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TIKHONOV REGULARIZATION ALGORITHM FOR
PSEUDOMONOTONE VARIATIONAL INEQUALITIES

NGUYEN THANH HAO

Abstract. We establish a convergence theorem for the Tikhonov regular-
ization algorithm applied to finite-dimensional pseudomonotone variational
inequalities. Thus the open question stated by Facchinei and Pang in [1,
p. 1129] is answered in affirmative. Several examples are given to analyze the
obtained results.

1. Introduction

The simplest variational inequality (VI for brevity) is defined as follows.

Definition 1.1. Given a nonempty closed convex subset K of the n-dimensional
Euclidean space Rn and a mapping F : K → Rn, the variational inequality defined
by K and F , which is denoted by VI(K, F ), is the problem of finding a vector
x ∈ K such that

〈F (x), y − x〉 > 0 ∀y ∈ K.

The solution set of this problem is denoted by SOL(K, F ).

One often considers VIs with some additional properties imposed on the map-
ping F such as continuity, strong monotonicity, monotonicity, pseudomonotoni-
city and quasimonotonicity of F . Let us recall some well-known definitions.

Definition 1.2. A mapping F : K → Rn is said to be

(a) strongly monotone on K if

〈F (x) − F (y), x− y〉 > c‖x − y‖2

for all x, y ∈ K, where c > 0 is a constant;
(b) monotone on K if

〈F (x) − F (y), x− y〉 > 0

for all x, y ∈ K;
(c) pseudomonotone on K if, for all x, y ∈ K, the inequality 〈F (y), x− y〉 > 0

implies 〈F (x), x− y〉 > 0;
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(d) quasimonotone on K if, for all x, y ∈ K, the inequality 〈F (y), x − y〉 > 0
implies 〈F (x), x− y〉 > 0.

It is obvious that (a) ⇒ (b) ⇒ (c) ⇒ (d). The reverse implications are not
true in general. The following proposition describes the properties of the solution
set of VI(K, F ).

Theorem 1.1. If F is continuous and pseudomonotone on K, then the solution
set SOL(K, F ) is closed convex. Furthermore, if F is strongly monotone on K,
then SOL(K, F ) is a singleton.

The proof of this proposition can be found in many books (see for instance [1],
[2]).

Consider the problem VI(K, F ). For each ε > 0, we put Fε = F + εI , where
I is the identity mapping in Rn. If the problem VI(K, Fε) has a unique solution,
denoted by x(ε), then the set {x(ε) : ε > 0} is called the Tikhonov trajectory
of VI(K, F ). Under some suitable conditions, the limit lim

ε→0+
x(ε) exists and

it is a solution to VI(K, F ). The procedure of solving the problem VI(K, F )
via calculating a sequence of points {x(εk)} (k ∈ N, εk → 0+ as k → ∞) in
the Tikhonov trajectory and taking the limit lim

k→∞
x(εk) is called the Tikhonov

regularization method.

The following theorem discusses the convergence of the Tikhonov regularization
method in the case where F is continuous and monotone on K. Since Fε = F +εI
is a strongly monotone operator, by Theorem 1.1 (see also [1, Theorem 2.3.3]),
the problem VI(K, Fε) has a unique solution for every ε > 0.

Theorem 1.2 (see [1, Theorem 12.2.3]) Let K ⊂ Rn be nonempty closed convex,
F : K −→ Rn be continuous and monotone on K. Let {x(ε) : ε > 0} be the
Tikhonov trajectory. The following three statements are equivalent:

(a) lim
ε→0+

x(ε) exists;

(b) lim sup
ε→0+

‖x(ε) ‖< ∞;

(c) SOL(K, F ) is nonempty.

Moreover, if any one of these statements holds, the limit in (a) is equal to the
least-norm solution of the problem VI(K, F ).

Remark 12.2.4 in the book [1] says: “It is not clear if Theorem 12.2.3 [Theorem
1.2 above] will remain valid if F is pseudomonotone on K. In this case, although
the VI(K, F ) still possesses a unique least-norm solution, due to the convexity of
SOL(K, F ) [provided that this set is nonempty], the existence and uniqueness of
the Tikhonov trajectory is in jeopardy. We leave this as an unresolved question”.

This question raised by Facchinei and Pang will be answered in the affirmative
in the next section. Some useful examples will be given in the last section.
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2. Convergence theorem

The main result of this paper can be formulated as follows.

Theorem 2.1. Let K ⊂ Rn be a nonempty closed convex set, F : K −→ Rn

be a continuous and pseudomonotone operator on K. Then the following three
statements are equivalent:

(i) SOL(K, Fε) is nonempty for each ε > 0 and lim
ε→0+

x(ε) exists, where x(ε) is

arbitrarily chosen in SOL(K, Fε).

(ii) SOL(K, Fε) is nonempty for each ε > 0 and lim sup
ε→0+

‖x(ε)‖ < ∞, where x(ε)

is arbitrarily chosen in SOL(K, Fε).

(iii) SOL(K, F ) is nonempty.

If any one of these statements is valid, then the limit described in (i) is the
least-norm element in SOL(K, F ).

To prove this theorem we have to rely on the following solution existence
theorems for VIs and pseudomonotone VIs which were established by Facchinei
and Pang.

Lemma 2.1. (see [1, Prop. 2.2.3]) Let K ⊂ Rn be nonempty closed convex and
F : K −→ Rn be continuous on K. Consider the following statements:

(a) There exists a reference vector xref ∈ K such that the set

L< := {x ∈ K : 〈F (x), x− xref〉 < 0}

is bounded (possibly empty).

(b) There exist a bounded open set Ω and a vector xref ∈ K ∩ Ω such that

〈F (x), x− xref〉 > 0 ∀x ∈ K ∩ ∂Ω,

where ∂Ω denotes the boundary of Ω.

(c) The problem VI(K, F ) has a solution.

It holds that (a) ⇒ (b) ⇒ (c). Moreover, if the set

L6 := {x ∈ K : 〈F (x), x− xref〉 6 0}

which is nonempty and larger than L<, is bounded, then SOL(K, F ) is nonempty
and compact.

Lemma 2.2. (see [1, Theorem 2.3.4]) Let K ⊂ Rn be nonempty closed convex
and F : K −→ Rn be continuous and pseudomonotone on K. Then the statements
(a),(b), (c) in Lemma 2.1 are equivalent.

Proof of Theorem 2.1. The implication (i) ⇒ (ii) is obvious.
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(ii) ⇒ (iii). Since lim sup
ε→0+

‖x(ε)‖ < ∞, the sequence {x(ε)}ε>0 must have at

least one accumulation point. Suppose that x(εk) → x, where x ∈ K and εk → 0+

as k → ∞. Since

〈F (x(εk)) + εkx(εk), y − x(εk)〉 > 0 ∀y ∈ K,

taking k → ∞ and employing the continuity of F we get

〈F (x), y − x〉 > 0 ∀y ∈ K.

This means x ∈ SOL(K, F ).
(iii) ⇒ (i). Let us show that if F is pseudomonotone then SOL(K, Fε) is

nonempty for every ε > 0. To prove this, according to Lemma 2.1, it is sufficient
to find a vector xref ∈ K such that the set

Lε
< := {x ∈ K : 〈F (x) + εx, x − xref〉 < 0}

is bounded. By the hypothesis (iii) and Lemma 2.2, there exist xref ∈ K and
M > 0 such that ‖x‖ 6 M for every x belonging to the set L< := {x ∈ K :
〈F (x), x − xref〉 < 0}. For each x ∈ Lε

<, we have 〈F (x) + εx, x − xref〉 < 0 or,
equivalently,

〈F (x), x− xref〉 < 〈εx, xref − x〉.
If 〈εx, xref − x〉 6 0, then 〈F (x), x − xref〉 < 0; that is x ∈ L<, hence ‖x‖ 6 M .
Otherwise, 〈εx, xref − x〉 > 0. This implies 〈x, xref〉 > 〈x, x〉 and therefore we
have ‖x‖ 6 ‖xref‖. Thus

‖x‖ 6 max{M, ‖xref‖} ∀x ∈ Lε
<,

and we can assert that Lε
< is bounded.

Now for an arbitrary sequence εk → 0+, we have SOL(K, Fεk
) 6= ∅ for each

k ∈ N. Take any xk = x(εk) ∈ SOL(K, Fε). Since VI(K, F ) has a solution
and F is continuous and pseudomonotone, SOL(K, F ) must be nonempty closed
and convex by Theorem 1.1. Therefore, the projection of 0 ∈ Rn onto the set
SOL(K, F ), the least-norm element in SOL(K, F ), is uniquely defined. We denote
this element by x.

Since xk ∈ SOL(K, Fεk
) and x ∈ SOL(K, F ), we have

〈F (xk) + εkxk , y − xk〉 > 0 ∀y ∈ K

and
〈F (x), y − x〉 > 0 ∀y ∈ K.

Substituting y = x into the first inequality and y = xk into the second one, we
deduce that

(2.1) 〈F (xk) + εkxk , x− xk〉 > 0

and

(2.2) 〈F (x), xk − x〉 > 0.

By the pseudomonotonicity of F , from (2.2) it follows that

(2.3) 〈F (xk), xk − x〉 > 0.
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Adding the inequalities (2.1) and (2.3) we get

〈εkxk, x − xk〉 > 0.

This implies ‖x‖ > ‖xk‖ for all k. Hence {xk} is a bounded sequence, so it has
a convergent subsequence {xkj}. Suppose that xkj → x̂, x̂ ∈ K. It is easy to see
that ‖x̂‖ 6 ‖x‖. Moreover,

〈F (xkj) + εkj xkj , y − xkj〉 > 0 ∀y ∈ K.

Passing to the limit as j → ∞, we get 〈F (x̂), y−x̂〉 > 0 for all y ∈ K, which shows
that x̂ ∈ SOL(K, F ). Since x is the unique least-norm element in SOL(K, F ),
from the inequality ‖x̂‖ 6 ‖x‖ we deduce that x̂ = x.

Since any subsequence {xεk
} (εk → 0+) of {xε} converges to x, we conclude

that lim
ε→0+

x(ε) = x.

The proof is complete.

The next statement provides some useful information about the solution set
SOL(K, Fε), ε > 0.

In this case, F is pseudomonotone on K and SOL(K, F ) 6= ∅.

Theorem 2.2. Let K ⊂ Rn be a nonempty closed convex set, F : K −→ Rn be
a continuous and pseudomonotone operator on K. If SOL(K, F ) is nonempty,
then the following properties hold:

(a) For any ε > 0, the set SOL(K, Fε) is nonempty and compact.

(b) lim
ε→0+

diam SOL(K, Fε) = 0, where diam M := sup{‖x − y‖ : x ∈ M, y ∈ M}
denotes the diameter of a subset M ⊂ Rn.

Proof.
(a) Applying the implication (iii)⇒ (i) in Theorem 2.1, we see that SOL(K, Fε) 6=

∅ for any ε > 0. Take any xref ∈ SOL(K, F ). According to the last conclusion of
Lemma 2.1, if the set

Lε
6 := {x ∈ K : 〈F (x) + εx, x− xref〉 6 0}

is bounded, then SOL(K, Fε) is a compact set. For any x ∈ Lε
6 we have

(2.4) 〈F (x), x− xref〉 6 ε〈x, xref − x〉.

Since xref ∈ SOL(K, F ), it holds 〈F (xref), x−xref〉 > 0. By the pseudomonotonic-
ity of F , this implies 〈F (x), x − xref〉 > 0. From the last inequality and (2.4) it
follows that

〈x, xref − x〉 > 0.

So
‖x‖‖xref‖ > 〈x, xref〉 > ‖x‖2,

and we deduce that ‖x‖ 6 ‖xref‖. Thus Lε
6 is bounded.



288 NGUYEN THANH HAO

(b) For every ε > 0, by the property (a) there exist x(ε), y(ε) ∈ SOL(K, Fε)
such that

‖x(ε)− y(ε)‖ = diamSOL(K, Fε).
The last conclusion of Theorem 2.1 states that

lim
ε→0+

x(ε) = lim
ε→0+

y(ε) = x,

where x is the the least-norm element in SOL(K, F ). It follows that

lim
ε→0+

diamSOL(K, Fε) = 0.

The proof is complete.

3. Examples

In the case of monotone VIs, the operator Fε of the perturbed problem VI(K, Fε)
is strongly monotone. So VI(K, Fε) has a unique solution. Concerning pseudo-
monotone VIs, it is of interest to know if the operator Fε = F +εI is still pseudo-
monotone and if the problem VI(K, Fε) has a unique solution.

The following example shows that, in general, if F is pseudomonotone then
there may exist ε > 0 such that Fε is not pseudomonotone and VI(K, Fε) has
two distinct solutions.

Example 3.1. Let m be an arbitrary positive integer and F : K = [−2, +∞) →
R be defined by F (x) = 1

m(x2 + 1). It is easy to see that F is not monotone
but pseudomonotone on K. For ε = 5

2m , we have Fε(x) = 1
m(x2 + 5

2x + 1). The
operator Fε is not pseudomonotone. Indeed, choose a value x ∈ (x1, x2) where
x1 = −2, x2 = −1

2 are the roots of the trinomial Fε(x) = 1
m(x2 + 5

2x + 1). Then
we have

Fε(x)(x− x1) < 0,

although Fε(x1)(x− x1) = 0. Moreover, the equalities Fε(x1) = Fε(x2) = 0 show
that x1 and x2 are two distinct solutions of VI(K, Fε).

The next question we want to clarify is whether it is true that if F is pseudo-
monotone and continuous on K, then for any ε > 0 the problem VI(K, Fε) has
finitely many solutions? The answer turns out to be negative.

Example 3.2. Let µ, a, b be positive real numbers. Let F be defined on K = [a, b]
by setting F (x) = −µx. Obviously, F is pseudomonotone on K and SOL(K, F ) =
{b}. We have Fµ(x) = 0 for all x ∈ K. So SOL(K, Fµ) = K, an infinite set.

In the above examples, if ε is chosen small enough then Fε is pseudomonotone
and the problem VI(K, Fε) has a unique solution.

We conclude this section by the following

Open question. If K ⊂ Rn is a nonempty closed convex set, F : K → Rn a
continuous pseudomonotone operator, and the problem VI(K, F ) has a solution,
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then there exists ε̄ > 0 such that, for every ε ∈ (0, ε̄), the operator Fε := F + εI
is pseudomonotone and the problem VI(K, Fε) has a unique solution?

Note added in revision: One part of the above question has been solved in
negative by N. N. Tam, J.-C. Yao and N. D. Yen. Namely, they showed that there
exists a continuously differentiable pseudomonotone operator F : R2 → R2 such
that SOL(R2, F ) 6= ∅ but, for any ε > 0, Fε = F + εI is not a pseudomonotone
operator; see N. N. Tam, J.-C. Yao and N. D. Yen (2006) “On some solution
methods for pseudomonotone variational inequalities” (manuscript).
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