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DYNAMICS OF PREDATOR-PREY POPULATION WITH

MODIFIED LESLIE-GOWER AND

HOLLING-TYPE II SCHEMES

NGUYEN HUU DU, NGUYEN MINH MAN, AND TONG THANH TRUNG

Abstract. In this paper, we investigate a predator-prey population modeled
by a system of differential equations modified Leslie-Gower and Holling-Type
II schemes with time-dependent parameters. We establish a sufficient criterion
posed on the behavior at infinity of coefficients for the permanence of systems,
globally asymptotic stability of solutions. In the case where the coefficients of
equations are periodic functions with a same period, it is proved that there
exists a unique periodic orbit which attracts every solution starting in intR2+.

1. Introduction

In mathematical ecology, one of the popular models is a model consisting of two
difference species where one of them provides food to the other. The interaction
between population in this type is very universal in nature and is called “Prey-
Predator” relation. The predator-prey system plays an important role both in
theory and practice and has been studied by many authors. Recently, there are
many works revealing the dynamics of prey-predator systems for a so-called semi-
ratio-dependent class with functional responses. This class consists of systems
which are described by the equation

x′ = x[a− bx]− c(x)y(1.1)

y′ = y
[
d− ey

x

]
,

where x and y stand for the quantity (or density) of the prey and the preda-
tor, respectively. The function c(x) is called predator functional response. The
biological signification of a, d, e and a/b has been explained in [4]. The preda-
tor consumes the prey according to the functional response c(x) and carrying
capacity x(t)/e proportional to the population size of prey (or prey abundance).

The prey-predator equation (1.1) with functional response was first proposed
by Leslie (1960). Since then, there has been much interest both in theory and
application of this model. Based on experiments, Holling [13] suggested some
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kinds of functional responses to model the phenomena of predation, which made
the standard Lotka-Volterra system more realistic. Depending on the form of
the functional responses, these models are classified into five types (see [4]). If
c(x) = mx, we have type 1. These models had been researched by P.H. Leslie
[16], C. S. Holling [13], S. B. Hsu, T. W. Huang [14]. The functional response
c(x) is of type 2 if c(x) = m

A+x . There are some papers studying about stability,
furcation behavior and so on of these models. For example, we can refer to J. B.
Collings [9], A. A. Berryman [7], K. S. Cheng, S. B. Hsu, S. S. Lin [8], S. B. Hsu,
S. P. Hubbell, P. Waltman [18] etc. When c(x) = mxn

A+xn n � 2, we called it type
3. It was suggested by the biologist Holling [13]. The general form of functional
response of this type was introduced by Kazarinov and van den Driessche in [15].

If c(x) = mx2

(A+x)(B+x) , it is concerned with type 4. This model can be seen in

J. B. Collings [9], J. Tanner [17] and so forth. The type 5 is also called Ivlev’s
functional response. In this case, c(x) = m(1− e−Ax).
We begin by analyzing the model that M. A. Aziz. Alaoui and M. D. Okiye

have dealt with in [1], that is the model of type 2

ẋ = x
[
r1 − b1x−

a1
x+ k1

y
]
,(1.2)

ẏ = y
[
r2 −

a2
x+ k2

y
]
,

with x(0) � 0 and y(0) � 0, where r1, a1, b1, k1, r2, a2 and k2 are the model’s
parameters, assuming to be positive. It is proved in [1] that the system (1.2) is
ultimately bounded with respect to R2+. In considering globally asymptotical
stability, the authors had observed

L1 =
1

4a2b1
(a2r1(r1 + 4) + (r2 + 1)

2(r1 + b1k2))

and have claimed that under the assumptions

(1.a) L1 <
r1k1
2a1
,

(1.b) k1 < 2k2,
(1.c) 4(r1 + b1k1) < a1,

the interior equilibrium E∗(x∗, y∗) is globally asymptotically stable (see [1, The-
orem 6]). The idea to make this assumption is interesting because it is rather
simple and it can be verified by direct calculation. However, in our opinion, there
is no set of parameters of (1.2) which satisfies the conditions (1.a)−(1.c). Indeed,
from (1.a) and (1.c) we have

a2r1
a2b1

=
r1
b1
< L1 <

r1k1
2a1

<
r1k1
8b1k1

<
r1
8b1
.

This relation is impossible, hence the set of parameters satisfying (1.a)−(1.c) is
empty.

Therefore, in this paper, we want to improve the above conditions to study the
dynamic of differential equations modeling a predator-prey system (1.2) in the
case where its coefficients vary in time. We give some reasonable restriction on
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the model and determine conditions that ensure the permanence and the globally
asymptotic stability of the solutions of system. This conditions are similar to
what is done in [1] and [4] but more realistic and it is easy to verify by simple
direct calculation.

The paper is organized as follows: In section 2, we give a condition to ensure the
permanence of solutions of (1.2). The condition is imposed by the behavior of the
coefficients at infinity meanwhile most previous works put likely the conditions on
whole trajectory of coefficients. The section 3 deals with the asymptotic stability
of the solutions of (1.2). The last section, section 4, studies the existence of a
periodic solution when all parameters are periodic functions. Since we are unable
to construct an invariant set with our assumption, we have to use a difference
technique to show the existence of such a solution.

2. Permanence of the solutions

Consider a time-varying predator-prey system:

ẋ = x
[
r1(t)− b1(t)x−

a1(t)

x+ k1(t)
y
]

(2.1)

ẏ = y
[
r2(t)−

a2(t)

x+ k2(t)
y
]
,

where ri(t), ai(t), i = 1, 2, b1(t), k1(t) are continuous functions, defined on
R, bounded above and below by positive constants; k2(t) is supposed to be a
nonnegative function, bounded above by a positive constant.

By the uniqueness of the solution of (2.1), it is easy to see that both the
nonnegative cone R2+ = {(x, y) : x � 0, y � 0} and positive cone intR2+ =
{(x, y) : x > 0, y > 0} are invariant with respect to System (2.1). This means
that if x(t0) � 0, y(t0) � 0 (resp. x(t0) > 0, y(t0) > 0) then x(t) � 0, y(t) � 0
(resp. x(t0) > 0, y(t0) > 0 for all t > t0).

Definition 2.1. System (2.1) is said to be permanent if there exists a compact
set A ⊂ intR2+ such that for every solution (x(t), y(t)) of (2.1) with positive initial
value (x(t0), y(t0)) ∈ intR2+, there exists a T > t0 such that (x(t), y(t)) ∈ A for
all t � T.

In order to construct a set A as in the definition 2.1 we denote

M∗
1 := lim sup

t→∞

r1(t)

b1(t)
, M ∗

2 := lim sup
t→∞

r2(t)(M
∗
1 + k2(t))

a2(t)
,

m∗
1 := lim inf

t→∞
1

b1(t)
[r1(t)−

a1(t)

k1(t)
M∗
2 ],

m∗
2 := lim inf

t→∞
r2(t)(m

∗
1 + k2(t))

a2(t)
.

Since all coefficients are bounded above and b1, a2 are bounded below by positive
constants, it follows that M∗

1 <∞; M∗
2 <∞.

Throughout this paper, we assume that
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Hypothesis 2.1.

lim inf
t→+∞

[r1(t)−
a1(t)

k1(t)
M∗
2 ] > 0.(A1)

With this assumption, we see that m∗
1 > 0 and m

∗
2 > 0.

This assumption is slightly improved from the condition (A4) in [4] in the case

where c(t, x) = a1(t)
x+k1(t)

x and k2(t) = 0. Indeed, let riM = sup
t∈R

ri(t), riL =

inf
t∈R
ri(t) for i = 1, 2. The conditions (A1), (A2) in [4] are obviously satisfied. The

condition (A3) (∃C0 > 0, such that c(t, x) � C0x for any t ∈ R, x > 0) becomes
c(t, x) = a1(t)

x+k1(t)
x � C0x ∀ t � t0 ⇔ C0 � supt�t0

a1(t)
k1(t)

. Let the condition (A4) in

[4] hold, i.e., r1L − C0M2 > 0 where M1 >
r1M
b1L

and M2 >
r2M
eM
M1. It is easy to

see that

lim inf
t→∞

[
r1(t)−

a1(t)

k1(t)
M2

]
� lim inf

|t|→∞
r1(t)− sup

t�t0

a1(t)

k1(t)
M2

� r1L − C0M2.

Thus, r1L − C0M2 > 0 implies lim inf
t→∞

[
r1(t)− a1(t)

k1(t)
M2

]
> 0. Further, M2 > M

∗
2 .

Hence, Hypothesis 2.1 holds.

On the other hand, the following example shows that condition (A1) is in fact
weaker than (A4) in [4]. Indeed,

Example 1. Consider the following system

ẋ(t) = x(t)
[3
2
(2 + cos t)− (2 + cos t)x(t)− (2 + cos t)

6(x(t) + 1)
y(t)

]
,

ẏ(t) = y(t)
[
2 + cos t− cos t+ 2

x
y(t)

]
.

Here we have

r1(t) =
3

2
(2 + cos t), r2(t) = 2 + cos t, a1(t) =

1

6
(2 + cos t),

b1(t) = 2 + cos t, a2(t) = 2 + cos t, k1(t) = 1, k2(t) = 0.

Therefore, M∗
1 = lim sup

t→∞
r1(t)
b1(t)

= 1.5, M∗
2 = lim sup

t→∞

r2(t)(M∗
1+k2(t))

a2(t)
= 1.5, and

lim inf
t→∞

1
b1(t)

[ r1(t)− a1(t)
k1(t)

M∗
2 ] =

5
4 . Hence, (A1) is satisfied. But neither condition

(A4) nor condition (A7) in [4] hold for the function c(t, x) = (2+cos t)x
6(x+1) .

Since the functions a1(t) and k1(t) are bounded above and below by positive
constants, from the condition (A1), we can choose positive numbers M1 > M∗

1
and M2 > M

∗
2 such that

M2 > lim sup
t→∞

r2(t)(M1 + k2(t))

a2(t)
(2.2)
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and

lim inf
t→∞

[r1(t)−
a1(t)

k1(t)
M2] > 0.(2.3)

Let m1 and m2 be real numbers satisfying

0 < m1 < lim inf
t→∞

1

b1(t)
[r1(t)−

a1(t)

k1(t)
M2],(2.4)

0 < m2 < lim inf
t→∞

r2(t)(m1 + k2(t)

a2(t)
·(2.5)

We need some following lemmas.

Lemma 2.1. Let G(t) and F (t) be two differentiable functions defined on (0,∞)
such that lim

t→+∞
G(t) = lim

t→+∞
F (t) = +∞, then

lim sup
t→+∞

G(t)

F (t)
� lim sup

t→+∞

G′(t)

F ′(t)
; lim inf

t→+∞
G(t)

F (t)
� lim inf

t→+∞
G′(t)

F ′(t)
.

Proof. See [2, Lemma 2].

Lemma 2.2. Let h be a real number and f be a nonnegative function defined
on [h,+∞), uniformly continuous on [h,+∞) and f is integrable on [h,+∞) in
Riemann sense. Then it holds lim

t→+∞
f(t) = 0.

Proof. We think that this lemma has been proved somewhere but in order to
complete our paper, we introduce the following proof. Assume that

lim sup
t→+∞

f(t) = 4α > 0.

By definition, there exists a sequence (tn)n∈N ↑ ∞ such that f(tn) > 2α. Since f
is uniformly continuous on [h,+∞), there is a δ > 0 such that |f(t)− f(t′)| < α
if |t − t′| < δ. Therefore, f(t) > α for any t ∈ [tn, tn + δ] and n ∈ N. Without
loss of generality, we can suppose that tn + δ < tn+1 for all n ∈ N. Hence

∫ +∞

h
f(t) dt �

∞∑

n=1

∫ tn+δ

tn

f(t) dt �
∞∑

n=1

∫ tn+δ

tn

α dt =∞.

This contradicts the hypothesis. Lemma 2.2 is proved.

Theorem 2.1. Suppose the assumption (A1) holds. Then System (2.1) is per-
manent.

Proof. We consider the set

A := {(x, y) ∈ R2+ : m1 � x �M1, m2 � y �M2}(2.6)

Let (x(t), y(t)) be the solution of (2.1) with a positive initial value (x(t0), y(t0)) ∈
intR2+. From the first equation of (2.1) we have ẋ < x[r1(t)− b1(t)x]. Hence, by



104 NGUYEN HUU DU, NGUYEN MINH MAN, AND TONG THANH TRUNG

comparison theorem, it follows that

x(t) � x(t0)e
A(t)

1 + x(t0)
t∫
t0

b1(s)eA(s)ds

,

where A(t) =
t∫
t0

r1(s)ds. Since r1(t), b1(t) are bounded below by positive con-

stants,

lim
t→∞

A(t) = lim
t→∞

t∫

t0

b1(s)e
A(s)ds =∞.

Therefore, by using Lemma 2.1 we have

lim sup
t→∞

x(t) � lim sup
t→∞

r1(t)

b1(t)
.

Noting that M1 > M∗
1 = lim sup

t→∞
r1(t)
b1(t)

, this implies the existence of a constant

t1 � t0 such that
x(t) < M1 for all t � t1.(2.7)

Substituting the estimate (2.7) into the second equation of (2.1) we obtain

ẏ � y
[
r2(t)−

a2(t)

M1 + k2(t)
y
]
for any t � t1.

Therefore

y(t) � y(t1)e
B(t)

1 + y(t1)
t∫
t1

a2(s)
M1+k2(s)

eB(s)ds

where B(t) =

t∫

t1

r2(s)ds.

By virtue of the boundedness of a2(t), r2(t), k2(t) by positive constants we get

lim
t→∞

B(t) = lim
t→∞

t∫

t1

a2(s)

M1 + k2(s)
eB(s)ds =∞.

Using again Lemma 2.1 we get

lim sup
t→∞

y(t) � lim sup
t→∞

r2(t)(M1 + k2(t))

a2(t)
.

Since M2 > lim sup
t→∞

r2(t)(M1+k2(t))
a2(t)

, there exists t2 � t1 such that

y(t) < M2 for all t � t2.(2.8)

Substituting (2.8) into the first equation of (2.1) we obtain

ẋ �
[
r1(t)−

a1(t)

k1(t)
M2 − b1(t)x

]
x for any t � t2.
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Or

x(t) � x(t2)e
C(t)

1 + x(t2)
t∫
t2

b1(s)eC(s)ds

, t � t2,

where C(t) =
t∫
t2

[r1(s)− a1(s)
k1(s)

M2]ds. Hence

lim inf
t→∞

x(t) � lim inf
t→∞

(r1(t)− a1(t)
k1(t)

M2)

b1(t)
.

Thus from (2.4) there exists t3 � t2 such that

x(t) > m1 for all t � t3.(2.9)

On the other hand, from the second equation of (2.1) we have

ẏ �
[
r2(t)−

a2(t)

m1 + k2(t)
y
]
y, for any t � t3,

which implies

y(t) � y(t3) · eD(t)

1 + y(t3)
t∫
t3

a2(s)
m1+k2(s)

ds

, where D(t) =

t∫

t3

r2(s)ds.

Therefore

lim inf
t→∞

y(t) � lim inf
t→∞

r2(t)(m1 + k2(t))

a2(t)
.

Hence by (2.5) there exists t4 � t3 such that

y(t) > m2 for all t � t4.(2.10)

Put T = max{t1, t2, t3, t4}, and by combining (2.7)−(2.10) we see that

(x(t), y(t)) ∈ intA(2.11)

for all t � T . This means that System (2.1) is permanent. The theorem is
proved.

3. Asymptotic stability

We now study the stability of the solutions of (2.1).

Definition 3.1. System (2.1) is said to be globally asymptotically stable if any
two solutions (xi(t), yi(t)), i = 1, 2 of (2.1) with positive initial values (xi(t0), yi(t0)) ∈
R2+ have the property

lim
t→+∞

(|x1(t)− x2(t)|+ |y1(t)− y2(t)|) = 0.
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Theorem 3.1. Assume that (A1) holds and the following conditions hold

lim inf
t→∞

[
b1(t)−

( a1(t)

(m∗
1 + k1(t))

2
+

a2(t)

(m∗
1 + k2(t))

2

)
M∗
2

]
> 0,(A2)

lim inf
t→∞

[ a2(t)

M∗
1 + k2(t)

− a1(t)

m∗1 + k1(t)

]
> 0.(A3)

Then System (2.1) is globally asymptotically stable.

Proof. Let (xi(t), yi(t)), i = 1, 2, be two arbitrary solutions of (2.1) starting
respectively from (xi(t0), yi(t0)) ∈ R2+ at t0. For any ε > 0, let

M1 =M
∗
1 + ε;M2 = lim sup

t→∞

r2(t)(M1 + k2(t))

a2(t)
> M∗

2 ,

m1 = lim inf
t→∞

1

b1(t)
[r1(t)−

a1(t)

k1(t)
M2] < m

∗
1;m2 = lim inf

t→∞
r2(t)(m1 + k2(t))

a2(t)
< m∗

2.

Since the parameters of System (2.1) are bounded above and below by positive
constants, we see that lim

ε→0
M1 = M

∗
1 ; limε→0

M2 = M
∗
2 ; limε→0

m1 = m
∗
1; limε→0

m2 = m
∗
2.

Therefore, from the assumptions (A2)-(A3), we can choose ε > 0 small enough
such that

α := lim inf
t→∞

[b1(t)− (
a1(t)

(m1 + k1(t))2
+

a2(t)

(m1 + k2(t))
2 )M2] > 0,(3.1)

β := lim inf
t→∞

[
a2(t)

M1 + k2(t)
− a1(t)

m1 + k1(t)
] > 0.(3.2)

Thus we have shown that it is possible to choose the numbers M1,M2, m1,m2

such that (2.2), (2.3),(2.4), (2.5) and (3.1), (3.2) hold simultaneously. From
Theorem 2.1, with the set A defined by (2.6), there exists a T � t0 such that the
following relations hold

• (xi(t), yi(t)) ∈ intA, i = 1, 2 for all t � T (see (2.11),

• b1(t)− (
a1(t)

(m1 + k1(t))2
+

a2(t)

(m1 + k2(t))
2 )M2 >

α

2
,

(3.3)

• a2(t)

M1 + k2(t)
− a1(t)

m1 + k1(t)
>
β

2
,

(3.4)

for all t � T .
Consider a Lyapunov function defined by

V (t) = |lnx1(t)− lnx2(t)|+ |ln y1(t)− ln y2(t)| , t � t0.
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A direct calculation of the derivative D+V (t) of V (t) along the solution of (2.1)
leads to

D+ |lnx1(t)− lnx2(t)|

=
[
− b1(t)x1(t)−

a1(t)y1(t)

x1(t) + k1(t)
+ b1(t)x2(t) +

a1(t)y2(t)

x2(t) + k1(t)

]
sgn (x1(t)− x2(t)).

Applying the finite increment formula of Lagrange to the function f(x, y) = y
x+k1

we obtain

y1(t)

x1(t) + k1(t)
− y2(t)

x2(t) + k2(t)

=
−η1(t)

(ξ1(t) + k1(t))
2 (x1(t)− x2(t)) +

1

ξ1(t) + k1(t))
(y1(t)− y2(t)),

where ξ1(t) is a certain point on the interval (x1(t), x2(t)) and η1(t) ∈ (y1(t), y2(t)).
Therefore, for t � T , we have

D+ |lnx1(t)− lnx2(t)|

=− b1(t) |x1(t)− x2(t)|− a1(t)
[ −η1(t)
(ξ1(t) + k1(t))

2 (x1(t)− x2(t))

+
1

ξ1(t) + k1(t))
(y1(t)− y2(t))

]
sgn (x1(t)− x2(t))

�− b1(t) |x1(t)− x2(t)|+
a1(t)

(m1 + k1(t))
2M2|x1(t)− x2(t)|

+
a1(t)

m1 + k1(t)
|y1(t)− y2(t)|.

Similarly,

D+ |ln y1(t)− ln y2(t)|

=
[
− a2(t)

x1(t) + k2(t)
y1(t) +

a2(t)

x2(t) + k2(t)
y2(t)

]
sgn (y1(t)− y2(t))

=
[ a2(t)y2(t)

x2(t) + k2(t)
− a2(t)y1(t)

x1(t) + k2(t)

]
sgn (y1(t)− y2(t))

=
[
− a2(t)η2(t)

(ξ2(t) + k2(t))
2 (x2(t)− x1(t))

+
a2(t)

ξ2(t) + k2(t)
(y2(t)− y1(t))

]
sgn (y1(t)− y2(t))

� a2(t)M2

(m1 + k2(t))2
|x1(t)− x2(t)|−

a2(t)

M1 + k2(t)
|y1(t)− y2(t)|

with ξ2(t) ∈ (x1(t), x2(t)) and η2(t)) ∈ (y1(t), y2(t)).
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Thus, for any t > t0, we have

D+V (t) � −
[
b1(t)−

a1(t)

(m1 + k1(t))2
M2 −

a2(t)

(m1 + k2)2
M2

]
|x1(t)− x2(t)|

−
[ a2(t)

M1 + k2(t)
− a1(t)

(m1 + k2)

]
|y1(t)− y2(t)|.

Therefore, by using (3.3) and (3.4), we obtain

D+V (t) � −γ[|x1(t)− x2(t)|+ |y1(t)− y2(t)|]

with 2γ = min{α,β} > 0 and t � T . Hence

V (t)− V (T ) � −γ
t∫

T

(|x1(s)− x2(s)|+ |y1(s)− y2(s)|) ds,(3.5)

which implies that

t∫

T

(|x1(s)− x2(s)|+ |y1(s)− y2(s)|) ds <
V (T )

γ
<∞.

This means that |x1(s) − x2(s)| + |y1(s) − y2(s)| ∈ L1([T,+∞)). On the other
hand, for t ∈ [T,+∞) we have (x1(t), y1(t)) ∈ A and (x2(t), y2(t)) ∈ A, i.e.,
m1 � xi(t) � M1 and m2 � yi(t) � M2 for i = 1, 2. Thus, the derivative
of (xi(s), yi(s)), i = 1, 2, is bounded on [T,+∞). Therefore, |x1(s) − x2(s)| +
|y1(s)− y2(s)| is uniformly continuous on [T,+∞). By Lemma 2.2, we get

lim
t→+∞

|x1(s)− x2(s)|+ |y1(s)− y2(s)| = 0.

The proof is complete.

4. Existence of periodic solutions

Theorem 4.1 (Existence of periodic solution). Suppose that (A1) − (A3) hold.
Further, suppose that parameters in System (2.1) are periodic functions in t with
period ω. Then System (2.1) has a unique positive ω-periodic solution which is
globally stable.

Proof. Denote z(t, t0, x, y) = (x(t, t0, x, y), y(t, t0, x, y)). For all (x, y) ∈ A, put

T (x, y) = inf{s : z(τ, t0, x, y) ∈ intA ∀ τ > s}.

By virtue of Theorem 2.1, T (x, y) <∞ for any (x, y) ∈ R2+ and z(T (x, y), t0, x, y) ∈
A. Further, by the continuous dependence of solutions on the initial data, the
function T (x, y) is continuous in (x, y). Therefore

T1 = sup{T (x, y) : (x, y) ∈ A} <∞.
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Let n ∈ N such that t0 + (n− 1)ω � T1 < t0 + nω. Put T ∗ = t0 + nω. Consider
the mapping

Φ : A −→ A

(x, y) �−→ Φ(x, y) = z(T ∗, t0, x, y).

It is easy to see that Φ is a continuous function. Since A is a compact, convex
subset of R2, by Brouwer fixed point theorem Φ has at least one fixed point
in A, namely (x∗, y∗). We show that z(t, t0, x

∗, y∗) is a bounded and periodic
solution of (2.1) with period nω. Indeed, for any t > t0, z(t + nω, t0, x

∗, y∗) =
z(t + nω, T ∗, z(T ∗, t0, x∗, y∗)) = z(t + nω, T ∗, x∗, y∗)). Since the parameters in
System (2.1) are periodic with period ω, we have

z(t+ nω, T ∗, x∗, y∗)) = z(t+ nω, t0 + nω, x
∗, y∗)) = z(t, t0, x

∗, y∗)).

This means that z(t, t0, x
∗, y∗) is a periodic function with period nω.

We now use the mapping

Φ1 : A −→ A

(x, y) �−→ Φ1(x, y) = z(T
∗ + ω, t0, x, y).

By a similar argument as above, we see that there is a fixed point (x, y) ∈ A of
the mapping Φ1 and the solution z(t, t0, x, y) is periodic with the period (n+1)ω.
For any t > t0, from Theorem 3.1 we have

0 = lim
m→∞
m∈N

(z(t+mn(n+ 1)ω, t0, x
∗, y∗)− z(t+mn(n+ 1)ω, t0, x, y))

= z(t, t0, x
∗, y∗)− z(t, t0, x, y).

This implies that z(t, t0, x
∗, y∗) = z(t, t0, x, y). Thus z(t, t0, x

∗, y∗) is periodic
with the period nω and with the period (n+ 1)ω. Hence, it is periodic with the
period ω. The uniqueness and global stability is deduced from Theorem 3.1. The
theorem is proved.

It is not difficult to show that the example 1 satisfies the conditions from (A1)
to (A3). We give another example.

Example 2. Consider the following system
{
ẋ(t) = x(t)

[
1− x(t)− 0,2 sin 2πt+0,25

x(t)+1 y(t)
]
,

ẏ(t) = y(t)
[
0, 4− cos 2πt+2

x+1 y(t)
]
.

(4.1)

We have M ∗
1 = 1; M

∗
2 = 0, 8 m∗

1 = 0, 64; m
∗
2 ≈ 0, 2186667. Thus, it is easy

to check the conditions (A1)− (A3) to be satisfied. Moreover, all parameters are
periodic functions. We illustrate the behavior of numerical solutions of System
(2.1) by Fig. 1

(A) shows the behavior of two solutions of the system (4.1) for two initial values:
the dash line shows the trajectory of the solution (x1(t), y1(t)) with x1(0) =
0.97, y1(0) = .42 and the solid line corresponds to the solution (x2(t), y2(t))
with x2(0) = 0.935, y2(0) = 0.36.
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Fig. 1.

(B) shows the graph of |x1(t)−x2(t)|+|y1(t)−y2(t)|. We see that limt→∞ |x1(t)−
x2(t)|+ |y1(t)− y2(t)| = 0. That illustrates the result in Theorem 3.1.
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