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AN ESTIMATION OF THE NUMBER OF BIFURCATION
VALUES FOR REAL POLYNOMIALS

HÀ HUY VUI AND PHA. M TIẾN SO
.
N

Abstract. Let f : Rn → R be a polynomial of degree d with only isolated
complex critical points. It is shown that the set of bifurcation values of f is
contained in a set which has at most (d − 1)n points. The proof of this result
is done in such a way that all points of the last set can be explicitly calculated.
As a consequence, we obtain a finite set containing the global infimum value
of a bounded below polynomial.

1. Introduction

Let f : Rn → R be a polynomial of degree d. By a result of R. Thom [27], there
exists a finite minimal set of bifurcation values A(f) of points of R such that the
restriction

f : Rn \ f−1(A(f)) → R \A(f)
is a C∞-trivial fibration. The set of bifurcation values A(f) consists of (i) the
set of affine critical values Af (f) of f, and (ii) the set of so called critical values,
corresponding to the singularities at infinity of f. The exact definition of the
latter is the following.

Definition 1.1. (see [18]) A value t0 ∈ R is called regular at infinity of f if there
exist a compact set K ⊂ Rn and a real number δ > 0 such that the restriction

f : f−1(Dδ(t0)) \K → Dδ(t0) := {t ∈ R| |t− t0| < δ}
is a C∞-trivial fibration. If t0 is not a regular value at infinity of f , then it is
called a critical value, corresponding to the singularities at infinity of f.

Thus, denoting by A∞(f) the set of all critical values corresponding to the
singularities at infinity of f, we have (see, for example, [4], [19])

A(f) = Af (f) ∪A∞(f).

In the natural way two fundamental questions appear: how to determine the set
A(f) and how to estimate the number of points of this set.

In general, it is difficult to compute the set of bifurcation values of f unless
n = 2 (see [28], [2]). Moreover, for n > 2, there is no characterization of the
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critical values, corresponding to the singularities at infinity. In order to examine
the set A∞(f) one often constructs larger sets in which it is easier to study.
There is a relation between such sets and the asymptotic growth at infinity of
the gradient of f. For instance, let

K̃∞(f) := {t ∈ R | there exists a sequence xk → ∞ such that

f(xk) → t and ‖gradf(xk)‖ → 0}.

If t 6∈ K̃∞(f), then we say that f satisfies Fedoryuk’s condition at t (see [3]). If
one looks for a weaker condition then it is natural to consider the set

K∞(f) := {t ∈ R | there exists a sequence xk → ∞ such that

f(xk) → t and ‖xk‖‖gradf(xk)‖ → 0}.

Clearly, K∞(f) ⊂ K̃∞(f). (It is worth noting that the sets K̃∞(f) and K∞(f)
may also be defined for complex polynomials [8].) If t 6∈ K∞(f) then it is usual to
say that f satisfies Malgrange’s condition at t (see [15], [23]). Let K̃(f) := Af (f)∪
K̃∞(f) and K(f) := Af(f) ∪K∞(f). Then it was proved (see, for example, [5],
[6], [19]) that A∞(f) ⊂ K∞(f) ⊂ K̃∞(f). In particular, A(f) ⊂ K(f) ⊂ K̃(f).
Moreover, according to the results of H. V. Hà (see [4], [5], [6]), for polynomials
of two complex variables we have the equations A∞(f) = K∞(f) = K̃∞(f) and
A(f) = Af (f)∪K̃∞(f). In [9] (see also [4], [14]) the author gave a sharp estimation
of the number #A(f), provided that #K̃∞(f) < ∞, in terms of the degree
d := deg f of f. That is if #K̃∞(f) <∞, then #A(f) 6 (d− 1)n. Unfortunately,
it may happen that #K̃∞(f) = ∞ (see [20, Example 1.11], [8, Example 2.1]).
Shortly thereafter, Z. Jelonek and K. Kurdyka (see [10]) improved results of
Z. Jelonek and obtained the following estimation #A(f) < (d−1)n +ndn−2. The
authors also show that the sets K̃(f) and K(f) can be computed effectively. Here
“effectively” means that there is an algorithm (based on Gröbner basis) which
works actually on a computer.

The first aim of this paper is to give an explicitly constructed set in which its
cardinality is less than or equal to (d− 1)n and it contains the set of bifurcation
values of f.More precisely, we denote by fC the complexification of the polynomial
f, and let Af (fC) be the set of critical values of fC. We will prove the following.

Theorem 1.1. Let f : Rn → R be a polynomial of degree d with only isolated
complex critical points. Then there exists a finite set T∞(fC) ⊂ C such that the
following statements hold

(i) A(f) ⊂ Af (f)∪ (T∞(fC) ∩ R);
(ii) (T∞(fC) ∩ R) ⊂ K∞(f); and
(iii) #Af(fC) + #T∞(fC) 6 (d− 1)n.

Observe that, in view of [10, Example 2.1]), our estimate is the best possible
result: For every n > 0 and d > 0 there is a polynomial f : Rn → R of degree d
such that #A(f) = (d− 1)n.
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Moreover, emphasis is made on being able to calculate all points of the set
Af (fC) ∪ T∞(fC). Our method is actually different from the argument of the
previous authors: the proof uses only the homotopy continuation methods as
a tool (see, for example, [31], [30], [12], [13]). Namely, we can define a trivial
system:

gradρC(x) = 0
with known solution set, where ρ : Rn → R is a polynomial function and ρC is its
complexification. We then follow the curves in the variable s which make up the
solution set of

H(x, s) := sgradfC(x) + η(1− s)gradρC(x) = 0

for some nonzero parameter η ∈ C. More precisely, if ρ is chosen correctly, the
following three properties hold:

(T) (Triviality) The set of critical points of ρC is known.
(S) (Smoothness) The set of solutions of H(x, s) = 0 for 0 6 s < 1 consists of a

finite number of smooth paths, each parametrized by s in [0, 1).
(A) (Accessibility) Every isolated critical point of fC is reached by some path

originating at s = 0; and consequently, the set of affine critical values of f
is computed. It follows that this path starts at an isolated critical point of
ρC.

When these three properties hold, the solution paths can be followed from the
initial points (known because of Property (T)) at s = 0 to all critical points of
the original polynomial f at s = 1, using standard numerical techniques.

It is important to realize that even though properties (T), (S) and (A) imply
that each critical point of fC will lie at the end of a solution path, it is also
consistent with these properties that some of the paths may diverge to infinity
as the parameter s approaches 1. Then it is shown that for any t ∈ A∞(f) there
exists such a path on which f tends to t when s approaches 1. (The smoothness
property rules this out for s→ s0 < 1.)

Another reason, which motivates our research work, is the following basic prob-
lem: Given a polynomial function f : Rn → R which is bounded from below on
Rn, find the global infimum

f∗ := inf{f(x) | x ∈ Rn}.

If a polynomial f attains a minimum in x∗ ∈ Rn, i.e., f(x∗) 6 f(x) for all
x ∈ Rn, then the gradient of f vanishes at x∗; in other words, f∗ = f(x∗) is a
critical value of f. However, there are polynomials that are bounded from below
on Rn and yet do not attain a minimum on Rn. The simplest example is perhaps

f(x, y) := (1− xy)2 + x2 ∈ R[x, y]

for which we have f > 0 on R2 but f∗ = 0 since limt→0 f(t, 1/t) = 0.
There are at least three techniques to compute the value f∗ : Gröbner bases

and eigenvalues, Resultants and discriminants, and Homotopy methods. Exact
methods can be found in [7], [29] and [22]. These algorithms work when the
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given polynomial has a minimum, without considering an approach for finding
the infimum.

Different approaches, based on solving a certain convex relaxation of the prob-
lem, can be found in [25], [11], [26], [21], [22]. Such methods seem to have better
computational properties. However, in general, they only guarantee finding a
lower bound of the infimum.

The second aim of this note is to investigate the general case: the polynomial
f may not attain its infimum. We will prove that if a polynomial f is bounded
from below, then f∗ ∈ Af(f) ∪ (T∞(fC) ∩ R). Moreover, since the degree of f is
even, it is very easy to choose ρ that satisfies the three properties (T), (S) and
(A). Consequently, as mentioned above, we can effectively compute a finite set
containing all critical values and the infimum value of f.

The paper is organized as follows. We give a proof of the main theorem in
Section 2. The problem of computing the global infimum of a real polynomial f
on Rn is considered in Section 3. Finally, computations are given in Section 4.

2. Proof of Theorem 1.1

Let f : Rn → R be a polynomial of degree d := deg f.
Theorem 1.1 is clear in the case d = 1. Hence, one has only to prove the

theorem when d > 1.
We first need some definitions. Let m be the greatest integer 6 d/2. Then we

may introduce on Rn the “control function”

ρ(x) := x2m
1 + x2m

2 + · · ·+ x2m
n + g(x1, x2, . . . , xn),

where g is a polynomial of degree < 2m. We have

Lemma 2.1. (i) The polynomial function ρ : Rn → R is proper and bounded from
below.

(ii) The polynomial mapping gradρ : Rn → Rn is proper.
(iii) There exists a positive constant c such that the following inequality holds

‖gradρ(x)‖‖x‖ 6 cρ(x) for ‖x‖ � 1.

Proof. The statements (i) and (ii) are clear from the definition.
Assume to the contrary that (iii) does not hold. Then, by the Curve Selection

Lemma at infinity (see [16], [17]), there exists a real analytic curve ϕ(τ), τ ∈ (0, ε],
such that

(a1) limτ→0 ‖ϕ(τ)‖ = ∞; and
(a2) ‖gradρ[ϕ(τ)]‖‖ϕ(τ)‖� ρ[ϕ(τ)] as τ → 0.

We can write

‖ϕ(τ)‖ = aτα + higher order terms in τ (a 6= 0).
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It follows from (a1) that α < 0. Moreover, it is not difficult to verify, asymptoti-
cally as τ → 0, that

ρ[ϕ(τ)] ' τ2mα,

‖gradρ[ϕ(τ)]‖ ' τ (2m−1)α.

Therefore

‖gradρ[ϕ(τ)]‖‖ϕ(τ)‖ ' τ2mα ' ρ[ϕ(τ)],

which contradicts (a2).

Let fC (resp., ρC) be the complexification of f (resp., ρ). Consider the homo-
topy mapping H : Cn × P → C defined as follows

H(x, λ) := λ1gradfC(x) + λ2gradρC(x) with λ := (λ1 : λ2) ∈ P.

Lemma 2.2. There exists a finite set E ⊂ P such that the natural projection

π : {(x, λ) ∈ Cn × P | H(x, λ) = 0} − π−1(E) → P − E, (x, λ) 7→ λ,

is a finite sheeted covering mapping.

Proof. We introduce the set

X := {(x, λ) ∈ Cn × P | H(x, λ) = 0}.
Then dimX = 1. Let X0 be the set of nonsingular points of X. By an algebraic
version of Sard’s theorem (see [1]), the set Y of critical values of the restriction of
π on X0 is finite. Then it is not hard to verify that the set E := Y ∪ π(X −X0)
is finite and that π is a fibration outside E. This completes the proof of the
lemma.

By Lemma 2.2, for each λ 6∈ E the system of equations

H(x, λ) = 0

consists of a fixed number of solutions, say µ. By Bezout’s theorem,

(2.1) µ 6 (d− 1)n.

We now consider the homotopy equation

H(x, s) := sgradfC(x) + η(1− s)gradρC(x) for x ∈ Cn, s ∈ R
for some nonzero parameter η ∈ C. Obviously,

H(x, s) = H(x, (s : η(1− s)), s ∈ R.
An immediate consequence of this representation is

Lemma 2.3. For almost each parameter η ∈ C on the unit circle, there are µ
analytic functions

ϕk : {s ∈ R | s 6= 1} → Cn, s→ ϕk(s), k = 1, 2, . . . , µ,

such that

(i) H(ϕk(s), s) = 0, k = 1, 2, . . . , µ, for s 6= 1; and
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(ii) for any critical point x of fC there is k such that x = lims→1 ϕk(s).

Proof. The claim follows very closely along the lines of the proof of [30, Theorem
1] (see also [31]). We will leave to the reader to verify these facts.

We denote by Af(fC) the set of critical values of fC and let T∞(fC) be the set of
all finite limit values lims→1 fC[ϕk(s)] with k ∈ {1, 2, . . . , µ} as lims→1 ‖ϕk(s)‖ =
∞. Clearly,

(2.2) #Af (C) + #T∞(C) 6 µ.

We need the following lemma.

Lemma 2.4. If t0 6∈ T∞(fC) ∩ R, then the vectors gradf(x) and gradρ(x) are
linearly independent for all x sufficiently large and f(x) sufficiently close to t0.

Proof. Indeed, suppose that this is not the case. Then, by the Curve Selection
Lemma at infinity (see [16], [17]), there exist a real analytic curve ψ(τ) and a
real analytic function λ(τ), τ ∈ (0, δ], such that

(b1) limτ→0 ‖ψ(τ)‖ = ∞;
(b2) limτ→0 f [ψ(τ)] = t0; and
(b3) gradf [ψ(τ)] = λ(τ)gradρ[ψ(τ)].

Let

ρ[ψ(τ)] := aτα + higher order terms in τ, a 6= 0.

Since ‖ψ(τ)‖ → +∞ as τ → 0, ρ[ψ(τ)] → +∞ as τ → 0, and hence α < 0. We
expand also

f [ψ(τ)] := t0 + bτβ + higher order terms in τ, b 6= 0.

Since f [ψ(τ)] → t0 as τ → 0, we have β > 0. These imply that

β − α > 0.

On the other hand, differentiating f [ψ(τ)] with respect to τ yields

d

dτ
f [ψ(τ)] =

〈
gradf [ψ(τ)],

dψ(τ)
dτ

〉

= λ(τ)
〈

gradρ[ψ(τ)],
dψ(τ)
dτ

〉

= λ(τ)
d

dτ
ρ[ψ(τ)].

Consequently, ∣∣∣∣
d

dτ
f [ψ(τ)]

∣∣∣∣ = |λ(τ)|
∣∣∣∣
d

dτ
ρ[ψ(τ)]

∣∣∣∣ .

It follows that

|bβτβ−1 + higher order terms in τ | = |λ(τ)||aατα−1 + higher order terms in τ |.
Thus,

|λ(τ)| ' τβ−α → 0 as τ → 0.
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Let s := η
η−λ(τ)

. Then we can write

τ = θ(s) := c1s
n1
N + c2s

n2
N + · · · , ci ∈ C,

where N and n1 < n2 < · · · are positive integers, having no common divisor,
such that θ((s− 1)N) has positive radius of convergence.

Let us define now a mapping

ϕ : {s ∈ R | 0 < |s− 1| � 1} → Cn, s 7→ ψ[θ(s)].

Then it is clear that

(c1) ϕ(s) is a continuous mapping;
(c2) lims→1 ‖ϕ(s)‖ = ∞;
(c3) lims→1 fC[ϕ(s)] = t0; and
(c4) H(ψ(s), s) = sgradfC[ϕ(s)]+η(1−s)gradρC[ϕ(s)] = 0 for all 0 < |s−1| � 1.

But, according to Lemma 2.3, the system H(x, s) = 0 has exactly µ continu-
ous solutions x = ϕk(s), k = 1, 2, . . . , µ. Therefore, there is an integer number
k ∈ {1, 2, . . . , µ} such that ϕ ≡ ϕk. This implies that t0 ∈ T∞(fC), which is a
contradiction.

Now we can pass to the proof of Theorem 1.1.

Proof. (i). Let t0 ∈ R−T∞(fC). By Lemma 2.4, there exist r� 1 and 0 < δ � 1
such that the vectors gradf(x) and gradρ(x) are linearly independent for all
x ∈ f−1(Dδ(t0)) ∩ {ρ(x) > r}. And therefore we can define the smooth vector
fields

v(x) := gradf(x)− 〈gradρ(x), gradf(x)〉
‖gradρ(x)‖2

gradρ(x),

w(x) :=
v(x)

〈v(x), gradf(x)〉
.

Clearly, w(x) is the well-defined vector field and w(x) 6= 0 provided that ‖x‖ is
sufficiently large and f(x) is sufficiently close to t0. Thus, integrating w we get
the desired trivialization of f outside a compact set {x ∈ Rn | ρ(x) 6 r}, which
implies that t0 6∈ A∞(f).

(ii). Let t0 ∈ T∞(fC)∩R. Then, by definition, there exist a real analytic curve
ψ(τ) and a real analytic function λ(τ), τ ∈ (0, δ], satisfying the properties (b1)-
(b3); in other words, we are in the situation of the proof of Lemma 2.4. Hence,
asymptotically as τ → 0, we have

|f [ψ(τ)]− t0| ' τβ ' |λ(τ)||ρ[ψ(τ)]|

' ‖gradf [ψ(τ)]‖
‖gradρ[ψ(τ)]‖|ρ[ψ(τ)]|.

(The last relation follows from (b3).) Hence, by Lemma 2.1(iii), there exists a
positive constant c such that

|f [ψ(τ)]− t0| > c‖gradf [ψ(τ)]‖‖ψ(τ)‖ for 0 < τ � 1.
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Consequently,
‖gradf [ψ(τ)]‖‖ψ(τ)‖→ 0 as τ → 0,

which shows that t0 ∈ K∞(f).
(iii). The claim is a direct consequence of the inequalities (2.1) and (2.2).
All is now proven.

Remark 2.1. It is possible that in Theorem 1.1 the upper bound (d−1)n can be
replaced by

∏n
i=1 di, where di, i = 1, 2, . . . , n, is the highest degree of a monomial

occurring in the derivative ∂f
∂xi
.

3. Minimizing Polynomial Functions

This section is concerned with the following basic problem: Given a bounded
below polynomial f : Rn → R, find the global infimum

f∗ := inf{f(x) | x ∈ Rn}.

We first recall that

ρ(x) := x2m
1 + x2m

2 + · · ·+ x2m
n + g(x1, x2, . . . , xn),

where g is a polynomial of degree < 2m. Put

Γ(f, ρ) := {x ∈ Rn | gradf(x) 6= 0 and rank
(

gradf(x)
gradρ(x)

)
6 1}.

Then, by an easy consequence of Sard’s theorem, Γ(f, ρ) is an algebraic curve
for almost every g ∈ R[x1, x2, . . . , xn]. We fix such a polynomial g. It is not hard
to see that for large r > 0, the set {x ∈ Γ(f, ρ) | ρ(x) > r} consists of a fixed
number of one dimensional connected components, say Γ1,Γ2, . . . ,Γs. Taking r
large enough, we have, for i = 1, 2, . . . , s, that there exist δ > 0 and a Nash (i.e.,
analytic algebraic) function ψi : (0, δ] → Rn, τ 7→ ψi(τ), such that Γi is the germ
of the curve x = ψi(τ) as τ → 0. Note that ψi (or rather its germ at 0) is given by
a real algebraic Puiseux series in τ. The function f ◦ψi : (0, δ] → R, τ 7→ f [ψi(τ)],
is strictly increasing, or strictly decreasing or constant for small δ. Hence, it has
a limit ti := limΓi f in R ∪ {+∞,−∞}. Let

T̃∞(f) := {t1, t2, . . . , ts} ⊂ R ∪ {+∞,−∞}.
We have

Proposition 3.1. The following inclusions hold

A∞(f) ⊂ T̃∞(f) ∩ R ⊂ T∞(fC)∩ R.

Proof. The claim follows very closely along the lines of the proof of Theorem 1.1.
We will leave to the reader to verify these facts.

We now assume that the components Γ1,Γ2, . . . ,Γs are numbered in a way
such that t1 6 t2 6 · · · 6 ts.

Proposition 3.2. A polynomial f : Rn → R is lower bounded if and only if
t1 > −∞.
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Proof. Let

C := {x ∈ Rn | f(x) = min{f(y) | ρ(y) = ρ(x), y ∈ Rn}}.
Clearly, the set C is nonempty and unbounded. Moreover, we have C ⊂ Γ(f, ρ).
Thus, C must contain the component Γ1 and, possibly, some other components.
This implies that

t1 = lim
x∈C, ρ(x)→∞

f(x).

The proof of the proposition follows now from the definition of the set C.

Remark 3.1. Checking that a given polynomial function is lower (or upper)
bounded function is far from trivial (see [24]).

With the notations in Section 2, the main result of this section is then the
following.

Proposition 3.3. Let f : Rn → R be a bounded below polynomial. Then

f∗ ∈ Af (f) ∪ (T̃∞(f)∩ R).

Proof. Indeed, if the polynomial f attains its infimum f∗, then it is well known
that f∗ is a critical value of f ; that is f∗ ∈ Af (f).

We now suppose that f∗ is not attained by f. Put

C := {x ∈ Rn | f(x) = min{f(y) | ρ(y) = ρ(x), y ∈ Rn}}.
Then it is not difficult to verify that

(d1) C is an unbounded semi-algebraic set (this follows from Tarski’s theorem);
(d2) For all x ∈ C there is λ ∈ R such that gradf(x) = λgradρ(x); and
(d3) For every sequence xk ∈ C, xk → ∞, we have f(xk) → f∗ (since f does not

attain its infimum).

Hence, by using a version at infinity of the Curve Selection Lemma (see [16], [17]),
there exist a real analytic curve ψ(τ) and a real analytic function λ(τ), τ ∈ (0, δ],
satisfying the properties (b1)-(b3). In other words, we are in the situation of the
proof of Lemma 2.4. Then it is not difficult to verify that f∗ ∈ T̃∞(f)∩R, which
completes the proof.

Remark 3.2. If a polynomial f is bounded from below, then the degree d :=
deg f of f is even. In this case, we have m = d/2 ∈ N. Moreover, it is easy to
choose ρ such that the set of critical points of ρ is known and has exactly (d−1)n

points. Consequently, ρ satisfies the three properties (T), (S) and (A).

4. Algorithmic aspect and illustrative examples

4.1. Algorithmic aspect. Let f : Rn → R be a polynomial of degree d with
only isolated complex critical points. In this section we recall the homotopy
methods to effectively compute the set Af (f) ∩ (T∞(fC) ∩ R).

We consider the problem of finding the solutions of the equation

0 = gradfC(x).
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We define
H(x, s) := sgradfC(x) + η(1− s)gradρC(x).

The equation 0 = gradρC(x) should have known solutions.
Let ϕ(s) be a smooth solution of the equation

0 = H(x, s).

Since H is differentiable, the Implicit Function Theorem enables us to compute
d
dsϕ(s). By pursuing this idea, we can describe the curve ϕ(s) by a differential
equation. We have

0 = H(ϕ(s), s).
On differentiating with respect to s, we obtain

0 = Hs(ϕ(s), s) +Hx(ϕ(s), s)
d

ds
ϕ(s)

in which subscripts denote partial derivatives. Thus,

(4.1)
d

ds
ϕ(s) = − [Hx(ϕ(s), s)]−1Hs(ϕ(s), s).

This is a differential equation for ϕ(s). It has a known initial value because ϕ(0) is
supposedly known. On integrating this differential equation (usually by numerical
procedures), we shall have the value ϕ(1), which is the solution.

4.2. Illustrative examples. The computations can be performed with the soft-
ware Mathematica. In order to test our method, we considered

Example 4.1. Let us consider the following polynomial of two real variables:

f(x, y) := (xy − 1)2 + x.

We have deg f = 4. So, we can define ρ ∈ R[x, y] by

ρ(x, y) :=
x4

4
+
y4

4
− 8x− y.

Then the polynomial ρC has nine non-degenerate critical points. So the above
computation applies. It provides a homotopy and nine paths, beginning from the
critical points of ρ, which lead to all values of Af(fC) ∪ T∞(fC). Table 1 shows
the computed results (here, i :=

√
−1). It is easy to see that Af (f) = {1} and

T∞(fC) ∩ R = {0} (η ∈ C randomly chosen on the unit circle). By the results of
M. Coste and M. J. de la Puente [2] (see also [28]), we find that A∞(f) = {0}.

Example 4.2. Let us consider another example:

f(x, y) := (xy − 1)2 + (x− 1)2.

It is clear that the polynomial f is nonnegative on R2. Since deg f = 4, our
starting polynomial ρ can be chosen as in the previous example. Table 2 shows
our computed results. It is clear that Af (f) = {0, 2} and T∞(fC) ∩ R = {1}.
It is not hard to see that the polynomial f attains its infimum global value
f∗ = f(1, 1) = 0 ∈ Af (f). Moreover, it follows from the results in [2] (see also
[28]) that A∞(f) = {1}.



NUMBER OF BIFURCATION VALUES FOR REAL POLYNOMIALS 151

x y f

1 2.3× 1016 − 4.0× 1016i 0. 2.3× 1016 − 4.0× 1016i
2 2.3× 1016 + 4.0× 1016i 0. 2.3× 1016 + 4.0× 1016i
3 −4.6 × 1016 0. −4.6 × 1016

4 −8.0 × 10−9 − 5.8× 10−9i −8.0× 109 + 5.8 × 109i −8.0 × 10−9 − 5.8× 10−9i
5 −8.0 × 10−9 + 5.8× 10−9i −8.0× 109 − 5.8 × 109i −8.0 × 10−9 + 5.8× 10−9i
6 3.0× 10−9 − 9.5× 10−9i 3.0× 109 + 9.5 × 109i 3.0 × 10−9 − 9.5× 10−9i
7 3.0× 10−9 + 9.5× 10−9i 3.0× 109 − 9.5 × 109i 3.0 × 10−9 + 9.5× 10−9i
8 1.× 10−10 1. × 1010 1.× 10−10

9 0. 0.5 1.

Table 1. Computations to the polynomial (xy − 1)2 + x.

x y f

1 −0.5 + 1.4× 1025i 0. −2. × 1050 − 4.2× 1025i
2 −0.5− 1.4× 1025i 0. −2. × 1050 + 4.2× 1025i
3 −2.6 × 10−11 + 8.2 × 10−11i −3.5× 109 − 1.0× 1010i 1.− 1.6× 10−10i
4 −2.6 × 10−11 − 8.2 × 10−11i −3.5× 109 + 1.0× 1010i 1. + 1.6× 10−10i
5 7.0× 10−11 + 5.1 × 10−11i 9.2× 109 − 6.7× 109i 1.− 1.0× 10−10i
6 7.0× 10−11 − 5.1 × 10−11i 9.2× 109 + 6.7× 109i 1. + 1.0× 10−10i
7 −8.7× 10−11 −1.1 × 1010 1.
8 0. −1. 2.
9 1. 1. 0.

Table 2. Computations to the polynomial (xy − 1)2 + (x− 1)2.
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