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ON LOCAL PARETO OPTIMA OF REAL ANALYTIC
MAPPINGS

HA HUY VUI AND PHAM TIEN SON

Abstract. This paper deals with the local problem of optimizing several
analytic functions at the same time. We prove that the Milnor number of
an isolated complete intersection singularity at a local Pareto optimal point
is odd. Furthermore, high-order necessary and almost sufficient conditions
are given, allowing one to recognize from the Newton diagram of an analytic
mapping at the origin whether this point is a local Pareto optimum.

1. Introduction

Motivated by mathematical economics, we consider the problem of optimiz-
ing several analytic functions. More precisely, let f : (Rn, 0) → (Rk, 0), x �→
(f1(x), f2(x), . . . , fk(x)), be an analytic mapping defined in a neighborhood of
the origin in R

n with f(0) = 0. The point 0 ∈ R
n is said to be a local Pareto

optimum (strict local Pareto optimum) for f if and only if there exists a neigh-
borhood U of 0 in R

n such that for any x ∈ U, fi(x) ≤ 0 for i = 1, 2, . . . , k, imply
fi(x) = 0 for i = 1, 2, . . . , k, (x = 0). The problem is to find conditions for the
origin in R

n to be a local Pareto optimum for f.

It is well-known that (see Vassiliev (1977)) if the Milnor number of an analytic
function (i.e., in the case where k = 1) at a local optimal point is finite, then it
is odd. The first objective of this paper is to establish a similar result for local
Pareto optima. Namely, we prove in Section 2 that the Milnor number of an
isolated complete intersection singularity at a local Pareto optimal point is odd.

The second objective of this paper concerns the well known first-order necessary
and second-order sufficient conditions for a local Pareto optimum (see Smale
(1973) and (1975), Wan (1975)). These low-order conditions are insufficient for
the characterization of local Pareto optima for any generic class of mappings
f = (f1, f2, . . . , fk) from (Rn, 0) onto (Rk, 0) with the first derivatives Dfj(0) = 0
and the second derivatives D2fj(0) = 0 for all j = 1, 2, . . . , k. Thus, it is natural
to ask the question: can one find certain high-order necessary and sufficient
conditions for local Pareto optima? In order to handle those high-order criteria
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in a neat way, one is led to the notation of Newton diagrams (see Kouchnirenko
(1976) and §3 below).

In Section 3 we will give high-order necessary and almost sufficient conditions
which allow us to recognize from the Newton diagram of an analytic mapping at
the origin whether this point is a local Pareto optimum. We also give a short,
direct proof of the first-order necessary and second-order sufficient conditions for
a local Pareto optimum. It must be noted that unlike the previous proofs (see
Smale (1973) and (1975), Wan (1975)), the one presented below uses only the
Curve Selection Lemma. A different approach, based on the notation of jets, can
be found in Wan (1977), Hà Huy Vui (1980) and (1982).

2. Milnor number of a complete intersection

We first recall some basic facts about complete intersections with isolated sin-
gularity (see Looijenga (1984)). Let f = (f1, f2, . . . , fk) : (Cn, 0) → (Ck, 0), with
1 ≤ k < n, be an analytic mapping defined in a neighborhood U ⊂ C

n of the
origin such that f(0) = 0. Let V := (f−1(0), 0) be the germ of f−1(0) at 0 ∈ C

n.
We say that V is a germ of a complete intersection with an isolated singularity
at the origin if there is a positive number ε such that the holomorphic k-form
df1(z) ∧ df2(z) ∧ · · · ∧ dfk(z) �= 0 for any z ∈ V ∩ (B2n

ε − {0}), where

B2n
ε := {z ∈ C

n | ‖z‖ ≤ ε}.
In particular, V ∩ (B2n

ε − {0}) is non-singular.
Taking ε0 > 0 sufficiently small, we may assume that any sphere S

2n−1
ε := ∂B2n

ε

(0 < ε ≤ ε0) intersects V transversally. Let W be a sufficiently small neighbor-
hood of 0 ∈ C

n, such that S
2n−1
ε0 meets transversally with any fiber f−1(δ), δ ∈ W.

Let Df be the set of the critical values of the restriction f |f−1(W )∩B2n
ε0

. Df is called
the discriminant locus of f and it is well known that Df is a hypersurface. Let
X∗ := (f−1(W ) ∩ B2n

ε0 ) − f−1(Df ). Then the mapping f : X∗ → W − Df is a
C∞-locally trivial fibration. This fibration is called the Milnor fibration of the
mapping f : (Cn, 0) → (Ck, 0).

Let f−1(δ) be a generic fiber. It is known that f−1(δ) has the homotopy type
of a bouquet of spheres of dimension n − k (see Milnor (1968) in the case where
k = 1, and Hamm (1971) in the case where k > 1). The number of spheres in
this bouquet is called the Milnor number at 0 ∈ C

n of f and denoted by µ(f).
In the case where k = 1, according to Milnor (1968) and Palamodov (1967)

µ(f) = dimC

(
OCn,0

/(
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

))
,

where OCn,0 is the ring of germs of complex analytic functions at the origin.
If n > k > 1, then we have the following formula of Lê Dũng Tráng (1974) and

Greuel (1975)

µ(f ′) + µ(f) = dimCOCn,0 / I,
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where f ′ := (f1, f2, . . . , fk−1) and I is the ideal generated by f1, f2, . . . , fk−1 and

all k × k minors
∂(f1, f2, . . . , fk)

∂(xi1 , xi2 , . . . , xik)
in OCn,0. We have

Theorem 1. Let f : (Rn, 0) → (Rk, 0) be a real analytic germ defined in a neigh-
borhood of the origin with f(0) = 0. Let fC : (Cn, 0) → (Ck, 0) be the complex-
ification of f. Assume that 0 ∈ R

n is a local Pareto optimum for f, and fC is
a germ of complete intersection with an isolated singularity at 0 ∈ C

n. Then we
have

µ(fC) = 1 mod 2.

Proof. Since f is a germ of a real analytic mapping and fC is a complete intersec-
tion with isolated singularity at 0 ∈ C

n, by Lemma 4.2 of Dutertre (2002), there
exists an analytic germ g : (Rn, 0) → (R, 0) such that the mapping

(fC, gC) : (Cn, 0) → (Ck+1, 0)

is also a complete intersection with isolated singularity at 0 ∈ C
n. Since f has 0 ∈

R
n as a local Pareto optimum, the germ (f, g) also has 0 ∈ R

n as its local Pareto
optimum. Thus, by induction there are real analytic functions g1, g2, . . . , gn−k

such that for any j = 1, 2, . . . , n − k, the mapping

(f1, f2, . . . , fk, g1, g2, . . . , gj) : (Rn, 0) → (Rk+j, 0)

has 0 ∈ R
n as a local Pareto optimum and the complexified mapping

(f1,C, f2,C, . . . , fk,C, g1,C, g2,C, . . . , gj,C) : (Cn, 0) → (Ck+j, 0)

defines a complete intersection with an isolated singularity at 0 ∈ C
n.

Let us consider the following mappings

Φ := (f1, f2, . . . , fk, g1, g2, . . . , gn−k) : (Rn, 0) → (Rk × R
n−k, 0),

ΦC := (f1,C, f2,C, . . . , fk,C, g1,C, g2,C, . . . , gn−k,C) : (Cn, 0) → (Ck × C
n−k, 0).

According to Looijenga (1984), Proposition 5.12, we know that

µ(ΦC) = dimCOCn,0 / J − 1,(1)

where J is the ideal generated by f1,C, f2,C, . . . , fk,C, g1,C, g2,C, . . . , gn−k,C in OCn,0.

Since dimCOCn,0 / J is the number of complex points of Φ−1
C (δ, δ′) in C

n for
a generic (δ, δ′) ∈ C

k × C
n−k, sufficiently close to 0 ∈ C

k × C
n−k, and since

g1, g2, . . . , gn−k are convergent series with real coefficients, the number of non-
real points of Φ−1

C (δ, δ′) is even. Thus, dimCOCn,0 / J is equal to the number of
real points of Φ−1

C (δ, δ′) modulo 2.
On the other hand, since the map Φ has 0 ∈ R

n as a local Pareto optimum,
Φ−1(δ, δ′)∩U is empty, where U is a sufficiently small neighborhood of the origin
in R

n, and (δ, δ′) ∈ R
n− := {(y1, y2, . . . , yn) ∈ R

n | yi < 0, i = 1, 2, . . . , n}.
Therefore

dimCOCn,0 / J = 0 mod 2.
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Hence, it follows from (1) that

µ(ΦC) = 1 mod 2.(2)

In what follows, we shall show that

dimCOCn,0 / Ij = 0 mod 2

for all j = 1, 2, . . . , n − k, where Ij is the ideal generated by f1,C, f2,C, . . . , fk,C,

g1,C, g2,C, . . . , gj−1,C, and all (k+j)×(k+j)-minors
∂(f1,C, . . . , fk,C, g1,C, . . . , gj,C)

∂(xi1 , xi2 , . . . , xik+j
)

in OCn,0.

Let Jj be the ideal generated by all (k+j)×(k+j)-minors ∂(f1,C,... ,fk,C,g1,C,... ,gj,C)
∂(xi1

,xi2
,... ,xik+j

)

in OCn,0. (Whence Ij = 〈f1,C, f2,C, . . . , fk,C, g1,C, g2,C, . . . , gj−1,C, Jj〉OCn,0.) Let
Cj be the germ of complex zeros of Jj. According to a result of Saito (1973),
OCn,0 / Jj is a Cohen-Macaulay ring of dimension k + j, and so Cj is equidimen-
sional of dimension k+j. Then a result about multiplicity from Serre (1989) gives
the following relation

dimCOCn,0 / Ij = (Φ−1
j,C(0), Cj)0,

where Φj,C := (f1,C, f2,C, . . . , fk,C, g1,C, g2,C, . . . , gj−1,C), and (Φ−1
j,C(0), Cj)0 is the

intersection multiplicity of Φ−1
j,C(0) and Cj at 0 ∈ C

n. Let g̃j be a suitable per-
turbation of gj , and let C̃j be the germ of complex zeros of the ideal, generated

by all (k + j) × (k + j)-minors
∂(f1,C, . . . , fk,C, g1,C, . . . , gj−1,C, g̃j,C)

∂(xi1 , xi2 , . . . , xik+j
)

. Then the

intersection multiplicity (Φ−1
j,C(0), Cj)0 is equal to the number of the intersection

points of Φ−1
j,C(δ) and C̃j , where δ is generic and sufficiently close to 0 ∈ C

k+j−1.

Hence, we can assume, without loss of generality, that δ ∈ R
k+j−1
− and C̃j inter-

sects Φ−1
j,C(δ) transversally at regular points. By Lemma 3.7 of Dutertre (2002),

dimCOCn,0 / Ij is equal modulo 2 to the number of real non-degenerate critical
points of the restriction g̃j,C|Φ−1

j,C(δ)∩B2n
ε

. But, 0 ∈ R
n is a local Pareto optimum

of Φj = (f1, f2, . . . , fk, g1, g2, . . . , gj−1) and δ ∈ R
k+j−1
− , therefore the number

of real non-degenerate critical points of g̃j,C|Φ−1
j,C(δ)∩B2n

ε
is evidently equal to 0.

Hence

dimCOCn,0 / Ij = 0 mod 2.(3)
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Now, we easily get the proof of the theorem. In fact, it follows from the formula
of Lê Dũng Tráng (1974) and Greuel (1975) and from (3) that

µ(f1,C, . . . , fk,C, g1,C, . . . , gn−k−1,C)+µ(f1,C, . . . , fk,C, g1,C, . . . , gn−k,C)

= dimCOCn,0 / In−k = 0 mod 2,
· · ·

µ(f1,C, . . . , fk,C)+µ(f1,C, . . . , fk,C, g1,C)

= dimCOCn,0 / I1 = 0 mod 2.

All these equalities and (2) imply that

µ(f1,C, . . . , fk,C) = 1 mod 2.

The theorem is proved.

Example 1. Let λ1, λ2, . . . , λn (n ≥ 2) be distinct numbers. Then the mapping

f : (Rn, 0) → (R2, 0), x �→ (f1 := x2
1+x2

2+· · ·+x2
n, f2 := λ1x

2
1+λ2x

2
2+· · ·+λnx2

n)

is a complete intersection with isolated singularity, and f has a local Pareto
optimum at 0 ∈ R

n. Consider the ideal I ⊂ OCn,0 generated by f1 and all 2 × 2-

minors
∂(f1, f2)
∂(xi, xj)

, 1 ≤ i ≤ j ≤ n. Then it is easy to check that

I =
(
x2

1 + x2
2 + · · · + x2

n, xixj : 1 ≤ i ≤ j ≤ n
)
.

This ideal contains all homogeneous polynomials of degree 3 so that if we de-
note by m the maximal ideal in OCn,0, then I + m4 ⊃ m3. It then follows from
Nakayama’s lemma that I ⊃ m3. This implies that OCn,0/I is generated by the
residue classes of 1, x1, . . . , xn, x2

1, . . . , x2
n−1. Consequently,

dimC (OCn,0/I) = 2n.

On the other hand, it is clear that the dimension of OCn,0 / (
∂f1

∂x1
, . . . ,

∂f1

∂xn
) is 1.

Therefore,
µ(f1, f2) = 2n − 1 = 1 mod 2.

3. Necessary and sufficient conditions for local Pareto optima

In this section, we give the high-order necessary and sufficient conditions for a
local Pareto optimum. First let us recall the definition of the Newton polyhedron
of mappings in the real space R

n (see, for example, Kouchnirenko, 1976). Let
N ⊂ R+ ⊂ R be the sets of all nonnegative integers, all nonnegative real numbers,
and all real numbers respectively. Let fi :=

∑
α∈Nn

aα(i)xα, i = 1, 2, . . . , k. Let us

write
supp(f) := ∪k

i=1{α ∈ N
n | aα(i) �= 0}.

Then the Newton polyhedron Γ+(f) of f is the convex hull in R
n
+ of the set

∪α∈supp(f)(α+R
n
+). For any m ∈ R

n
+,m �= 0, we consider a supporting hyperplane
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{α ∈ R
n | 〈m,α〉 = ν(m)} such that

〈m,α〉 ≥ ν(m), for all α ∈ Γ+(f).

These conditions determine ν(m) uniquely, while Γ+(f) is given by the system
of inequalities1

〈m,α〉 ≥ ν(m), m ∈ R
n
+.

A face of the boundary of the Newton polyhedron Γ+(f) is an intersection of
Γ+(f) with some supporting hyperplane. The Newton diagram Γ(f) of f is the
union of the compact faces of the Newton polyhedron Γ+(f). The mapping f is
called convenient if the Newton diagram Γ(f) of f meets all coordinate axes. For
each face γ ∈ Γ(f), the restrictions

fi,γ(x) :=
∑
α∈γ

aα(i)xα, i = 1, 2, . . . , k,

are called the quasi-homogeneous components of f with respect to γ.

Let {α ∈ R
n | 〈m,α〉 = ν(m)} be the supporting hyperplane of a given face

γ ∈ Γ(f). The following lemma indicates a convenient way to determine fi,γ from
fi.

Lemma 1. Let x ∈ R
n, x �= 0. We have

fi(tm • x) = tν(m)fi,γ(x) + o(tν(m)) as t → 0,

where tm • x := (tm1x1, t
m2x2, . . . , tmnxn).

Proof. By definition, 〈m,α〉 ≥ ν(m) for all α ∈ Γ+(f) with equality if and only
if α ∈ γ. Moreover, by the definition of the quasi-homogeneous components with
respect to the face γ, we get

fi,γ(tm • x) = tν(m)fi,γ(x).

From this the lemma follows.

Theorem 2. Let f : (Rn, 0) → (Rk, 0) be a real analytic mapping defined in a
neighborhood of the origin with f(0) = 0.

(i) If 0 is a local Pareto optimum for f, then

max
i=1,2,... ,k

fi,γ(x) ≥ 0

for all γ ∈ Γ(f) and x ∈ R
n.

(ii) Suppose that f is convenient. If for any γ ∈ Γ(f) we have

max
i=1,2,... ,k

fi,γ(x) > 0

everywhere except in the coordinate planes, then 0 is a strict local Pareto optimum
for f.

1The system of inequalities is infinite; however, there exists a finite number of inequalities of
which the remaining inequalities are a consequence.
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Proof. (i) Suppose on the contrary that there exist γ ∈ Γ(f) and x0 ∈ R
n such

that
max

i=1,2,... ,k
fi,γ(x0) < 0.

Then, it follows from Lemma 1 that

fi(tm • x0) < 0, i = 1, 2, . . . , k, for all 0 < t � 1.

Thus 0 is not a local Pareto optimum for f, which contradicts the hypothesis.
(ii) We now suppose that for any γ ∈ Γ(f) we have maxi=1,2,... ,k fi,γ(x) > 0

everywhere except in the coordinate planes. We will prove that 0 is a strict local
Pareto optimum for f. Indeed, suppose that contrary to our claim, in any neigh-
borhood of 0 there are points of the set where the functions fi, i = 1, 2, . . . , k,
are non-positive. Then, by the Curve Selection Lemma (see Milnor, 1968), there
exists an analytic curve ϕ : [0, ε) → R

n, t �→ ϕ(t), such that
(a) fi[ϕ(t)] ≤ 0, i = 1, 2, . . . , k, for t ∈ [0, ε);
(b) ϕ(t) = 0 if and only if t = 0.
Without loss of generality, we may assume that this curve lies entirely in the

coordinate planes {xj = 0}, j = l + 1, l + 2, . . . , n, where 1 ≤ l ≤ n, and does not
lie in the remaining coordinate planes. Then we can write

ϕ(t) :=




x1(t) = x0
1t

m1 + higher order terms in t,

x2(t) = x0
2t

m2 + higher order terms in t,

· · ·
xl(t) = x0

l t
ml + higher order terms in t,

xl+1(t) = xl+2(t) = · · · = xn(t) = 0,

for t ∈ [0, ε), where x0
j , j = 1, 2, . . . , l, are non-zero real numbers and min

j=1,2,... ,l
mj >

0. We consider the set Γ′ obtained by intersecting the Newton diagram Γ(f) and
the subspace A := {αj = 0, j = l + 1, l + 2, . . . n}. If f is convenient, then its
restriction to the subspace A will again be convenient. Consequently, Γ′ is the
Newton diagram of the restriction f |A. Let γ (resp., ν(m)) be the set of minimal
solutions (resp., the minimal value) of the following programming problem

min
α∈Γ′〈m,α〉,

where m is the column vector (m1,m2, . . . ,ml, 0, 0, . . . , 0)t. Then γ is some face of
the diagrams Γ′ and Γ(f). Let x0 := (x0

1, x
0
2, . . . , x0

l , 1, 1, . . . , 1). By assumption,

max
i=1,2,... ,k

fi,γ(x0) > 0.(4)

On the other hand, from the fact that fi[ϕ(t)] ≤ 0, i = 1, 2, . . . , k, on the curve
ϕ, it follows that on the curve ϕ̄ : [0, ε) → R

n, which is defined by

ϕ̄ :=

{
x̄1(t) = x0

1t
m1 , x̄2(t) = x0

2t
m2 , . . . , x̄l(t) = x0

l t
ml ,

x̄l+1(t) = x̄l+2(t) = · · · = x̄n(t) = 0,
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one has the relations fi[ϕ̄(t)] ≤ 0, i = 1, 2, . . . , k. However, by Lemma 1, for
i = 1, 2, . . . , k,

0 ≥ fi[ϕ̄(t)] = fi,γ[ϕ̄(t)] + o(tν(m))

= tν(m)fi,γ(x0
1, x

0
2, . . . , x0

l , 0, 0, . . . , 0) + o(tν(m))

= tν(m)fi,γ(x0
1, x

0
2, . . . , x0

l , 1, 1, . . . , 1) + o(tν(m)),

which contradicts (4). (The last equality follows from the independence of the
quasi-homogeneous component fi,γ in the variables xl+1, xl+2, . . . , xn.)

Remark 1. Theorem 2 has been proved by Vassiliev (1977) in the case where
k = 1.

Example 2. (i) Consider the following real analytic mapping

f(x, y) := (f1(x, y) := y6 + x3y2, f2(x, y) := x8 + 2x3y2 + xy4) : (R2, 0) → (R2, 0).

The Newton diagram Γ(f) of f consists of the three line segments AB,BC and
CD, where A,B,C and D are the points of coordinates (0, 6), (1, 4), (3, 2) and
(8, 0), respectively. Choose γ = {C(3, 2)}-the vertex of Γ(f). We have

f1,γ(x, y) = x3y2, f2,γ(x, y) = 2x3y2.

Hence, max
i=1,2

fi,γ(x, y) < 0 for all (x, y) such that x < 0, y �= 0. Therefore, by

Theorem 2 (i), 0 is not a local Pareto optimum for f.

(ii) Let k be a positive integer number. Let

f : (Rn, 0) → (R2, 0),

x �→ (f1(x), f2(x)),

be an analytic mapping which is defined by

f1(x) := x2k
1 + x2k

2 + · · · + x2k
n−1 − x2k+1

n +
∑

j>2k+1

Hj(x),

f2(x) := x2k+1
n +

∑
j>2k+1

Gj(x),

where Hj, Gj are homogeneous polynomials of degree j. Then, it is easy to check
that the Newton diagram Γ(f) of f is the convex hull of the following points:

A1(2k, 0, . . . , 0), A2(0, 2k, . . . , 0), . . . , An−1(0, 0, . . . , 2k, 0), An(0, 0, . . . , 0, 2k+1).

Let γ be a face of Γ(f). There are two cases to be considered.
Case 1: An �∈ γ. We have

f1,γ(x) =
∑

{j|Aj∈γ}
x2k

j , f2,γ(x) = 0.

Therefore, max
i=1,2

fi,γ(x) ≥ 0, with equality if and only if xj = 0 for all j with

Aj ∈ γ.
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Case 2: An ∈ γ. In this case, we have

f1,γ(x) =
∑

{j|Aj∈γ,j �=n}
x2k

j − x2k+1
n , f2,γ(x) = x2k+1

n .

Thus, max
i=1,2

fi,γ(x) ≥ |xn|2k+1 ≥ 0. In particular, the equality max
i=1,2

fi,γ(x) = 0

implies that xn = 0.
Combining cases (1) and (2), we get the following inequality

max
i=1,2

fi,γ(x) > 0,

everywhere except in the coordinate planes. Hence, we can apply the sufficient
condition (ii) in Theorem 2 and obtain that f has 0 as a strict local Pareto
optimum.

The following result has been proved by Smale (1973) and (1975), and Wan
(1975); (the proofs were simplified later in Geldrop (1980), see also Wan (1977),
Hà Huy Vui (1980) and (1982)). We will prove it in a quite different way, using
the Curve Selection Lemma (see Milnor, 1968).

Theorem 3. Let f : (Rn, 0) → (Rk, 0) be a real analytic mapping defined in a
neighborhood of the origin with f(0) = 0.

(i) If 0 is a local Pareto optimum for f, then there exist real numbers λ1, λ2, . . . ,
λk ≥ 0, not all zero, such that

k∑
i=1

λiDfi(0) = 0.(5)

(ii) Let be given λ1, λ2, . . . , λk ≥ 0 not all zero satisfying (5). If the bilinear

symmetric form
[

k∑
i=1

λiD
2fi(0)

]
is positive definite on the linear subspace

{v ∈ R
n | 〈λiDfi(0), v〉 = 0, for all i},

then 0 is a strict local Pareto optimum for f.

Proof. (i) It is clear that we only have to consider the case Dfi(0) �= 0, i =
1, 2, . . . , k. Let γ be the set of minimal solutions of the following linear program-
ming problem

min
α∈Γ+(f)

〈m,α〉,
where m is the column vector (1, 1, . . . , 1)t. Then γ is some face of the polyhedron

with the vertices e(j) := (0, 0, . . . ,
j
1, 0 . . . , 0) for j = 1, 2, . . . , n. This leads to the

fact that the quasi-homogeneous components of f with respect to γ is defined by

fi,γ(x) = 〈Dfi(0), x〉, i = 1, 2, . . . , k.

By Theorem 2, max
i=1,2,... ,k

fi,γ(x) ≥ 0 on R
n. Hence, the set

{x ∈ R
n | 〈Dfi(0), x〉 < 0, i = 1, 2, . . . , k}
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is empty. It follows from Farkas’s lemma that this relation is equivalent to (5).
(ii) Suppose, by contradiction, that in any neighborhood of 0 there are points

of the set where the functions fi, i = 1, 2, . . . , k, are non-positive. Then, by
the Curve Selection Lemma (see Milnor, 1968), there exists an analytic curve
ϕ : [0, ε) → R

n, t �→ ϕ(t), such that
(a) fi[ϕ(t)] ≤ 0, i = 1, 2, . . . , k, for t ∈ [0, ε);
(b) ϕ(t) = 0 if and only if t = 0.
Without loss of generality, we can suppose that this curve lies entirely in the

coordinate planes {xj = 0}, j = l + 1, l + 2, . . . , n, where 1 ≤ l ≤ n, and does not
lie in the remaining coordinate planes. Then we can write

ϕ(t) :=




x1(t) = x0
1t

m1 + higher order terms in t,

x2(t) = x0
2t

m2 + higher order terms in t,

· · ·
xl(t) = x0

l t
ml + higher order terms in t,

xl+1(t) = xl+2(t) = · · · = xn(t) = 0,

for t ∈ [0, ε), where x0
j , j = 1, 2, . . . , l, are non-zero real numbers and

ν := min
j=1,2,... ,l

mj > 0.(6)

From the fact that fi[ϕ(t)] ≤ 0, i = 1, 2, . . . , k, on the curve ϕ, it follows that on
the curve

ϕ̄ :=

{
x̄1(t) = x0

1t
m1 , x̄2(t) = x0

2t
m2 , . . . , x̄l(t) = x0

l t
ml ,

x̄l+1(t) = x̄l+2(t) = · · · = x̄n(t) = 0,

for sufficiently small t > 0 one has the inequalities

fi[ϕ̄(t)] ≤ 0, i = 1, 2, . . . , k.(7)

On the other hand, we have

fi(x) = 〈Dfi(0), x〉 + o(‖x‖),
fi(x) = 〈Dfi(0), x〉 +

[
D2fi(0)

]
(x, x) + o(‖x‖2).

Replacing x by ϕ̄(t), for 0 < t � 1, we get

fi[ϕ̄(t)] = 〈Dfi(0), ϕ̄(t)〉 + o(tν),(8)
fi[ϕ̄(t)] = 〈Dfi(0), ϕ̄(t)〉 +

[
D2fi(0)

]
(ϕ̄(t), ϕ̄(t)) + o(t2ν),(9)

for i = 1, 2, . . . , k.

We now define the vector w := (w1, w2, . . . , wn) ∈ R
n componentwise by

wj :=

{
x0

j if mj = ν,

0 if mj > ν.

Then it is clear that w �= 0. Using (6) and (8), we obviously have, for 0 < t � 1,

fi[ϕ̄(t)] = 〈Dfi(0), w〉tν + o(tν), for all i = 1, 2, . . . , k.
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This relation and (7) imply that

〈Dfi(0), w〉 ≤ 0, for all i = 1, 2, . . . , k.

Therefore, it follows from (5) that

〈λiDfi(0), w〉 = 0, for all i = 1, 2, . . . , k.

In other words, w ∈ {v ∈ R
n | 〈λiDfi(0), v〉 = 0, for all i}.

Moreover, from (5) and (9) we get

k∑
i=1

λifi[ϕ̄(t)] =

[
k∑

i=1

λiD
2fi(0)

]
(ϕ̄(t), ϕ̄(t)) + o(t2ν)

=

[
k∑

i=1

λiD
2fi(0)

]
(w,w)t2ν + o(t2ν).

Hence, by (7) we obtain [
k∑

i=1

λiD
2fi(0)

]
(w,w) ≤ 0,

which contradicts the fact that the bilinear symmetric form
[

k∑
i=1

λiD
2fi(0)

]
is

positive definite on the linear subspace {v ∈ R
n | 〈λiDfi(0), v〉 = 0, for all i}.
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