.
Thus we only need to prove (1). The key is to use a classical result of Magnus,
Appelgate, Onishi and Nagata, [1, 12, 14, 15, 16] also [2] is related. This result
is stated in the book [4] on page 255, as follows:

Corollary. If F = (P,Q) satisfies det JF ∈ C∗ and degP or degQ is a product
of at most two prime numbers, then F is invertible over k.

We now complete the proof of (1) as follows. Let us denote the following sets

Aut0,=j(C2) = {F ∈ Aut0(C2) | degF = j},

J(2,= j) = {α ∈ J(2) |α parameterizes F ∈ C[X, Y ]2, degF = j}.

The set J(2,= d) is Zariski open in J(2, d). The reason is that J(2,= d) is de-
termined in J(2, d) by 2(d+1) polynomial non-equalities, namely the statements
that at least one of the coefficients of the monomials of degree d in P or in Q is
not zero (where F = (P,Q)). Similarly, the set C(2, d)(Aut0,=d(C2)) is Zariski
open in C(2, d)(Aut0,d(C2)). Hence, we get the (topological) dimension equalities

dimJ(2,= d) = dimJ(2, d),

and

dimC(2, d)(Aut0,=d(C2)) = dimC(2, d)(Aut0,d(C2)).

If d = p or d = pq (p, q are primes), then the corollary quoted above from [4]
implies that

J(2,= d) = C(2, d)(Aut0,=d(C2)),

and we conclude that dim J(2, d) = dimC(2, d)(Aut0,d(C2)).
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5. Dimension computations

The computation for Aut0,d(C2) was done by Jean-Philippe Furter, [5] (see
also Fridland-Milnor, [6]). The result is

Theorem 5.1. ([5]) If d > 1, then

dimC(2, d)(Aut0,d(C2)) = d+ 4.

Proof. We only need to recall that our Aut0,d(C2) is normalized so that each map
takes 0 to itself and has a determinant of its Jacobian equals 1. Thus we get the
result from Proposition 10, on page 619 of [5].

Thus we are left with the task of evaluating dim J(2, d) for values of d that are
not prime integers or products of two such primes. We record the fact that

Corollary 5.1. (1) If d 6 100 then dim J(2, d) = d+ 4.
(2) If ∃ d ∈ Z+ such that dim J(2, d) > d + 4, then the Jacobian conjecture is

false and there exist counterexamples of degree d.

Proof. (1) Follows by Theorem 5.1 and by [13] and (2) is a direct consequence of
Theorem 5.1 and Theorem 3.1.

6. Normality, singularity and irreducibility of J(2, d)

Let d > 4 be a prime integer or a product of two prime integers. Then by part
(2) of Theorem 4.1 it follows that J(2, d) must be reducible. If J(2, d) is normal,
i.e. Ĵ(2, d) = J(2, d) then by the theorem on page 168 of [7] it follows that
J(2, d) is not connected (part (vii) of that theorem). This, however, contradicts
Proposition 2.15. We conclude that Ĵ(2, d) 6= J(2, d), i.e. that J(2, d) is not
normal.

By the Theorem of Oka, on page 128 of [7]: The set N(X) of all non normal
points of a reduced complex space X is an analytic subset ofX which is contained
in the singular locus S(X) of X .

Taking X = J(2, d), it follows that J(2, d) must have singular points, i.e.
S(J(2, d)) 6= ∅ because N(J(2, d)) 6= ∅. This, of course follows directly also from
the reducibility of J(2, d).

Let us summarize what we have proved so far.

Theorem 6.1. Let d > 4 be a prime integer or a product of two prime integers.
Then J(2, d) is not a normal complex space and in particular it has a non empty
singular set of points. That is

∅ 6= N(J(2, d)) ⊆ S(J(2, d)).

Moreover, J(2, d) is reducible.
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Let us assume that F ∈ et0,d(C2) is such that C(2, d)(F ) ∈ S(J(2, d)). Let
M ∈ GL2(C). Conjugation of F by M is to be understood in the usual way, that
is, if F (X, Y ) = (P (X, Y ), Q(X, Y )) ∈ C[X, Y ]2 then

(M−1 ◦ F ◦M)(X, Y ) = (M−1(F ((M
(
X
Y

)
)t)t))t.

In other words, if

M =
(
a b
c d

)
, M−1 =

(
α β
γ δ

)
,

then

(M−1 ◦ F ◦M)(X, Y ) = (αP (aX + bY, cX + dY ) + βQ(aX + bY, cX + dY ),

γP (aX + bY, cX + dY ) + δQ(aX + bY, cX + dY )).

Lemma 6.1. Let F ∈ et0,d(C2) and M ∈ GL2(C). Then the following are equiv-
alent:

(1) C(2, d)(F ) ∈ S(J(2, d)).
(2) C(2, d)(M−1 ◦ F ◦M) ∈ S(J(2, d)).

Proof. The following mapping

φM : J(2, d) → J(2, d),

φM(C(2, d)(G)) = C(2, d)(M−1 ◦G ◦M) (G ∈ et0,d(C2)),
is clearly a diffeomorphism and hence preserves the singular locus of J(2, d).

An immediate consequence is the following.

Theorem 6.2. Let d > 4 be a prime integer or a product of two prime integers.
Then S(J(2, d))∩ SL2(C) = SL2(C).

Proof. By Theorem 6.1 we have S(J(2, d)) 6= ∅, say G ∈ et0,d(C2) satisfies
C(2, d)(G) ∈ S(J(2, d)). Let t ∈ C×, and let

Gt(X, Y ) =
1
t
G(tX, tY ),

as usual. By Lemma 6.1 we have C(2, d)(Gt) ∈ S(J(2, d)). By Theorem 2 on
page 117 of [7] S(J(2, d)) is an analytic set in J(2, d). In particular S(J(2, d))
is closed in J(2, d). If L(G) is the linear part of G then L(G) ∈ SL2(C). Also
limt→0Gt = L(G). Hence L(G) ∈ S(J(2, d)) ∩ SL2(C). Thus we see that any
element of SL2(C) which equals the linear part of a G ∈ et0,d(C2) which is singular
(i.e. C(2, d)(G) ∈ S(J(2, d))) must be a singular point of J(2, d). However, we
note that ∀M ∈ SL2(C) the mapping

ψM : J(2, d) → J(2, d),

ψM(C(2, d)(H)) = C(2, d)(H ◦M) (H ∈ et0,d(C2)),
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is a diffeomorphism and hence preserves S(J(2, d)). Thus any element of SL2(C)
is the linear part of some singular G ∈ et0,d(C2). Hence, indeed SL2(C) ⊆
S(J(2, d)).

We point out that the mappings ψM and φM that were used above are special
cases of the following family of mappings

φM1,M2 : J(n, d) → J(n, d),

φM1,M2(C(n, d)(G)) = C(n, d)(M1 ◦G ◦M2), G ∈ et0,d(Cn),
where M1, M2 are fixed elements of SLn(C). Just like Lemma 6.1 we have the
following

Lemma 6.2. Let F ∈ et0,d(Cn) and M1,M2 ∈ SLn(C). Then the following are
equivalent:

(1) C(n, d)(F ) ∈ S(J(n, d)).
(2) φM1,M2(C(n, d)(F )) ∈ S(J(n, d)).

Proof. The mapping φM1 ,M2 : J(n, d) → J(n, d) is clearly a diffeomorphism and
hence preserves the singular loci of J(n, d).

We would like to point out at a different type of a mapping which is a dif-
feomorphism and hence preserves the singular loci. There are two differences
between the new mapping and the mappings φM1,M2 . The first is that we will
now work again in dimension n = 2. The second difference is that now Aut0,d(C2)
will replace et0,d(C2).

Lemma 6.3. The mapping

inv : Aut0,d(C2) → Aut0,d(C2),

inv(F ) = F−1,

is a diffeomorphism.

Proof. The only thing we need to show is that inv(Aut0,d(C2)) = Aut0,d(C2).
In general, if G ∈ Aut0(Cn) then we have the degree inequality degG−1 6
(degG)n−1. For n = 2 this implies that degG−1 = degG from which the re-
sult follows.

We end by posing the following obvious question:
What is S(J(2, d)) ?
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