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PSEUDO-DIFFERENTIAL OPERATORS RELATED TO
ORTHONORMAL EXPANSIONS OF

GENERALIZED FUNCTIONS AND APPLICATION
TO DUAL SERIES EQUATIONS

NGUYEN VAN NGOC

Abstract. The aim of the present work is to introduce some functional spaces
for investigating pseudo-differential operators involving orthogonal expansions
of generalized functions and their application to dual series equations.

1. Introduction

The purpose of the present work is to introduce some functional spaces for
investigating pseudo-differential operators of the form

A[u](x) =
∞∑

n=0

a(n)û(n)ψn(x), x ∈ J,(1.1)

where J is a certain interval of real axis R, {ψn(x)}∞n=0 is an orthonormal sequence
of functions in L2, û(n) denotes the value of the generalized function u on the
function ψn(x) , a(n) is a known function and is called the symbol of the operator
A[u].

Quite a number of problems of mechanics and mathematical physics are re-
duced to the investigation of the operators in the form (1.1) and to resolution of
correlative dual series equations (see [2,4]). Formal techniques for solving such
equations have been developed vigorously, but their solvability so far as we know
has been considered comparatively weakly(see[2,4]).

Our work is constructed as follows. In Sections 2 we recall some definitions and
results from the theory of orthonormal series expansions for generalized functions
[5], in Sections 3 and 4 we construct some functional spaces for the investigation
of the pseudo-differential operator (1.1). These spaces are constructed by a way
analogous to that used for the construction of Sobolev- Slobodeskii spaces based
on the Fourier transform in [1]. We present these results for investigation of dual
series equations in the Section 5.
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2. Integral transform of generalized functions

We denote by J a certain interval of the real axis and by N the linear differential
operator of the form

N = θ0(x)Dn1θ1(x)Dn2 ...Dnmθm(x),

where D = d/dx, nk are positive integer numbers, θk(x) are infinitely differen-
tiable functions on J and θk(x) 6= 0, ∀x ∈ J. We also require that

N = θm(x)(−D)nm ...(−D)n2θ1(x)(−D)n1θ0(x),

where θk(x) denotes the complex-conjugate of the function θk(x). Besides, one
supposes that there exist a sequence {λn}∞0 of real numbers, called eigenvalues
of the operator N and a sequence {ψn(x)} of infinitely differentiable functions
from L2(J), called eigenfunctions of the operator N , for which |λn| → ∞ when
n→ ∞(|λ0| 6 |λ1| 6 |λ2| 6 ...) and

Nψn(x) = λnψn(x), n = 0, 1, ...

Suppose that functions ψn(x) generate an orthonormal sequence in L2(J) with
respect to the scalar product and the norm

(u, v) =
∫

J
u(x)v(x)dx, ||u|| =

√
(u, u).

Besides, we assume also that λn = 0(nq), q ∈ R, n→ ∞.

Definition 2.1. Denote by A the space of test functions ϕ(x) such that:
1) ϕ(x) ∈ C∞(J),
2) ∀k = 0, 1, 2...;αk(ϕ) := ||N kϕ|| <∞,

3) (N kϕ, ψn) = (ϕ,N kψn).

The sequence{ϕn(x)}∞n=0 of functions from A is called convergent in A to zero,
if αk(ϕn) → 0 when n→ ∞, ∀k = 0, 1, 2, ...

Obviously, A is a linear space and ψn(x) ∈ A. In [5] it was shown that A is a
complete space and besides, D(J) ⊂ A ⊂ L2(J), where D(J) is the space of basic
functions [5].

Theorem 2.1. It ϕ ∈ A then

ϕ(x) =
∞∑

n=0

(ϕ, ψ)ψ(x),

where the series converges in A.

Theorem 2.2. The series
∞∑

n=0

anψn(x) converges in A if and only if the series

∞∑

n=0

|an|2|λn|2k converges for any non-negative integer number k.
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Definition 2.2. A generalized function is any continuous linear functional on the
space A. We denote by A′ the set of all generalized functions and by < f, ϕ >
the value of the generalized function f ∈ A′ on the test function ϕ ∈ A. The
value of f ∈ A′ on ϕ ∈ A we denote by (f, ϕ). Like this, (f, ϕ) =< f, ϕ > .

In [5] it was shown that the space A′ is complete and L2(J) ⊂ A′ ⊂ D′(J ),
where D′(J ) is the conjugate space of D(J ). Hence, every function f(x) ∈ L2(J)
determines a regular functional f by the formula

(f, ϕ) =
∫

J
f(x)ϕ(x)dx, ϕ ∈ A ⊂ L2(J).(2.1)

Theorem 2.3. The series
∞∑

n=0

bnψn(x) converges in A′ if and only if there exists

a non-negative integer number q, such that the series
∞∑

λn 6=0

|bn|2|λn|−2q converges.

Theorem 2.4. If f ∈ A′ then f is expanded to the series

f =
∞∑

n=0

(f, ψn)ψn(x),(2.2)

where the series is convergent in A′.

Theorem 2.5. If f, g ∈ A′ and (f, ψn) = (g, ψn), ∀n, then f = g in the sense of
A′.

Remark 1. If f ∈ A′ and Fn = (f, ψn), then there exists an integer number r,
such that Fn = 0(|λn|r), r ∈ R when n→ ∞.

Definition 2.3. We consider the orthonormal expansion (2.2) as the inverse for-
mula, defining a certain integral transform of generalized functions, which is given
by the formula

f̂(n) := S[f ](n) := (f, ψn) , f ∈ A′ , n = 0, 1, 2, ...(2.3)

Note that when f ∈ L2(J), in virtue of (2.1), formula (2.3) has the form

f̂(n) =
∫

J
f(x)ψn(x)dx.

The inverse mapping S−1 is given by the formula (2.2) and may be represented
in the form

S−1[f̂(n)](x) :=
∞∑

n=0

f̂(n)ψn(x) = f.(2.4)

Definition 2.4. The generalized differential operator N ′ is defined by the fol-
lowing equality

(N ′f, ϕ) = (f,Nϕ), f ∈ A′, ϕ ∈ A.(2.5)
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In the sequel we shall identify N ′ with N and understand the generalized dif-
ferential operator N in the sense (2.5). Thus, the operator N defines a continuous
mapping from A′ into A′. Therefore, for any generalized function f ∈ A′ there
exist derivatives N kf , besides

S[N kf ] = (N kf, ψn) = (f,N kψn) = λk
nS[f ](n).(2.6)

The formula (2.6) may be used for solving differential equations in the form

P (N )u = f,(2.7)

where P (x) is a certain polynomial with constant coefficients. Indeed, applying
the operator S to the equation (2.7) and using (2.6), we have

P (λn)û(n) = f̂(n).(2.8)

Assume that P (λn) 6= 0(∀n), from (2.8) it follows that

û(n) =
f̂ (n)
P (λn)

.(2.9)

Applying to (2.9) the operator S−1 defined by the formula (2.4), one gets

u(x) = S−1
[ f̂(n)
P (λn)

]
(x) =

∞∑

n=0

f̂(n)
P (λn)

ψn(x).(2.10)

3. The space Hs

Definition 3.1. Let s be a real number. Denote by Hs the set of generalized
functions f ∈ A′, such that

||f ||2s :=
∞∑

n=0

(1 + |n|)2s|f̂(n)|2 <∞,(3.1)

where f̂(n) = S[f ](n). The scalar product in Hs is defined by the formula

(f, g)s :=
∞∑

n=0

(1 + |n|)2sf̂(n)ĝ(n).(3.2)

Consider some examples of the spaceHs. If s = 0 then from (3.1) it follows that

{f̂(n)} ∈ l2 :
∞∑

n=0

|fn|2 < ∞, therefore, f(x) = S−1[f̂(n)](x) ∈ L2(J). Let s = m

be a positive integer number, J = (−π, π) and S the finite Fourier transform ,
then Hs turns to the Sobolev space Wm

2 (−π, π).
Note that, in virtue of Theorems 2.1 and 2.2, we have A ⊂ Hs for any s ∈ R.

Hence, for any u ∈ Hs and ϕ ∈ A, in virtue of Cauchy-Schwarz inequality we
have

|(u, ϕ)| = |(u,
∞∑

n=0

ϕ̂ψn(x))| = |∞n=0û(n)ϕ̂(n)| 6 ||u||s||ϕ||−s.(3.3)
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Definition 3.2. Let α be a real number. Denote by σα the class of functions
a(n) satisfying the condition

|a(n)| 6 C(1 + |n|)α, ∀n = 0, 1, 2, ...(3.4)

where C is a certain positive constant. We shall say that the function a(n) belongs
to the class σ0

α if a(n) ∈ σα and a(n) > 0. Finally, the function a(n) belongs to
the class σ+

α if a(n)± ∈ σ±α, respectively.

Theorem 3.1. Assume that a(n) ∈ σα, u ∈ Hs, û(n) = S[u](n). Then the pseudo-
differential operator

A[u](x) := S−1[a(n)û(n)](x) :=
∞∑

n=0

a(n)û(n)ψn(x)(3.5)

is bounded from Hs into Hs−α. If a(n) ∈ σ−β, where β > 1/2, then the operator
A is completely continuous in Hs.

Proof. In virtue of Remark 1 and (3.4), a(n)û(n) is the slow growth at infinity.
Due to Theorem 2.3 the series (3.5) converges in A′ to certain function v :=
A[u] ∈ A′. We show that v ∈ Hs−α. Indeed, applying the operator S to both
parts (3.5), we have

v̂(n) = Â[u](n) = a(n)û(n).(3.6)

Multiplying by(1 + |n|)s−α both parts (3.6), taking into account that (1 +
|n|)−α|a(n)| 6 C for all n, we have

||v||2s−α = ||A[u]||2s−α 6 C

∞∑

n=0

(1 + |n|)2s|û(n)|2 = C||u||2s.(3.7)

The inequality (3.7) shows that A[u](x) ∈ Hs−α. Now we assume that α =
−β, β > 1/2. Let δij be the Kronecker symbol. We rewrite (3.6) in the form

v̂(n) =
∞∑

j=0

a(j)û(j)δnj.(3.8)

Multiply by (1 + |n|)s both parts (3.8) and denote fn = (1 + |n|)sv̂(n), gn =
(1 + |n|)sû(n), f = {fn}, g = {gn}. Obviously, f, g ∈ l2 and we have

fn =
∞∑

j=0

gja(j)δnj
(1 + |n|)s

(1 + |j|)s
.(3.9)

Then (3.9) defines a certain linear continuous operator L : f = Lg from l2 into
l2. In virtue of Cauchy- Schwarz inequality, we have

||Lg||2l2 6
∞∑

j=0

|gj|2
∞∑

j=0

∞∑

n=0

∣∣∣a(n)δnj
(1 + |n|)s

(1 + |j|)s

∣∣∣
2

=
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=
∞∑

j=0

|gj |2
∞∑

n=0

|a(n)|2 6
∞∑

j=0

|gj |2
∞∑

n=0

C2

(1 + |n|)2β
(β > 1/2).

Thus, we get

||L||2 6
∞∑

j=0

∞∑

n=0

∣∣∣a(n)δnj
(1 + |n|)s

(1 + |j|)s

∣∣∣
2

=
∞∑

n=0

|a(n)|2 <∞.(3.10)

Now we prove that the operator L is completely continuous. Indeed, let
{αm(j)}, (m= 1, 2, ...) be a complete orthonormal basic in l2(0 6 j <∞) :

(αm, αk) :=
∞∑

j=0

αmjαkj = δmk.

Then {αm(j)αk(n)}∞m,k=1 is a complete orthonormal basic in l2([0 6 j <∞)×[0 6
n <∞)). Denote

A(n, j) := δnja(j)
(1 + |n|)s

(1 + |j|)s

and rewrite (3.9) in the form

fn = L[g](n) =
∞∑

j=0

A(n, j)gj.

In virtue of (3.10), we have A(n, j) ∈ l2([0 6 j <∞)× [0 6 n <∞)), hence there
is the orthonormal expansion

A(n, j) =
∞∑

m,k=1

λmkαm(n)αk(j).

For arbitrary element g = {gj} ∈ l2, we put

AN (n, j) =
N∑

m,k=1

λmkαm(n)αk(j).

LN [g](n) =
∞∑

j=0

AN (n, j)gj =
N∑

m=1

αm(n)
( N∑

k=1

λmkβk

)
,

where

βk =
∞∑

j=0

αk(j)gj.

It is clear that the operator LN is completely continuous in l2. Since AN (n, j) is
a partial sum of the Fourier series of functions AN(n, j), we have

∞∑

n,j=0

|A(n, j)− AN(n, j)|2 → 0, (N → ∞).
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Therefore, applying the estimation (3.10) to the operator L− Ln, we have

||L− LN || → 0, (N → ∞).

Thus, L is a completely continuous operator. Like this, there exists the sub-
sequence {fn′} converging in l2, therefore, there exists a subsequence {v̂(n′)} =
{S[Au](n′)} converging in Ĥs := S[Hs], this means that one has found a sequence
{vn′} = {A[u](n′)} converging in Hs. The proof of Theorem 3.1 is complete.

Theorem 3.2. Let H∗
s be the conjugate space of the space Hs. Then H∗

s is iso-
morphic to the space H−s. Besides, the value of a functional f ∈ H−s on an
element u ∈ Hs is given by the formula

(u, f)0 =
∞∑

n=0

û(n)f̂(n),(3.11)

where f̂(n) = S[f ](n) = (f, ψn), û(n) = S[u](n) = (u, ψn).

Proof. According to Riesz theorem on the general form of linear continuous func-
tional in Hilbert spaces any functional φ(u), u ∈ Hs is given by an element v ∈ Hs

and its norm ||φ|| = sup
||u||s=1

|φ(u)| equals ||v||s.

Denote

f̂(n) = (1 + |n|)2sv̂(n), f = S−1[f̂ ].(3.12)

Then f ∈ H−s, ||f ||−s = ||v||s and (u, v)s = (u, f), where

(u, f) =
∞∑

n=0

û(n)f̂(n).(3.13)

Like this, (3.12) establishes an isomorphism between H∗
s and H−s, besides, the

value of the functional f ∈ Hs on the element u ∈ Hs is given by the formula
(3.13).The proof of Theorem 3.2 is complete.

In virtue of Theorem 3.2, we put H∗
s ' H−s.

4. The spaces H◦
s (Ω) and Hs(Ω)

Let Ω be a certain subset of J . Let us introduce the following definitions.

Definition 4.1. Denote by H◦
s (Ω) the space defined as the closure of the set

C∞
0 (Ω) of infinitely differentiable functions with a compact support in Ω with

respect to the norm (3.1). The norm in H◦
s (Ω) is defined by the same (3.1).

Thus, H◦
s (Ω) is a subspace of Hs.

Definition 4.2. The space Hs(Ω) is defined as the set of generalized functions
f from D′(Ω) having extensions lf ∈ Hs. The norm in Hs(Ω) is defined by the
formula

||f ||Hs(Ω) := inf
l
||lf ||s,(4.1)
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where the infimum is taken over all possible extensions lf ∈ Hs.

Lemma 4.1. Assume that u ∈ H◦
s (Ω), v ∈ H◦

−s(Ω′),Ω∪Ω′ = J. Then (u, v) = 0,
where (u, v) denotes the value of the generalized function u on the elment v.
Contrarily, if v ∈ H−s and (u, v) = 0 for all u ∈ H◦

s (Ω), then v ∈ H◦
−s(Ω′).

Proof. Assume that u ∈ H◦
s (Ω), v ∈ H◦

−s(Ω
′). According to the definition of the

support of generalized functions we have (u, ϕ) = 0, ∀ϕ ∈ C∞
0 (Ω′). Since the

set C∞
0 (Ω′) is dense in H◦

−s(Ω
′), therefore from the inequality (3.3) it follows

that (u, v) = 0 for all u ∈ H◦
s (Ω), v ∈ H◦

−s(Ω
′). Now assume that v ∈ H−s

and (u, v) = 0, ∀u ∈ H◦
s (Ω). Then, in particular, (v, ϕ) = (ϕ, v) = 0 for any

ϕ ∈ C∞
0 (Ω), this means suppv ⊂ Ω′, that is v ∈ H◦

−s(Ω
′). The proof of Lemma

4.1 is complete.

Theorem 4.2. Let u ∈ H◦
s (Ω), f ∈ H−s(Ω) and lf be an extension of the func-

tion f from Ω to J belonging to H−s(Ω), then the series

[u, f ] := (u, lf) =
∞∑

n=0

S[u](n)S[lf ](n)(4.2)

does not depend on the choice of the extension lf . Therefore, this series defines
a linear continuous functional on H◦

s (Ω). Conversely, for every linear continuous
functional φ(u) on H◦

s (Ω) there exists an element f ∈ H−s(Ω) such that Φ(u) =
[u, f ] and ||φ|| = ||f ||H−s(Ω).

Proof. Obviously the series (4.2) is convergent. Let l′f be another extension of
the function f . Then we have lf − l′f ≡ 0 on Ω. Due to Lemma 4.1 we have
(u, lf − l′f) ≡ 0, ∀u ∈ H◦

s (Ω) and ∀f ∈ H−s(Ω). From (4.2) it follows that
|(u, lf)| 6 ||u||s||lf ||−s. Since (u, lf) does not depend on the choice of lf then

|(u, lf)| 6 ||u||sinf
l
||lf ||−s = ||u||s||f ||H−s(Ω).(4.3)

Thus, every element f ∈ H−s(Ω) gives a continuous functional on H◦
s (Ω) by

the formula (4.2). Let Φ(u) be a linear continuous functional on Ho
s (Ω). The

space Ho
s (Ω) ⊂ Hs is a Hilbert space with respect to the scalar product (3.2).

Therefore, due to Riesz Theorem there exists a function v ∈ H◦
s (Ω), such that

φ(u) = (u, v)s. We put f̂0(n) = (1 + |n|)2sv̂(n), f0 = S−1[f̂(n)]. Then f0 ∈
H−s, pf0 = f ∈ H−s(Ω), where p denotes the restriction operator to Ω. We
have φ(u) = (u, v)s = (u, f0) and ||φ|| = ||v||s = ||f0||−s > ||f ||H−s(Ω). On the
other hand, in virtue of (4.3) we have ||φ|| = sup

||u||s=1
|φ(u)| 6 ||f ||H−s(Ω). Like this,

||φ|| = ||f ||H−s(Ω). The proof of Theorem 4.2 is complete .

Let H◦∗
s (Ω) be the conjugate space of the space H◦

s (Ω). In virtue of Theorem
4.2 we put H◦∗

s (Ω) ' H−s(Ω).

Theorem 4.3. Assume that b(n) ∈ σ2s−β(β > 1/2), u ∈ H◦
s (Ω) and p is the

resriction operator to Ω. Consider the following pseudo-differential operator

B[u] = pS−1[b(n)û(n)](x), û(n) = S[u](n).
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Then the operator B from H◦
s (Ω) to H−s(Ω) is completely continuous.

Proof. It is not difficult to show that the operator B is continuous operator from
H◦

s (Ω) into H−s+β(Ω). We put

A[u] = S−1[b(n)û(n)](x), f = pJ−sA[u], Lf = plf,(4.4)

where J−s denotes the embedding operator to H−s, l and p are the extension and
restriction operators respectively. We have L[f ] = B[u], besides, the operator
L is bounded from H−s(Ω) into H−s+β(Ω). Let l0L[f ] be a certain continuous
extension of L[f ] (in view of Hahn-Banach Theorem). Denote by Λβ the pseudo-
differential operator of the form (1.1) with the symbol (1 + |n|)β. We have

L[f ] = pΛ−βΛβl0L[f ].
According to Theorem 3.1 the operator Λ−β(β > 1/2) is completely continuous in
H−s(J), Λβl0L and p are continuous operators, then L is completely continuous
in H−s(Ω). The proof of Theorem 4.3 is complete.

5. Dual series equations

5.1. Preparation. Let J1 and J2 be certain subsets of J, such that J1 ∪ J2 = J.
In this section we shall consider the following dual series equation:

p1S
−1[a(n)û(n)] = f1(x), x ∈ J1,(5.1)

p2S
−1[û(n)](x) = f2(x), x ∈ J2,(5.2)

where û(n) is a function to be found, the function a(n) is given and is called the
symbol of the dual equation (5.1)-(5.2), f1(x) ∈ D′(J1) and f2(x) ∈ D′(J2) are
given distributions on J1 and J2 respectively, finally, p1 and p2 are restriction
operators to J1 and J2 respectively.

We shall investigate the dual equation (5.1)-(5.2) under the following assump-
tions

a(n) ∈ σo
2α, f1(x) ∈ H−α(J1), f2(x) ∈ Hα(J2)(5.3)

and we shall find the function û in the form û = S[u], where u ∈ Hα.

Theorem 5.1 (Uniqueness). Under the assumptions (5.3) the dual equation (5.1)–
(5.2) has at most one solution u = S−1[û] ∈ Hα.

Proof. To prove the theorem it suffices to show that the homogeneous dual equa-
tion

p1S
−1[a(n)û(n)] = 0 x ∈ J1,

p2S
−1[û(n)](x) = u(x) = 0, x ∈ J2

has only the trivial solution.
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Since u ∈ H◦
α(J1) the last dual equation may be rewritten as

(Au)(x) = 0, x ∈ J1,(5.4)

where

(Au)(x) := p1S
−1[a(n)û(n)](x), x ∈ J1.(5.5)

Since Au ∈ H−α(J1) ' H◦∗
α (J1)(see Theorem 4.2) we obtain from (4.2)

[u,Au] =
∞∑

0

S[u](n)S[l1Au](n),(5.6)

where l1Au is an arbitrary extension of Au from J1 onto J : l1Au ∈ H−α. Since
the series on the right-hand side of (5.6) does not depend upon the choice of l1Au
(see Theorem 4.2) we can take

l1Au = l1p1S
−1[a(n)û(n)](x) = S−1[a(n)û(n)](x).

Then we have

[u,Au] =
∞∑

0

a(n)|û(n)|2 = 0

if the function u(x) = S−1[û(n)](x) satisfies the equation (5.4). From this it
follows that u ≡ û ≡ 0 since a(n) > 0(a(n) 6≡ 0). The proof of Theorem 5.1 is
complete.

Lemma 5.2. The dual equation (5.1)-(5.2) is equivalent to the following equation

p1S
−1[a(n)v̂(n)](x) = f1(x)− p1S

−1[a(n)l̂2f2(n)](x),(5.7)

where v = S−1[v̂] ∈ H◦
α(J1) satisfies the condition

v + l2f2 = u ∈ Hα(5.8)

(l2f2 ∈ Hα being an arbitrary extension of the function f2 from J2 onto J).

Proof. Assume that u ∈ Hα satisfies the dual equation (5.1)-(5.2) and l2f2 ∈ Hα

is an arbitrary extension of the function f2 ∈ Hα(J2). Taking v = u− l2f2 we get
v ∈ H◦

α(J1). Putting (5.8) into (5.1) we have (5.7). The right-hand side of (5.7)
belongs to H−α(J1) in view of Theorem 3.1 and Theorem 3.2.

Conversely, assume that v ∈ H◦
α(J1) satisfies the equation (5.7). Then obvi-

ously, the function u defined by (5.8) belongs to Hα. We shall prove that this
function satisfies the dual equation (5.1)-(5.2) in the sense of distributions. In-
deed, in transfering the second member in the right-hand side of (5.7) to the
left-hand side and using (5.8) we obtain the equality (5.1). Finally, the equality
(5.2) follows from (5.8). The proof of Lemma 5.2 is complete.

Denote

h(x) = f1(x)− p1S
−1[a(n)l̂2f2(n)](x).(5.9)

Using (5.5) we can rewrite (5.7) in the form

(Av)(x) = h(x), x ∈ J1.(5.10)
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Our purpose now is to establish the existence of solution of the equation (5.10)
in the space H◦

α(J1). We shall consider the following cases.

5.2. The case a(n) = a+(n) ∈ σ+
2α. It is clear that in this case the norm and

the scalar product in Hα defined by (3.1) and (3.2) respectively are equivalent to
the following

||v||2a+ =
∞∑

n=0

a+(n)|v̂(n)|2,(5.11)

(v, w)a+ =
∞∑

n=0

a+(n)v̂(n)ŵ(n).(5.12)

We shall also write A+v instead of Av.

Theorem 5.3. (Existence). If h ∈ H−α(J1), a(n) = a+(n) ∈ σ+
2α then the equa-

tion (5.10) has a unique solution v ∈ H◦
α(J1).

Proof. By an argument similar to that used in the proof of the Theorem 4.2 we
can show that

[w,A+v] =
∞∑

n=0

a+(n)ŵ(n)v̂(n) = (w, v)a+

for arbitrary functions v and w belonging to H◦
α(J1), where [w,A+v] is defined

by the formula (4.2). Therefore, if v ∈ H◦
α(J1) satisfies the equation (5.10) then

the following equality holds

(w, v)a+ = [w, h], ∀w ∈ H◦
α(J1).(5.13)

We shall demonstrate that if (5.13) holds for any w ∈ H◦
α(J1) then the function

v will satisfy the equation (5.10) in the sense of D′(J1). In fact, noting that (5.13)
holds for w = ϕ ∈ C∞

0 (J1) we get from (2.4) and (4.2):

[ϕ, h] =
∞∑

0

S[ϕ]S[l1h](n) = (l1h, ϕ),

(ϕ, v)a+ =
∞∑

0

S[ϕ](n)S[S−1[a+(n)v̂(n)] = (S−1[a+(n)v̂(n)], ϕ).

Hence we have

(S−1[a+(n)v̂(n)], ϕ) = (l1h, ϕ), ∀ϕ ∈ C∞
0 (J1),

i. e.
p1S

−1[a+(n)v̂(n)](x) = p1l1h(x) = h(x), x ∈ J1.

We now return to the relation (5.13). Since [w, h] is a linear continuous func-
tional on the Hilbert space H◦

α(J1), then by virtue of Riesz theorem there exists
a unique element v0 ∈ H◦

α(J1) such that

[w, h] = (w, v0)a+ , ∀w ∈ H◦
α(J1)
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and moreover

||v0||a+ 6 C||h||H−α(J1),(5.14)

where C is a positive constant. The proof of Theorem 5.3 is complete.

Remark 2. It is easily seen that the inverse operator (A+)−1 is bounded from
H−α(J1) onto H◦

α(J1). This follows from Theorem 5.3 and the inequality (5.14).

Remark 3. The solution u of the dual series equation (5.1)-(5.2) expressed in
terms of the solution v of the equation (5.7) by the formula (5.8) does not depend
on the choice of the extension l2f2. This fact follows from the uniqueness of
solution of the dual equation (5.1)-(5.2). Hence, we can choose the extension l2f2
such that

||l2f2||α 6 Co||f2||Hα(J2),

where Co is a certain positive constant.

In this case, from (5.8), (5.9) and (5.14) it is easy to obtain the following
estimate

||u||α 6 C(||f1||H−α(J1) + ||f2||Hα(J2)),(5.15)

where C = constant > 0. Therefore, the solution of the dual equation (5.1)-(5.2)
depends continuously upon the functions given on the right-hand side.

5.3. The case a(n) ∈ σo
2α. Assume in addition that there is a function a+(n) ∈

σ+
2α such that

b(n) := a(n) − a+(n) ∈ σ2α−β , β > 1/2.(5.16)

We now represent the operator A defined by (5.5) in the form A = A+ + B,
where

A+v := p1S
−1[a+(n)v̂], Bv := p1S

−1[b(n)v̂].(5.17)

Theorem 5.4. (Existence). Under the condition (5.16) for every f1 ∈ H−α(J1)
and f2 ∈ Hα(J2) the dual series equation (5.1)-(5.2) has a unique solution u ∈
Hα.

Proof. According to Lemma 5.2 the dual series equation (5.1)-(5.2) is equivalent
to the equation (5.5). In virtue of Remark 2 the operator (A+)−1 is bounded from
H−α(J1) into H◦

α(J1) and in virtue of Theorem 4.3 the operator B is completely
continuous from H◦

α(J1) into H−α(J1). Therefore, the operator A = A+ + B
is a Fredholm operator and from the uniqueness of solution it follows that the
dual series equation (5.1)-(5.2) has a unique solution u ∈ Hα. The proof is
complete.

Example 1. Consider the following problem [5]. Find a function v(x, y) satisfy-
ing the Laplace equation

vxx + vyy = 0, 0 < x < π, 0 < y <∞
with boundary conditions:
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i) If x → +0, or x → π − 0, then v(x, y) uniformly converges to zero on
Y 6 y <∞, ∀Y > 0.

ii) If y → ∞, then v(x, y) uniformly converges to zero on 0 < x < π.
iii) If y → +0, then v(x, y) → f(x) ∈ D′(0, a) on 0 < x < a and vy(x, y) →

g(x) ∈ D′(a, π) on a < x < π.

It is not difficult to show that the function v(x, y) has the form

v(x, y) =

√
2
π

∞∑

n=1

û(n)
n

e−ny sinnx,

where û(n)(n = 1, 2, ....) are determined by the following dual series equation
√

2
π

∞∑

n=1

û(n)
n

sinnx = f(x), 0 < x < a,(5.18)

√
2
π

∞∑

n=1

û(n) sinnx = −g(x), a < x < π.(5.19)

We put

u(x) := S−1[û(n)](x) =

√
2
π

∞∑

n=1

û(n) sinnx, 0 < x < π,

û(n) = S[u](n) =
(
u,

√
2
π

sinnx
)
.

According to Theorem 5.3 we have that the dual series equation (5.18)-(5.19)
have a unique solution u(x) ∈ H−1/2 ≡ H−1/2(0, π). For simplicity, assume that
g(x) ≡ 0 and the function u(x) is represented in the form

u(x) =
w(x)√
a2 − x2

, 0 < x < a,

where ∫ a

0

|w(x)|2√
a2 − x2

dx <∞.

Then one can show that the function u(x) is a solution of the following integral
equation

1
π

∫ a

0
ln

∣∣∣sin(x+ t)
sin(x− t)

∣∣∣u(t)dt = f(x), 0 < x < a.(5.20)

The integral equation (5.20) can be resolved by the method of orthogonal
polynomials [3].



14 NGUYEN VAN NGOC

References

[1] G. I. Eskin, Boundary value problems for elliptic pseudo-differential equations, Nauka,
Moscow, 1973 (in Russian).

[2] B. N. Mandal, Advances in dual integral equations, Chapman & Hall/CRC Press, Boca
Raton, 1998.

[3] G. Ia. Popov, Concentration of elastic tensions near punches, cuts, thin inclusions and
stiffeners, Nauka, Moscow, 1982 (in Russian).

[4] Ia. S. Ufliand, Method of dual equations in problems of mathematical physics, Nauka,
Leningrad, 1977 (in Russian).

[5] A. H. Zemanian, Generalized integral transformations, Nauka, Moscow, 1974 (Russian trans-
lat.)

Institute of Mathematics
18 Hoang Quoc Viet Road,
10307 Hanoi, Vietnam

E-mail address: nvngoc@math.ac.vn


