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REVERSES OF THE CAUCHY-BUNYAKOVSKY-SCHWARZ
AND HEISENBERG INTEGRAL INEQUALITIES

FOR VECTOR-VALUED FUNCTIONS IN HILBERT SPACES

S. S. DRAGOMIR

Abstract. Some reverses of the Cauchy-Bunyakovsky-Schwarz integral
inequality for vector-valued functions in Hilbert spaces and applications for
the Heisenberg inequality are provided.

1. Introduction

Assume that (K; 〈·, ·〉) is a Hilbert space over the real or complex number field
K. If ρ : [a, b] ⊂ R → [0,∞) is a Lebesgue integrable function with

∫ b
a ρ (t) dt = 1,

then we may consider the space L2
ρ ([a, b] ;K) of all functions f : [a, b] → K,

that are Bochner measurable and
∫ b
a ρ (t) ‖f (t)‖2 dt < ∞. It is well known that

L2
ρ ([a, b] ;K) endowed with the inner product 〈·, ·〉ρ defined by

〈f, g〉ρ :=
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

and generating the norm

‖f‖ρ :=
(∫ b

a
ρ (t) ‖f (t)‖2 dt

) 1
2

,

is a Hilbert space over K.
The following integral inequality is known in the literature as the Cauchy-

Bunyakovsky-Schwarz (CBS) inequality∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt �

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
2

,(1.1)

provided f , g ∈ L2
ρ ([a, b] ;K).

Equality holds in (1.1) iff there exists a constant λ ∈ K such that f (t) = λg (t)
for a.e. t ∈ [a, b].
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Another version of the (CBS) inequality for one vector-valued and one scalar
function is incorporated in:∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖f (t)‖2 dt �

∥∥∥∥
∫ b

a
ρ (t) α (t) f (t) dt

∥∥∥∥
2

,(1.2)

provided α ∈ L2
ρ ([a, b]) and f ∈ L2

ρ ([a, b] ;K), where L2
ρ ([a, b]) denotes the

Hilbert space of scalar functions α for which
∫ b
a ρ (t) |α (t)|2 dt < ∞. The equality

holds in (1.2) iff there exists a vector e ∈ K such that f (t) = α (t)e for a.e.
t ∈ [a, b].

In this paper some reverses of the inequalities (1.1) and (1.2) are given un-
der various assumptions for the functions involved. Natural applications for the
Heisenberg inequality for vector-valued functions in Hilbert spaces are also pro-
vided.

2. Some reverse inequalities, the general case

The following result holds.

Theorem 1. Let f, g ∈ L2
ρ ([a, b] ;K) and r > 0 be such that

‖f (t) − g (t)‖ � r � ‖g (t)‖(2.1)

for a.e. t ∈ [a, b]. Then we have the inequalities:

0 �
∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
2

(2.2)

�
∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

[∫ b

a
ρ (t)Re 〈f (t) , g (t)〉 dt

]2

� r2

∫ b

a
ρ (t) ‖f (t)‖2 dt.

The constant C = 1 in front of r2 is best possible in the sense that it cannot be
replaced by a smaller quantity.

Proof. We will use the following result obtained in [1].
In the inner product space (H; 〈·, ·〉), if x, y ∈ H and r > 0 are such that

‖x − y‖ � r � ‖y‖, then

0 � ‖x‖2 ‖y‖2 − |〈x, y〉|2(2.3)

� ‖x‖2 ‖y‖2 − [Re 〈x, y〉]2

� r2 ‖x‖2 .

The constant c = 1 in front of r2 is best possible in the sense that it cannot be
replaced by a smaller quantity.
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If (2.1) holds true, then

‖f − g‖2
ρ =

∫ b

a
ρ (t) ‖f (t) − g (t)‖2 dt � r2

∫ b

a
ρ (t) dt = r2

and

‖g‖2
ρ =

∫ b

a
ρ (t) ‖g (t)‖2 dt � r2

∫ b

a
ρ (t) dt = r2

and thus ‖f − g‖ρ � r � ‖g‖ρ. Applying the inequality (2.3) for
(
L2

ρ ([a, b] ;K) ,

〈·, ·〉p
)
, we deduce the desired inequality (2.2).

If we choose ρ (t) =
1

b − a
, f (t) = x, g (t) = y, x, y ∈ K, t ∈ [a, b], then

from (2.2) we recapture (2.3) for which the constant c = 1 in front of r2 is best
possible.

We next point out some general reverse inequalities for the second (CBS)
inequality (1.2).

Theorem 2. Let α ∈ L2
ρ ([a, b]), g ∈ L2

ρ ([a, b] ;K) and a ∈ K, r > 0 such that
‖a‖ > r. If the following condition holds

‖g (t) − ᾱ (t) a‖ � r |α (t)|(2.4)

for a.e. t ∈ [a, b] , (note that, if α (t) �= 0 for a.e. t ∈ [a, b], then the condition
(2.4) is equivalent to

∥∥∥∥ g (t)
ᾱ (t)

− a

∥∥∥∥ � r(2.5)

for a.e. t ∈ [a, b]), then we have the following inequality

(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(2.6)

� 1√
‖a‖2 − r2

Re
〈∫ b

a
ρ (t)α (t) g (t) dt, a

〉

� ‖a‖√
‖a‖2 − r2

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥ ;
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0 �
(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(2.7)

−
∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
�

(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

− Re
〈∫ b

a
ρ (t)α (t) g (t) dt,

a

‖a‖
〉

� r2√
‖a‖2 − r2

(
‖a‖ +

√
‖a‖2 − r2

) 〈∫ b

a
ρ (t)α (t) g (t) dt,

a

‖a‖
〉

� r2√
‖a‖2 − r2

(
‖a‖ +

√
‖a‖2 − r2

) ∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥ ;

∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt(2.8)

� 1
‖a‖2 − r2

[
Re

〈∫ b

a
ρ (t)α (t) g (t) dt, a

〉]2

� ‖a‖2

‖a‖2 − r2

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2

,

and

0 �
∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

∥∥∥∥
∫ b

a
ρ (t) α (t) g (t) dt

∥∥∥∥
2

(2.9)

�
∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

−
[
Re

〈∫ b

a
ρ (t)α (t) g (t) dt,

a

‖a‖
〉]2

� r2

‖a‖2
(
‖a‖2 − r2

) [
Re

〈∫ b

a
ρ (t)α (t) g (t) dt, a

〉]2

� r2

‖a‖2 − r2

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2

.

All the inequalities (2.6) - (2.9) are sharp.

Proof. From (2.4) we deduce

‖g (t)‖2 − 2Re 〈g (t) , ᾱ (t) a〉 + |α (t)|2 ‖a‖2 � |α (t)|2 r2
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for a.e. t ∈ [a, b], which is clearly equivalent to:

‖g (t)‖2 +
(
‖a‖2 − r2

)
|α (t)|2 � 2Re 〈α (t) g (t) , a〉(2.10)

for a.e. t ∈ [a, b].
If we multiply (2.10) by ρ (t) � 0 and integrate over t ∈ [a, b] , then we deduce∫ b

a
ρ (t) ‖g (t)‖2 dt +

(
‖a‖2 − r2

) ∫ b

a
ρ (t) |α (t)|2 dt(2.11)

� 2Re
〈∫ b

a
ρ (t) α (t) g (t) dt, a

〉
.

Now, dividing (2.11) by
√

‖a‖2 − r2 > 0, we get

1√
‖a‖2 − r2

∫ b

a
ρ (t) ‖g (t)‖2 dt +

√
‖a‖2 − r2

∫ b

a
ρ (t) |α (t)|2 dt(2.12)

� 2√
‖a‖2 − r2

Re
〈∫ b

a
ρ (t) α (t) g (t) dt, a

〉
.

On the other hand, by the elementary inequality
1
α

p + αq � 2
√

pq, α > 0, p, q � 0,

we can state that

2

√∫ b

a
ρ (t) |α (t)|2 dt ·

√∫ b

a
ρ (t) ‖g (t)‖2 dt(2.13)

� 1√
‖a‖2 − r2

∫ b

a
ρ (t) ‖g (t)‖2 dt +

√
‖a‖2 − r2

∫ b

a
ρ (t) |α (t)|2 dt.

Making use of (2.12) and (2.13), we deduce the first part of (2.6).
The second part of (2.6) is obvious by Schwarz’s inequality

Re
〈∫ b

a
ρ (t)α (t) g (t) dt, a

〉
�

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥ ‖a‖ .

If ρ (t) =
1

b − a
, α (t) = 1, g (t) = x ∈ K, then from (2.6) we get

‖x‖ � 1√
‖a‖2 − r2

Re 〈x, a〉 � ‖x‖ ‖a‖√
‖a‖2 − r2

,

provided ‖x − a‖ � r < ‖a‖, x, a ∈ K. The sharpness of this inequality has been
shown in [1], and we omit the details.

The other inequalities are obvious consequences of (2.6) and we omit the de-
tails.
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3. Some particular cases

It has been shown in [1] that for A, a ∈ K (K = C, R) and x, y ∈ H, where
(H; 〈·, ·〉) is an inner product over the real or complex number field K, the fol-
lowing inequality holds

‖x‖ ‖y‖ � 1
2
· Re

[(
Ā + ā

) 〈x, y〉]
[Re (Aā)]

1
2

(3.1)

� 1
2
· |A + a|
[Re (Aā)]

1
2

|〈x, y〉|

provided Re (Aā) > 0 and

Re 〈Ay − x, x − ay〉 � 0,(3.2)

or, equivalently, ∥∥∥∥x − a + A

2
· y

∥∥∥∥ � 1
2
|A − a| ‖y‖ ,(3.3)

holds. The constant
1
2

is best possible in (3.1).

From (3.1), we can deduce the following results

0 � ‖x‖ ‖y‖ − Re 〈x, y〉(3.4)

� 1
2
·
Re

[(
Ā + ā − 2 [Re (Aā)]

1
2

)
〈x, y〉

]
[Re (Aā)]

1
2

� 1
2
·

∣∣∣Ā + ā − 2 [Re (Aā)]
1
2

∣∣∣
[Re (Aā)]

1
2

|〈x, y〉|

and

0 � ‖x‖ ‖y‖ − |〈x, y〉|(3.5)

� 1
2
· |A + a| − 2 [Re (Aā)]

1
2

[Re (Aā)]
1
2

|〈x, y〉| .

If one assumes that A = M , a = m, M � m > 0, then from (3.1), (3.4) and (3.5)
we deduce the much simpler and more useful results:

‖x‖ ‖y‖ � 1
2
· M + m√

Mm
Re 〈x, y〉 ,(3.6)

0 � ‖x‖ ‖y‖ − Re 〈x, y〉 � 1
2
·
(√

M −√
m

)2

√
Mm

Re 〈x, y〉(3.7)
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and

0 � ‖x‖ ‖y‖ − |〈x, y〉| � 1
2
·
(√

M −√
m

)2

√
Mm

|〈x, y〉| ,(3.8)

provided

Re 〈My − x, x − my〉 � 0

or, equivalently ∥∥∥∥x − M + m

2
y

∥∥∥∥ � 1
2

(M − m) ‖y‖ .(3.9)

Squaring the second inequality in (3.1), we can get the following results as well:

0 � ‖x‖2 ‖y‖2 − |〈x, y〉|2 � 1
4
· |A − a|2
Re (Aā)

|〈x, y〉|2 ,(3.10)

provided (3.2) or (3.1) holds. Here the constant
1
4

is also best possible.

Using the above inequalities for vectors in inner product spaces, we are able to
state the following theorem concerning reverses of the (CBS) integral inequality
for vector-valued functions in Hilbert spaces.

Theorem 3. Let f, g ∈ L2
ρ ([a, b] ;K) and γ,Γ ∈ K with Re (Γγ̄) > 0. If

Re 〈Γg (t) − f (t) , f (t) − γg (t)〉 � 0(3.11)

for a.e. t ∈ [a, b] , or, equivalently,

∥∥∥∥f (t) − γ + Γ
2

· g (t)
∥∥∥∥ � 1

2
|Γ − γ| ‖g (t)‖(3.12)

for a.e. t ∈ [a, b] , then we have the inequalities

(∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.13)

� 1
2
·
Re

[(
Γ̄ + γ̄

) ∫ b
a ρ (t) 〈f (t) , g (t)〉 dt

]
[Re (Γγ̄)]

1
2

� 1
2
· |Γ + γ|
[Re (Γγ̄)]

1
2

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,
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0 �
(∫ b

a
ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.14)

−
∫ b

a
ρ (t) Re 〈f (t) , g (t)〉 dt

� 1
2
·
Re

[{
Γ̄ + γ̄ − 2 [Re (Γγ̄)]

1
2

}∫ b
a ρ (t) 〈f (t) , g (t)〉 dt

]
[Re (Γγ̄)]

1
2

� 1
2
·

∣∣∣Γ̄ + γ̄ − 2 [Re (Γγ̄)]
1
2

∣∣∣
[Re (Γγ̄)]

1
2

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,

0 �
(∫ b

a
ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

−
∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
(3.15)

� 1
2
· |Γ + γ| − 2 [Re (Γγ̄)]

1
2

[Re (Γγ̄)]
1
2

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,

and

0 �
∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
2

(3.16)

� 1
4
· |Γ − γ|2
Re (Γγ̄)

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
2

.

The constants
1
2

and
1
4

above are sharp.

In the case where Γ, γ are positive real numbers, the following corollary in-
corporating more convenient reverses for the (CBS) integral inequality, may be
stated.

Corollary 1. Let f, g ∈ L2
ρ ([a, b] ;K) and M � m > 0. If

Re 〈Mg (t) − f (t) , f (t) − mg (t)〉 � 0(3.17)

for a.e. t ∈ [a, b] , or, equivalently,∥∥∥∥f (t) − m + M

2
· g (t)

∥∥∥∥ � 1
2

(M − m) ‖g (t)‖(3.18)

for a.e. t ∈ [a, b] , then we have the inequalities(∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.19)

� 1
2
· M + m√

mM

∫ b

a
ρ (t) Re 〈f (t) , g (t)〉 dt,
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0 �
(∫ b

a
ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.20)

−
∫ b

a
ρ (t) Re 〈f (t) , g (t)〉 dt

� 1
2
·
(√

M −√
m

)2

√
mM

∫ b

a
ρ (t) Re 〈f (t) , g (t)〉 dt,

0 �
(∫ b

a
ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.21)

−
∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
� 1

2
·
(√

M −√
m

)2

√
mM

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,
and

0 �
∫ b

a
ρ (t) ‖f (t)‖2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
2

(3.22)

� 1
4
· (M − m)2

mM

∣∣∣∣
∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
2

.

The constants
1
2

and
1
4

above are best possible.

On utilising the general result of Theorem 2, we are able to state a number of
interesting reverses for the (CBS) inequality in the case when one function takes
vector-values while the other is a scalar function.

Theorem 4. Let α ∈ L2
ρ ([a, b]), g ∈ L2

ρ ([a, b] ;K), e ∈ K, ‖e‖ = 1, γ,Γ ∈ K

with Re (Γγ̄) > 0. If∥∥∥∥g (t) − ᾱ (t) · Γ + γ

2
e

∥∥∥∥ � 1
2
|Γ − γ| |α (t)|(3.23)

for a.e. t ∈ [a, b], or, equivalently

Re 〈Γᾱ (t) e − g (t) , g (t) − γᾱ (t) e〉 � 0(3.24)

for a.e. t ∈ [a, b], (note that, if α (t) �= 0 for a.e. t ∈ [a, b], then (3.23) is
equivalent to ∥∥∥∥∥ g (t)

α (t)
− Γ + γ

2
e

∥∥∥∥∥ � 1
2
|Γ − γ|(3.25)



10 S. S. DRAGOMIR

for a.e. t ∈ [a, b], and (3.24) is equivalent to

Re

〈
Γe − g (t)

α (t)
,
g (t)
α (t)

− γe

〉
� 0(3.26)

for a.e. t ∈ [a, b]), then the following reverse inequalities are valid:

(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.27)

�
Re

[(
Γ̄ + γ̄

) 〈∫ b
a ρ (t)α (t) g (t) dt, e

〉]
2 [Re (Γγ̄)]

1
2

� 1
2
· |Γ + γ|
[Re (Γγ̄)]

1
2

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥ ;

0 �
(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

−
∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥(3.28)

�
(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

− Re
[

Γ̄ + γ̄

|Γ + γ|
〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉]

� |Γ − γ|2

2
√

Re (Γγ̄)
(
|Γ + γ| + 2

√
Re (Γγ̄)

)
× Re

[
Γ̄ + γ̄

|Γ + γ|
〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉]

� |Γ − γ|2

2
√

Re (Γγ̄)
(
|Γ + γ| + 2

√
Re (Γγ̄)

) ∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥ ;

∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt(3.29)

� 1
4
· 1
Re (Γγ̄)

[
Re

((
Γ + γ

)〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉)]2

� 1
4
· |Γ + γ|2
Re (Γγ̄)

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2
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and

0 �
∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2

(3.30)

�
∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

−
[
Re

(
Γ + γ

|Γ + γ|
〈∫ b

a
ρ (t) α (t) g (t) dt, e

〉)]2

� 1
4
· |Γ − γ|2
|Γ + γ|2 Re (Γγ̄)

[(
Re

(
Γ + γ

) 〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉)]2

� 1
4
· |Γ − γ|2
Re (Γγ̄)

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2

.

The constants
1
2

and
1
4

above are sharp.

In the particular case of positive constants, the following simpler version of the
above inequalities may be stated.

Corollary 2. Let α ∈ L2
ρ ([a, b]) \ {0}, g ∈ L2

ρ ([a, b] ;K), e ∈ K, ‖e‖ = 1 and
M,m ∈ R with M � m > 0. If

∥∥∥∥ g (t)
ᾱ (t)

− M + m

2
· e

∥∥∥∥ � 1
2

(M − m)(3.31)

for a.e. t ∈ [a, b], or, equivalently,

Re
〈

Me − g (t)
ᾱ (t)

,
g (t)
ᾱ (t)

− me

〉
� 0(3.32)

for a.e. t ∈ [a, b], then we have

(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

(3.33)

� 1
2
· M + m√

Mm
Re

〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉

� 1
2
· M + m√

Mm

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥ ;
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0 �
(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

−
∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
(3.34)

�
(∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt

) 1
2

− Re
〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉

�

(√
M −√

m
)2

2
√

Mm
Re

〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉

�

(√
M −√

m
)2

2
√

Mm

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
0 �

∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt(3.35)

� 1
4
· (M + m)2

Mm

[
Re

〈∫ b

a
ρ (t) α (t) g (t) dt, e

〉]2

� 1
4
· (M + m)2

Mm

∥∥∥∥
∫ b

a
ρ (t) α (t) g (t) dt

∥∥∥∥
2

and

0 �
∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2

(3.36)

�
∫ b

a
ρ (t) |α (t)|2 dt

∫ b

a
ρ (t) ‖g (t)‖2 dt −

[
Re

〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉]2

� 1
4
· (M − m)2

Mm

[
Re

〈∫ b

a
ρ (t)α (t) g (t) dt, e

〉]2

� 1
4
· (M − m)2

Mm

∥∥∥∥
∫ b

a
ρ (t)α (t) g (t) dt

∥∥∥∥
2

.

The constants
1
2

and
1
4

above are sharp.

4. Reverses of the Heisenberg inequality

It is well known that if (H; 〈·, ·〉) is a real or complex Hilbert space and
f : [a, b] ⊂ R →H is an absolutely continuous vector-valued function, then f
is differentiable almost everywhere on [a, b], the derivative f ′ : [a, b] → H is
Bochner integrable on [a, b] and

f (t) =
∫ t

a
f ′ (s) ds for any t ∈ [a, b] .(4.1)
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The following theorem provides a version of the Heisenberg inequalities in the
general setting of Hilbert spaces.

Theorem 5. Let ϕ : [a, b] → H be an absolutely continuous function with the
property that b ‖ϕ (b)‖2 = a ‖ϕ (a)‖2. Then we have the inequality:

(∫ b

a
‖ϕ (t)‖2 dt

)2

� 4
∫ b

a
t2 ‖ϕ (t)‖2 dt ·

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt.(4.2)

The constant 4 is best possible in the sense that it cannot be replaced by a smaller
quantity.

Proof. Integrating by parts, we have successively

∫ b

a
‖ϕ (t)‖2 dt = t ‖ϕ (t)‖2

∣∣∣∣
b

a

−
∫ b

a
t
d

dt

(
‖ϕ (t)‖2

)
dt(4.3)

= b ‖ϕ (b)‖2 − a ‖ϕ (a)‖2 −
∫ b

a
t
d

dt
〈ϕ (t) , ϕ (t)〉 dt

= −
∫ b

a
t
[〈

ϕ′ (t) , ϕ (t)
〉

+
〈
ϕ (t) , ϕ′ (t)

〉]
dt

= −2
∫ b

a
tRe

〈
ϕ′ (t) , ϕ (t)

〉
dt

= 2
∫ b

a
Re

〈
ϕ′ (t) , (−t)ϕ (t)

〉
dt.

If we apply the (CBS) integral inequality

∫ b

a
Re 〈g (t) , h (t)〉 dt �

(∫ b

a
‖g (t)‖2 dt

∫ b

a
‖h (t)‖2 dt

) 1
2

for g (t) = ϕ′ (t), h (t) = −tϕ (t), t ∈ [a, b], then we deduce the desired inequality
(4.2).

The fact that 4 is the best possible constant in (4.2) follows from the fact
that in the (CBS) inequality, the case of equality holds iff g (t) = λh (t) for a.e.
t ∈ [a, b] and λ a given scalar in K. We omit the details.

For details on the classical Heisenberg inequality see, for instance, [2].
The following reverse of the Heisenberg type inequality (4.2) holds.

Theorem 6. Assume that ϕ : [a, b] → H is as in the hypothesis of Theorem 5.
In addition, if there exists a r > 0 such that∥∥ϕ′ (t) − tϕ (t)

∥∥ � r �
∥∥ϕ′ (t)

∥∥(4.4)
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for a.e. t ∈ [a, b], then we have the inequalities

0 �
∫ b

a
t2 ‖ϕ (t)‖2 dt

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt − 1
4

(∫ b

a
‖ϕ (t)‖2 dt

)2

(4.5)

� r2

∫ b

a
t2 ‖ϕ (t)‖2 dt.

Proof. We observe, by the identity (4.3), that

1
4

(∫ b

a
‖ϕ (t)‖2 dt

)2

=
(∫ b

a
Re

〈
ϕ′ (t) , tϕ (t)

〉
dt

)2

.(4.6)

Now, if we apply Theorem 1 for the choices f (t) = tϕ (t), g (t) = ϕ′ (t), and

ρ (t) =
1

b − a
, then by (2.2) and (4.6) we deduce the desired inequality (4.5).

Remark 1. Interchanging the place of tϕ (t) with ϕ′ (t) in Theorem 6, we also
have

0 �
∫ b

a
t2 ‖ϕ (t)‖2 dt

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt − 1
4

(∫ b

a
‖ϕ (t)‖2 dt

)2

(4.7)

� ρ2

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt,

provided ∥∥ϕ′ (t) − tϕ (t)
∥∥ � ρ � |t| ‖ϕ (t)‖

for a.e. t ∈ [a, b], where ρ > 0 is a given positive number.

The following result also holds.

Theorem 7. Assume that ϕ : [a, b] → H is as in the hypothesis of Theorem 5.
In addition, if there exists M � m > 0 such that

Re
〈
Mtϕ (t) − ϕ′ (t) , ϕ′ (t) − mtϕ (t)

〉
� 0(4.8)

for a.e. t ∈ [a, b], or, equivalently,∥∥∥∥ϕ′ (t) − M + m

2
tϕ (t)

∥∥∥∥ � 1
2

(M − m) |t| ‖ϕ (t)‖(4.9)

for a.e. t ∈ [a, b], then we have the inequalities∫ b

a
t2 ‖ϕ (t)‖2 dt

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt � 1
16

· (M + m)2

Mm

(∫ b

a
‖ϕ (t)‖2 dt

)2

(4.10)

and ∫ b

a
t2 ‖ϕ (t)‖2 dt

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt − 1
4

(∫ b

a
‖ϕ (t)‖2 dt

)2

(4.11)

� 1
16

· (M − m)2

Mm

(∫ b

a
‖ϕ (t)‖2 dt

)2

respectively.
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Proof. We use Corollary 1 for the choices f (t) = ϕ′ (t), g (t) = tϕ (t), ρ (t) =
1

b − a
to get

∫ b

a

∥∥ϕ′ (t)
∥∥2

dt

∫ b

a
t2 ‖ϕ (t)‖2 dt � (M + m)2

4Mm

(∫ b

a
Re

〈
ϕ′ (t) , tϕ (t)

〉
dt

)2

.

Since by (4.6) (∫ b

a
Re

〈
ϕ′ (t) , tϕ (t)

〉
dt

)2

=
1
4

(∫ b

a
‖ϕ (t)‖2 dt

)2

,

we deduce the desired result (4.10).
The inequality (4.11) follows from (4.10), and we omit the details.

Remark 2. If one is interested in reverses for the Heisenberg inequality for scalar
valued functions, then all the other inequalities obtained above for one scalar
function may be applied as well. For the sake of brevity, we do not list them
here.
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