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THE WEIGHTED RELATIVE EXTREMAL FUNCTIONS
AND WEIGHTED CAPACITY

LE MAU HAI, NGUYEN VAN KHUE AND PHAM HOANG HIEP

Abstract. The aim of the present paper is to investigate the weighted relative
extremal functions and weighted capacities with weights in the Cegrell classes
F and E. Some results on the connection between the weighted capacities
with the weighted relative extremal functions are established. Moreover, we
give a characterization of weighted capacities Cn,u through u and prove the
absolute continuity of Cn,u with respect to the Sadullaev’s weighted capacity
Pn,u.

1. Introduction

Pluripotential theory in recent years has seen many important developments.
Many results of potential theory on the complex plane were extended successfully
to Cn. For example, the Cartan theorem on the polarity of the set {u < u∗} on
C was generalized to Cn by Bedford - Taylor. By constructing the theory of the
Monge-Ampère operator for locally bounded plurisubharmonic functions on Cn

they established pluripolarity of the negligible sets (see [3]). The Green func-
tion with one pole on C, the main tool solving the Dirichlet problem, also has
been extended to the Green functions with one or many poles in Cn. Some au-
thors have tried to extend results of normal pluripotential theory to the weighted
pluripotential theory. In 1988-1989 E. Bedford introduced the weighted capacity
Cϕ(E,Ω) and the weighted relative extremal function ϕ̃K (see [2]) (for details see
the precise definitions in the next sections). In 2004, using the notion of weighted
capacity of Bedford, U.Cegrell, S.Kolodziej and A.Zeriahi gave a condition under
which a negative plurisubharmonic function on a hyperconvex domain Ω in Cn

belongs to the Cegrell class E(Ω) (see Proposition 2.2 in [8]). Next, T. Bloom and
N. Levenberg in the paper [4] considered the weighted Siciak extremal function
VK,Q with the weight Q. They proved that if K ⊂ Cn is compact and {wj} is a
sequence of admissible weights on K with wj ↘ w, Qj = − logwj , Q = − logw,
then

lim
j
VK,Qj(z) = VK,Q(z)

for z ∈ Cn. Moreover, the Monge - Ampère measures (ddcV ∗
K,Qj

)n converge
weakly to (ddcV ∗

K,Q)n (see Lemma 7.3 in [4]).
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In this paper we continue to investigate properties of weighted relative ex-
tremal functions h∗E,u associated to the function u in the case u is in the Cegrell
classes F and E . Next we look for the relationship between the weighted capacity
Cn,u(E,Ω) with h∗E,u and give a capacity characterization of Cn,u.

The paper is organized as follows. Beside the introdution the paper contains
four sections. In section 2 we recall some backgrounds of pluripotential theory
and the Cegrell classes F and E . In section 3 we give the definition of weighted
relative extremal functions and study their properties. Section 4 is devoted to
present the weighted capacity. We prove that in the case u ∈ F ,

Cn,u(E) =
∫

Ω
(ddch∗E,u)n = inf{

∫
(ddcv)n : v 6 u on E}.

Finally, in section 5 we give a characterization of capacity Cn,u in terms of u and
establish the absolute continuity of Cn,u and the Sadullaev’s weighted capacity
Pn,u.

2. Some backgrounds of pluripotential theory
and the Cegrell classes

Let Ω be a domain in Cn and by PSH(Ω) we denote the convex cone of plurisub-
harmonic (psh)- functions on Ω. Ω is said to be hyperconvex if there exists a
negative exhaustion psh function on Ω.
A subset E of Ω is said to be pluripolar if there exists a ϕ ∈ PSH(Ω), ϕ 6= −∞
and E ⊂ {ϕ = −∞}.
As in [3] the Cn-capacity of a Borel subset E ⊂ Ω is given by

Cn(E) = Cn(E,Ω) = sup{
∫

E

(ddcv)n : v ∈ PSH(Ω),−1 6 v 6 0}.

Throughout this paper some property on Ω is called to satisfy q.e in Cn-capacity
on Ω if it is satisfied outside a pluripolar set of Ω.

We deal with the following classes F and E of psh functions introduced and
investigated by Cegrell in [6] and [7]:

E0 = E0(Ω) = {ϕ ∈ PSH(Ω)∩ L∞(Ω) : lim
z→∂Ω

ϕ(z) = 0,
∫

Ω

(ddcϕ)n <∞},

F = F(Ω) =
{
ϕ ∈ PSH(Ω) : ∃ E0 3 ϕj ↘ ϕ, sup

j

∫

Ω

(ddcϕj)n <∞
}
,

E = E(Ω) =
{
ϕ ∈ PSH(Ω) : ∀z0 ∈ Ω, ∃ a neighbourhood ω 3 z0,

E0 3 ϕj ↘ ϕ on ω, sup
j

∫

Ω

(ddcϕj)n <∞
}
.

It is obvious that E0 ⊂ F ⊂ E .

Theorem 2.1. ([7]) The class E has the following properties:
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(1) E is a convex cone.
(2) If u ∈ E, v ∈ PSH−(Ω) = {ϕ ∈ PSH(Ω) : ϕ 6 0

}
then max(u, v) ∈ E .

(3) If u ∈ E then (ddcu)n is defined as a positive Borel measure on Ω and
PSH(Ω)∩ L∞

loc 3 uj ↘ u then (ddcuj)n weakly converges to (ddcu)n.
(4) ∀u ∈ E and ∀K b Ω ∃ũ ∈ F such that ũ = u on K.

We say that u ∈ Fa if u ∈ F and for every pluripolar set E ⊂ Ω we have∫
E

(ddcu)n = 0.

3. Weighted relative extremal functions
and their basic properties

We recall the following definition of weighted relative extremal functions and
study their basic properties.

Definition 3.1. Let E be a subset of a bounded hyperconvex domain Ω in Cn

and u ∈ E(Ω). Put

hE,u = sup
{
v : v ∈ PSH−(Ω), v 6 u on E

}
.

The function hE,u is called the weighted relative extremal function associated to
E and u.

As usual we denote by h∗E,u the upper-semicontinuous regularization of hE,u.
Now we give some properties of h∗E,u.

Proposition 3.1. (i) h∗E,u ∈ E(Ω) and h∗E,u = hE,u q.e in Cn-capacity.

(ii) h∗E∪F,u = h∗E,u for all pluripolar sets F ⊂ Ω.

(iii) supp(ddch∗E,u)n ⊂ E.

Proof. (i) Because of the equality h∗E,u = max(h∗E,u, u) and u ∈ E then Theorem
4.5 in [7] implies that h∗E,u ∈ E . On the other hand, by [3] h∗E,u = hE,u q.e - Cn-
capacity.
(ii) Take ϕ ∈ PSH−(Ω), ϕ 6= −∞ such that ϕ = −∞ on F . Let v ∈ PSH−(Ω)
and v 6 u on E. Then v + εϕ 6 u on E ∪ F for every ε > 0. It follows that
v(z) 6 u(z) for z ∈ (E ∪ F ), ϕ(z) > −∞. Hence v 6 u on E ∪ F . Take the
supremum over all v ∈ PSH−(Ω), v 6 u on E we deduce that h∗E,u 6 h∗E∪F,u.
The opposite inequality is obvious and the desired equality follows.
(iii) First we consider the case E b Ω. The proof of Theorem 4.2 in [7] implies
that there exists v ∈ F such that v = u on E. Hence by [7, Theorem 4.5] it
follows that h∗E,u = max(h∗E,u, v) ∈ F . Thus hE,u can be defined by

hE,u = sup{v : v ∈ F , v 6 u on E}.

By Choquet’s lemma [5] we can find an increasing sequence {vj} ⊂ F which
converges to h∗E,u q.e-Cn-capacity. Proposition 1.4.10 in [5] implies that for each
j > 1 we can find v̂j ∈ PSH−(Ω) such that vj 6 v̂j , vj = v̂j on Ω \ B(a, r) and
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v̂j is maximal in B(a, r) where B(a, r) is an arbitrary ball of radius r > 0 with
center at a in Ω \E.
Note that v̂j ∈ F and because Ω \ B(a, r) ⊃ E then v̂j 6 u on E. It follows that
v̂j ↗ h∗E,u q.e- Cn- capacity. Remark at page 175 in [7] implies that (ddcv̂j)n −→
(ddch∗E,u)n weakly. Since v̂j is maximal on B(a, r) we deduce that (ddch∗E,u)n = 0
on B(a, r). Hence supp(ddch∗E,u)n ⊂ E.

Now assume that E is an arbitrary subset of Ω. Take an increasing sequence
of subsets {Ej} of E with Ej b Ω for j > 1. Then h∗Ej ,u ↘ ϕ > h∗E,u. By
(i) ϕ ∈ E . We show that ϕ 6 h∗E,u and hence, h∗Ej ,u ↘ ϕ = h∗E,u. Indeed,
by [3] for each j > 1 there exists a pluripolar set Fj ⊂ Ej such that h∗Ej,u =

hEj,u = u on Ej \ Fj . Thus ϕ = u on E \ F with F =
∞⋃

j=1
Fj . It follows that

ϕ 6 h∗E\F,u = h∗E,u because F is a pluripolar set and (ii). Theorem 4.2 in [7]
implies that (ddch∗Ej,u)n −→ (ddch∗E,u)n weakly. Since supp(ddch∗Ej,u)n ⊂ E for
j > 1 it follows that supp(ddch∗E,u)n ⊂ E.

Proposition 3.2. Let E 3 uj ↘ u ∈ E and E ⊂ Ω. Then h∗E,uj
↘ h∗E,u.

Proof. Since the sequence {uj} decreases, so does the sequence {h∗E,uj
}. Assume

that h∗E,uj
↘ h as j → ∞. Obviously h > h∗E,u and h ∈ PSH−(Ω). On the other

hand, since h∗E,uj
= hE,uj = uj and h∗E,u = hE,u = u on E outside a pluripolar

set and by (ii) of Proposition 3.1 it follows that h 6 h∗E,u. Hence h = h∗E,u and
the conclusion follows.

4. The weighted Cn-capacity

Definition 4.1. As in [8] for each Borel set E ⊂ Ω and u ∈ E we define

Cn,u(E) = Cn,u(E,Ω) = sup
{∫

E

(ddcv)n : v ∈ PSH∩ L∞(Ω), u 6 v 6 0
}
.

The Borel set function E 7→ Cn,u(E) is called Cn-capacity with the weight u or
u-Cn-capacity.

Proposition 4.1. Let E 3 uj ↘ u ∈ E. Then Cn,uj (E) ↗ Cn,u(E) as j → ∞
for all Borel sets E b Ω.

Proof. Since {uj} ↘ u then Cn,uj (E) 6 Cn,uj+1 (E) 6 Cn,u(E) for j > 1 and
every Borel set E ⊂ Ω. Hence Cn,uj (E) ↗ α 6 Cn,u(E) as j → ∞. It remains
to show that α > Cn,u(E). Given ϕ ∈ PSH ∩ L∞(Ω), u 6 ϕ 6 0. By [3] for
each ε > 0 there exists an open set G ⊂ Ω such that Cn(G) < ε and u

∣∣
Ω\G

is

continuous. Let E ⊂ Ω
′ b Ω. By Dini’s theorem {uj} uniformly converges to u

on Ω
′ \G. Take jo such that

ujo < (1 − ε)u 6 (1− ε)ϕ
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on Ω
′ \G. We have

α > Cn,ujo
(E) >

∫

E

(ddc max((1− ε)ϕ, ujo))
n

>
∫

E\G
(ddc max((1− ε)ϕ, ujo))

n = (1− ε)n

∫

E\G
(ddcϕ)n

= (1 − ε)n
[∫

E

(ddcϕ)n −
∫

G

(ddcϕ)n
]

> (1 − ε)n
[∫

E

(ddcϕ)n − (sup
G

|ϕ|)nCn(G)
]

> (1 − ε)n

∫

E

(ddcϕ)n − ε(sup
G

|ϕ|)n.

We tend ε ↘ 0 and have the inequality α > Cn,ujo
(E) >

∫
E(ddcϕ)n. Hence

α > Cn,u(E) and the conclusion follows.

As a generalization of a result of Bedford-Taylor for the normal Cn-capacity
in Cn (see Proposition 6.5 in [3]) we have the following.

Theorem 4.1. Let u ∈ E. Then

Cn,u(E) =
∫

E

(ddch∗E,u)n

holds for all Borel sets E ⊂ Ω. Moreover, if u ∈ F then
∫

E

(ddch∗E,u)n = inf
{∫

(ddcv)n : v ∈ F , v 6 u on E
}
,

holds for all Borel sets E ⊂ Ω.

Proof. Let u ∈ F . Given E ⊂ Ω a Borel set and v ∈ F , v 6 u on E. Then
v 6 h∗E,u and hence, h∗E,u ∈ F . Corollary 2.11 in [1] implies that

∫
(ddch∗E,u)n 6

∫
(ddcv)n.

Take infimum over all v ∈ F , v 6 u on E we get
∫

(ddch∗E,u)n 6 inf
{∫

(ddcv)n : v ∈ F , v 6 u on E
}
:= α.

On the other hand, since h∗E,u ∈ F and h∗E,u 6 u on E then
∫

(ddch∗E,u)n > α.
Therefore, the second equality is proved.

To prove the first equality we consider the partial case when u ∈ E0 ∩ C(Ω).
Let E be a compact set of Ω. Then u 6 h∗E,u 6 0 and hence, h∗E,u ∈ F ∩ L∞(Ω).
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From the definition of Cn,u(E) it follows that Cn,u(E) >
∫
E(ddch∗E,u)n. Thus it

remains to show that ∫
(ddcϕ)n 6

∫

E
(ddch∗E,u)n

for all ϕ ∈ PSH ∩ L∞(Ω), u 6 ϕ 6 0. By Choquet’s lemma [5] we can find an
increasing sequence {uj} ⊂ F which converges to hE,u. Let u 6 ϕ 6 0, ϕ ∈
PSH ∩ L∞(Ω) be given. It is easy to see that E ⊂ {uj 6 ϕ} for all j > 1.
Moreover, {uj+1 6 ϕ} ⊂ {uj 6 ϕ} and hence, χ{uj6ϕ} ↘ χ{hE,u6ϕ} as j → ∞.
We have ∫

E

(ddcϕ)n 6
∫

{uj6ϕ}

(ddcϕ)n =
∫

Ω

χ{uj6ϕ}(dd
cϕ)n.

Applying the monotone convergence theorem it follows that
∫

E

(ddcϕ)n 6
∫

Ω
χ{hE,u6ϕ}(dd

cϕ)n =
∫

{hE,u6ϕ}

(ddcϕ)n =
∫

{h∗
E,u6ϕ}

(ddcϕ)n

because the set {h∗E,u 6 ϕ} is different from the set {hE,u 6 ϕ} a pluripolar set.
However, ϕ = max(ϕ, u) ∈ F and the Corollary 2.11 in [1] implies that

∫

{h∗
E,u6ϕ}

(ddcϕ)n 6
∫

{h∗
E,u6ϕ}

(ddch∗E,u)n 6
∫

(ddch∗E,u)n.

Hence, the equality Cn,u(E) =
∫
(ddch∗E,u)n holds for the case E is compact.

Now assume that E ⊂ Ω is an open set. Let {Ej}j>1 be an exhaustion in-
creasing sequence of compact sets of E. Because

∫
Ej

(ddcϕ)n ↗
∫
E

(ddcϕ)n for

ϕ ∈ PSH ∩ L∞(Ω) it is easy to see that sup
j
Cn,u(Ej) = Cn,u(E). It follows that

Cn,u(E) = lim
j→∞

Cn,u(Ej) = lim
j→∞

∫
(ddch∗Ej ,u)n =

∫
(ddch∗E,u)n.

Here the last equality follows from E0 3 h∗Ej,u ↘ h∗E,u ∈ F and Proposition 5.1
in [7]. Thus we have the first equality for E ⊂ Ω which is either compact or
open. To prove this equality for all Borel subsets E ⊂ Ω we consider the Borel
set function C∗

n,u defined by

C∗
n,u(E) = inf

{
Cn,u(G) : E ⊂ G, G is open

}
.

From the definition of C∗
n,u and since the first equality holds for open sets G of

Ω and F 3 h∗E,u > hG,u ∈ F it follows that

C∗
n,u(E) >

∫
(ddch∗E,u)n

holds for all Borel sets E ⊂ Ω. To prove the opposite inequality C∗
n,u(E) 6∫

(ddch∗E,u)n we take ϕj ∈ PSH−(Ω), ϕj 6 u on E such that
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ϕj ↗ h∗E,u q.e - Cn-capacity. Let λj ↗ 1 and put Gj = {ϕj < λju}. Then
{Gj} is a decreasing sequence of open neighbourhoods of E and

ϕj/λj 6 hGj ,u 6 h∗E,u

for j > 1. Hence hGj ,u ↗ h∗E,u. Note that hGj ,u ∈ F for j > 1. Hence Proposition
5.1 in [7] implies that

lim
j→∞

∫
(ddchGj ,u)n =

∫
(ddch∗E,u)n.

Therefore,

C∗
n,u(E) 6 lim

j→∞
Cn,u(Gj) =

∫
(ddch∗E,u)n.

This proves that

C∗
n,u(E) =

∫
(ddch∗E,u)n(4.1)

holds for every Borel set E ⊂ Ω.
Using (4.1) we prove that C∗

n,u is a generalized capacity. Hence the Choquet’s
theorem (see [5]) implies that

Cn,u(E) = C∗
n,u(E) =

∫
(ddch∗E,u)n(4.2)

holds for all Borel sets E ⊂ Ω.
Obviously, if E ⊂ F ⊂ Ω then C∗

n,u(E) 6 C∗
n,u(F ). At the same time, from

(4.1) we notice that C∗
n,u(Kj) ↘ C∗

n,u(K) for every sequence of compact sets
{Kj}, Kj ↘ K. On the other hand, using (i) of Proposition 3.1 and repeating
the same arguments as in the proof of Theorem 3.1.8 in [5] we get that C∗

n,u(Ej) ↗
C∗

n,u(E) for every sequence of subsets Ej ↗ E. Thus C∗
n,u is a generalized

capacity.
Now we complete the proof of Theorem 4.1 as follows. Let u ∈ E . By [7] there

exists a decreasing sequence {uj} ∈ E0 ∩ C(Ω) such that uj ↘ u as j → ∞.
Since (4.2) holds for every uj and using Proposition 4.2 and Proposition 3.3 and
Proposition 5.1 in [7] we have

Cn,u(E) = lim
j
Cn,uj (E) = lim

j

∫
(ddch∗E,uj

)n =
∫

(ddch∗E,u)n

holds for all E ⊂ Ω. Theorem 4.1 is completely proved.

Remark 1. In [8] the authors proved a weaker form of Theorem 4.1. Namely
they proved that if u ∈ E then for every Borel set E b Ω

Cn,u(
◦
E) 6

∫
(ddch∗E,u)n 6 Cn,u(E).

Corollary 4.1. Let E be a subset of Ω. Then the following are equivalent

(i) E is pluripolar.
(ii) C∗

n,u(E) = 0 for all u ∈ E.
(iii) There exists u ∈ E , u 6= 0 such that C∗

n,u(E) = 0.
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Proof. (i) =⇒ (ii) By the definition of Cn,u it is easy to see that the set function
E 7→ C∗

n,u(E) is subadditive. Thus it is enough to consider the case E b Ω. By
Theorem 4.1 we have

C∗
n,u(E) =

∫

Ω

(ddch∗E,u)n.

On the other hand, if E is pluripolar then h∗E,u ≡ 0 on Ω and the desired conclu-
sion follows.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) Without loss of generality we may assume that E b Ω. Then

h∗E,u ∈ F and
∫

(ddch∗E,u)n = C∗
n,u(E) = 0.

Since h∗E,u ∈ F it follows that h∗E,u = 0. By [3] there exists a ∈ Ω such that
h∗E,u(a) = hE,u(a) = 0. Therefore, for each j > 1 we can find vj ∈ F such that

vj 6 u on E and vj(a) > −2−j . Put v =
∞∑

j=1
vj . Then v is plurisubharmonic on

Ω with v(a) > −1 and

v(z) =
∞∑

j=1

vj(z) 6
∞∑

j=1

u(z) = −∞

for z ∈ E because u(z) < 0 for all z ∈ E.

5. A capacity characterization of Cn,u.

In this section we give a capacity characterization of the set function E 7→
Cn,u(E). Namely we prove the following.

Theorem 5.1. Let u ∈ F . Then the following are equivalent:

(i) Cn,u is a generalized capacity on Ω.
(ii) Cn,u > (ddcu)n.
(iii) u ∈ Fa.
(iv) Cn,u << Cn.
(v) Every psh function v on Ω is q.e Cn,u-continuous, i.e ∀ ε > 0 ∃ G open ⊂

Ω, Cn,u(G) < ε such that v
∣∣
Ω\G

is continuous.

Proof. (i) =⇒ (ii). Since Cn,u and (ddcu)n are generalized capacities then by the
Choquet’s theorem (see [5]) it suffices to show that for each compact set E b Ω,
Cn,u(E) >

∫
E(ddcu)n. For each j > 1, put

Ej =
{
z ∈ Ω : dist(z, Ej) <

1
j

}
.
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Then Ej are open neighbourhoods of E, Ej ↘ E. By the hypothesis and hEj,u =
u on Ej and because Ej are open we have

Cn,u(E) = lim
j
Cn,u(Ej) = lim

j

∫
(ddchEj,u)n

= lim
j

∫

Ej

(ddchEj ,u)n > lim
j

∫

Ej

(ddchEj,u)n

= lim
j

∫

Ej

(ddcu)n =
∫

E

(ddcu)n.

(ii) =⇒ (iii). Since
∫
E

(ddcu)n 6 Cn,u(E) =
∫
(ddch∗E,u)n = 0 for every pluripolar

set E we have u ∈ Fa.
(iii) =⇒ (iv). It suffices to show that lim

j
Cn,u(Ej) = 0 for all decreasing sequences

of regular compact sets Ej in Ω with lim
j
Cn(Ej) = 0. Without loss of generality

we may assume that u 6 −1 on Ω. Note that hEj ,Ω ↗ 0 q.e - Cn-capacity. Then
it follows that

Cn,u(Ej) =
∫

(ddchEj,u)n =
∫

Ej

(ddchEj,u)n

6
∫

Ej

(−hEj,Ω)(ddchEj ,u)n

6
∫

(−hEj,Ω)(ddchEj ,u)n

6
∫

(−hEj,Ω)(ddcu)n

where the last inequality follows from Corollary 2.11 in [1] and hEj,u ∈ F . Hence,

lim
j
Cn,u(Ej) 6 lim

j

∫
(−hEj,Ω)(ddcu)n =

∫
(−h)(ddcu)n

where hEj,Ω ↗ h with h = 0 q.e - Cn- capacity. Since u ∈ Fa it follows that
lim

j
Cn,u(Ej) = 0.

(iv) =⇒ (v). It is a consequence of Cn,u << Cn, and the quasi-continuity in
Cn-capacity of psh functions has been proved in [3].
(v) =⇒ (i). From the definition of Cn,u it follows that if E1 ⊂ E2 ⊂ Ω then
Cn,u(E1) 6 Cn,u(E2). On the other hand, if Ej ↗ E, Ej b Ω, E b Ω then the
proof of Proposition 3.1 (iii) implies that h∗Ej ,u ↘ h∗E,u. Note that h∗Ej,u and h∗E,u

belong to F then Proposition 5.1 in [7] implies that

lim
j

∫
(ddch∗Ej,u)n =

∫
(ddch∗E,u)n.
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But by Theorem 4.1 we have

Cn,u(Ej) =
∫

(ddch∗Ej,u)n

and

Cn,u(E) =
∫

(ddch∗E,u)n.

Hence, lim
j
Cn,u(Ej) = Cn,u(E). It remains to show that if {Kj} is a sequence

of compact sets in Ω, Kj ↘ K then Cn,u(Kj) ↘ Cn,u(K). Let ϕ = lim
j
h∗Kj,u.

Then ϕ 6 h∗K,u and ϕ = max(ϕ, h∗K1,u
). Hence, ϕ ∈ F because h∗K1 ,u ∈ F . We

prove that ϕ > h∗K,u. Fix v ∈ F , v 6 u on K. Put Ej = {v < u + 1
j }. By the

hypothesis for each j > 1 take an open subset Gj of Ω such that Cn,u(Gj) < 1
j

and u
∣∣
Ω\Gj

, v
∣∣
Ω\Gj

are continuous. Moreover, we may assume that Gj ⊃ Gj+1.

Let Fj = {z ∈ Ω \Gj : v(z) < u(z)+ 1
j }∪Gj . Then Fj is an open neighbourhood

of K for j > 1. For each j > 1 choose Ksj ⊂ Fj . Then we have

ϕ > h∗Ksj ,u > hFj ,u

> h{z∈Ω\Gj :v(z)<u(z)+ 1
j
},u + hGj ,u

> v − 1
j

+ hGj ,u for j > 1.

Notice that hGj ,u 6 hGj+1 ,u . Let ψ = (lim
j
hGj ,u)∗. Then it is easy to see that

F 3 ψ > hGj ,u for j > 1. By [7] we have
∫

(ddcψ)n 6
∫

(ddchGj ,u)n = Cn,u(Gj) −→ 0

as j → ∞. Therefore,
∫
(ddcψ)n = 0 and hence, by [7] we have ψ = 0. Thus

hGj ,u −→ 0 a.e dλ. From the inequality

ϕ > v − 1
j

+ hGj ,u

it follows that ϕ > v. Hence, ϕ > h∗K,u. However, since (ddch∗Kj,u)n −→
(ddch∗K,u)n weakly, it follows that

lim
j
Cn,u(Kj) = lim

j

∫
(ddch∗Kj ,u)n

6 lim
j

∫

K1

(ddch∗Kj,u)n 6
∫

K1

(ddch∗K,u)n

=
∫

(ddch∗K,u)n = Cn,u(K) 6 lim
j
Cn,u(Kj).

Hence, lim
j
Cn,u(Kj) = Cn,u(K) and Cn,u is a generalized capacity.
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Let Ω be a hyperconvex domain in Cn. As in [9] we define the Borel set function
Pn,u on Ω given by

Pn,u(E) :=
∫

Ω

(−h∗E,u)(z)dλ(z)

for all Borel sets E ⊂ Ω, dλ denotes the Lebesgue measure in Cn.
In the case u ≡ −1 on Ω we write Pn = Pn,u. Sadullaev in [9] proved that if Ω is
a strictly pseudoconvex domain in Cn then Cn << Pn << Cn. For the case Cn,u

and Pn,u we have

Proposition 5.1. Let Ω be a strictly pseudoconvex domain in Cn and u ∈ Fa.
Then

Pn,u << Cn,u << Pn,u.

Proof. Without loss of generality we may assume that u 6 −1 on Ω. This yields
that h∗E,u 6 h∗E for E ⊂ Ω. Assume that u ∈ Fa. Then by Theorem 5.1 Cn,u <<
Cn. By the above mentioned result of Sadullaev we have Cn,u << Pn << Pn,u.
The last relation follows from the inequality

Pn(E) = −
∫
h∗Edλ 6 −

∫

Ω

h∗E,udλ = Pn,u(E).

Hence, Cn,u << Pn,u. On the other hand, take a strictly psh exhaustion function
ρ of Ω with −1 6 ρ < 0. It is easy to see that

Pn,u << Pn,u,ρ << Pn,u

where Pn,u,ρ(E) := −
∫
h∗E,u(ddcρ)n.

Since h∗E,u ∈ F integrating by parts we have

Pn,u,ρ(E) = −
∫
h∗E,u(ddcρ)n = −

∫
ρ(ddch∗E,u)∧ (ddcρ)n−1

6
∫

(ddch∗E,u) ∧ (ddcρ)n−1 6 · · ·

6
∫

(ddch∗E,u)n = Cn,u(E),

which holds for every Borel set E b Ω.
Thus Pn,u << Cn,u << Pn,u and Proposition 5.1 is completely proved.
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