ON LOCAL PARETO OPTIMA OF REAL ANALYTIC MAPPINGS

HA HUY VUI AND PHAM TIEN SON

Abstract

This paper deals with the local problem of optimizing several analytic functions at the same time. We prove that the Milnor number of an isolated complete intersection singularity at a local Pareto optimal point is odd. Furthermore, high-order necessary and almost sufficient conditions are given, allowing one to recognize from the Newton diagram of an analytic mapping at the origin whether this point is a local Pareto optimum.

1. Introduction

Motivated by mathematical economics, we consider the problem of optimizing several analytic functions. More precisely, let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{k}, 0\right), x \mapsto$ $\left(f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right)$, be an analytic mapping defined in a neighborhood of the origin in \mathbb{R}^{n} with $f(0)=0$. The point $0 \in \mathbb{R}^{n}$ is said to be a local Pareto optimum (strict local Pareto optimum) for f if and only if there exists a neighborhood U of 0 in \mathbb{R}^{n} such that for any $x \in U, f_{i}(x) \leq 0$ for $i=1,2, \ldots, k$, imply $f_{i}(x)=0$ for $i=1,2, \ldots, k,(x=0)$. The problem is to find conditions for the origin in \mathbb{R}^{n} to be a local Pareto optimum for f.

It is well-known that (see Vassiliev (1977)) if the Milnor number of an analytic function (i.e., in the case where $k=1$) at a local optimal point is finite, then it is odd. The first objective of this paper is to establish a similar result for local Pareto optima. Namely, we prove in Section 2 that the Milnor number of an isolated complete intersection singularity at a local Pareto optimal point is odd.

The second objective of this paper concerns the well known first-order necessary and second-order sufficient conditions for a local Pareto optimum (see Smale (1973) and (1975), Wan (1975)). These low-order conditions are insufficient for the characterization of local Pareto optima for any generic class of mappings $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ from $\left(\mathbb{R}^{n}, 0\right)$ onto $\left(\mathbb{R}^{k}, 0\right)$ with the first derivatives $D f_{j}(0)=0$ and the second derivatives $D^{2} f_{j}(0)=0$ for all $j=1,2, \ldots, k$. Thus, it is natural to ask the question: can one find certain high-order necessary and sufficient conditions for local Pareto optima? In order to handle those high-order criteria

[^0]in a neat way, one is led to the notation of Newton diagrams (see Kouchnirenko (1976) and $\S 3$ below).

In Section 3 we will give high-order necessary and almost sufficient conditions which allow us to recognize from the Newton diagram of an analytic mapping at the origin whether this point is a local Pareto optimum. We also give a short, direct proof of the first-order necessary and second-order sufficient conditions for a local Pareto optimum. It must be noted that unlike the previous proofs (see Smale (1973) and (1975), Wan (1975)), the one presented below uses only the Curve Selection Lemma. A different approach, based on the notation of jets, can be found in Wan (1977), Hà Huy Vui (1980) and (1982).

2. Milnor number of a Complete intersection

We first recall some basic facts about complete intersections with isolated singularity (see Looijenga (1984)). Let $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k}, 0\right)$, with $1 \leq k<n$, be an analytic mapping defined in a neighborhood $U \subset \mathbb{C}^{n}$ of the origin such that $f(0)=0$. Let $V:=\left(f^{-1}(0), 0\right)$ be the germ of $f^{-1}(0)$ at $0 \in \mathbb{C}^{n}$. We say that V is a germ of a complete intersection with an isolated singularity at the origin if there is a positive number ϵ such that the holomorphic k-form $d f_{1}(z) \wedge d f_{2}(z) \wedge \cdots \wedge d f_{k}(z) \neq 0$ for any $z \in V \cap\left(B_{\epsilon}^{2 n}-\{0\}\right)$, where

$$
B_{\epsilon}^{2 n}:=\left\{z \in \mathbb{C}^{n} \mid\|z\| \leq \epsilon\right\} .
$$

In particular, $V \cap\left(B_{\epsilon}^{2 n}-\{0\}\right)$ is non-singular.
Taking $\epsilon_{0}>0$ sufficiently small, we may assume that any sphere $\mathbb{S}_{\epsilon}^{2 n-1}:=\partial B_{\epsilon}^{2 n}$ $\left(0<\epsilon \leq \epsilon_{0}\right)$ intersects V transversally. Let W be a sufficiently small neighborhood of $0 \in \mathbb{C}^{n}$, such that $\mathbb{S}_{\epsilon_{0}}^{2 n-1}$ meets transversally with any fiber $f^{-1}(\delta), \delta \in W$. Let D_{f} be the set of the critical values of the restriction $\left.f\right|_{f^{-1}(W) \cap B_{\epsilon_{0}}^{2 n} .} D_{f}$ is called the discriminant locus of f and it is well known that D_{f} is a hypersurface. Let $X^{*}:=\left(f^{-1}(W) \cap B_{\epsilon_{0}}^{2 n}\right)-f^{-1}\left(D_{f}\right)$. Then the mapping $f: X^{*} \rightarrow W-D_{f}$ is a C^{∞}-locally trivial fibration. This fibration is called the Milnor fibration of the mapping $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k}, 0\right)$.

Let $f^{-1}(\delta)$ be a generic fiber. It is known that $f^{-1}(\delta)$ has the homotopy type of a bouquet of spheres of dimension $n-k$ (see Milnor (1968) in the case where $k=1$, and Hamm (1971) in the case where $k>1$). The number of spheres in this bouquet is called the Milnor number at $0 \in \mathbb{C}^{n}$ of f and denoted by $\mu(f)$.

In the case where $k=1$, according to Milnor (1968) and Palamodov (1967)

$$
\mu(f)=\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{\mathbb{C}^{n}, 0} /\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)\right),
$$

where $\mathcal{O}_{\mathbb{C}^{n}, 0}$ is the ring of germs of complex analytic functions at the origin.
If $n>k>1$, then we have the following formula of Lê Dũng Tráng (1974) and Greuel (1975)

$$
\mu\left(f^{\prime}\right)+\mu(f)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I
$$

where $f^{\prime}:=\left(f_{1}, f_{2}, \ldots, f_{k-1}\right)$ and I is the ideal generated by $f_{1}, f_{2}, \ldots, f_{k-1}$ and all $k \times k$ minors $\frac{\partial\left(f_{1}, f_{2}, \ldots, f_{k}\right)}{\partial\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right)}$ in $\mathcal{O}_{\mathbb{C}^{n}, 0}$. We have

Theorem 1. Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{k}, 0\right)$ be a real analytic germ defined in a neighborhood of the origin with $f(0)=0$. Let $f_{\mathbb{C}}:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k}, 0\right)$ be the complexification of f. Assume that $0 \in \mathbb{R}^{n}$ is a local Pareto optimum for f, and $f_{\mathbb{C}}$ is a germ of complete intersection with an isolated singularity at $0 \in \mathbb{C}^{n}$. Then we have

$$
\mu\left(f_{\mathbb{C}}\right)=1 \bmod 2 .
$$

Proof. Since f is a germ of a real analytic mapping and $f_{\mathbb{C}}$ is a complete intersection with isolated singularity at $0 \in \mathbb{C}^{n}$, by Lemma 4.2 of Dutertre (2002), there exists an analytic germ $g:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ such that the mapping

$$
\left(f_{\mathbb{C}}, g_{\mathbb{C}}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k+1}, 0\right)
$$

is also a complete intersection with isolated singularity at $0 \in \mathbb{C}^{n}$. Since f has $0 \in$ \mathbb{R}^{n} as a local Pareto optimum, the germ (f, g) also has $0 \in \mathbb{R}^{n}$ as its local Pareto optimum. Thus, by induction there are real analytic functions $g_{1}, g_{2}, \ldots, g_{n-k}$ such that for any $j=1,2, \ldots, n-k$, the mapping

$$
\left(f_{1}, f_{2}, \ldots, f_{k}, g_{1}, g_{2}, \ldots, g_{j}\right):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{k+j}, 0\right)
$$

has $0 \in \mathbb{R}^{n}$ as a local Pareto optimum and the complexified mapping

$$
\left(f_{1, \mathbb{C}}, f_{2, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, g_{2, \mathbb{C}}, \ldots, g_{j, \mathbb{C}}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k+j}, 0\right)
$$

defines a complete intersection with an isolated singularity at $0 \in \mathbb{C}^{n}$.
Let us consider the following mappings

$$
\begin{aligned}
\Phi:=\left(f_{1}, f_{2}, \ldots, f_{k}, g_{1}, g_{2}, \ldots, g_{n-k}\right) & : \quad\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{k} \times \mathbb{R}^{n-k}, 0\right), \\
\Phi_{\mathbb{C}}:=\left(f_{1, \mathbb{C}}, f_{2, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, g_{2, \mathbb{C}}, \ldots, g_{n-k, \mathbb{C}}\right) & : \quad\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{k} \times \mathbb{C}^{n-k}, 0\right) .
\end{aligned}
$$

According to Looijenga (1984), Proposition 5.12, we know that

$$
\begin{equation*}
\mu\left(\Phi_{\mathbb{C}}\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / J-1, \tag{1}
\end{equation*}
$$

where J is the ideal generated by $f_{1, \mathrm{C}}, f_{2, \mathrm{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathrm{C}}, g_{2, \mathbb{C}}, \ldots, g_{n-k, \mathbb{C}}$ in $\mathcal{O}_{\mathbb{C}^{n}, 0}$. Since $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / J$ is the number of complex points of $\Phi_{\mathbb{C}}^{-1}\left(\delta, \delta^{\prime}\right)$ in \mathbb{C}^{n} for a generic $\left(\delta, \delta^{\prime}\right) \in \mathbb{C}^{k} \times \mathbb{C}^{n-k}$, sufficiently close to $0 \in \mathbb{C}^{k} \times \mathbb{C}^{n-k}$, and since $g_{1}, g_{2}, \ldots, g_{n-k}$ are convergent series with real coefficients, the number of nonreal points of $\Phi_{\mathbb{C}}^{-1}\left(\delta, \delta^{\prime}\right)$ is even. Thus, $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / J$ is equal to the number of real points of $\Phi_{\mathbb{C}}^{-1}\left(\delta, \delta^{\prime}\right)$ modulo 2 .

On the other hand, since the map Φ has $0 \in \mathbb{R}^{n}$ as a local Pareto optimum, $\Phi^{-1}\left(\delta, \delta^{\prime}\right) \cap U$ is empty, where U is a sufficiently small neighborhood of the origin in \mathbb{R}^{n}, and $\left(\delta, \delta^{\prime}\right) \in \mathbb{R}_{-}^{n}:=\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n} \mid y_{i}<0, i=1,2, \ldots, n\right\}$.

Therefore

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / J=0 \bmod 2 .
$$

Hence, it follows from (1) that

$$
\begin{equation*}
\mu\left(\Phi_{\mathbb{C}}\right)=1 \bmod 2 \tag{2}
\end{equation*}
$$

In what follows, we shall show that

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I_{j}=0 \bmod 2
$$

for all $j=1,2, \ldots, n-k$, where I_{j} is the ideal generated by $f_{1, \mathbb{C}}, f_{2, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}$, $g_{1, \mathbb{C}}, g_{2, \mathbb{C}}, \ldots, g_{j-1, \mathbb{C}}$, and all $(k+j) \times(k+j)$-minors $\frac{\partial\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, \ldots, g_{j, \mathbb{C}}\right)}{\partial\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+j}}\right)}$ in $\mathcal{O}_{\mathbb{C}^{n}, 0}$.

Let J_{j} be the ideal generated by all $(k+j) \times(k+j)$-minors $\frac{\partial\left(f_{1, \mathrm{C}}, \ldots, f_{k, \mathrm{C}}, g_{1, \mathrm{C}}, \ldots, g_{j, \mathbb{C}}\right)}{\partial\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+j}}\right)}$ in $\mathcal{O}_{\mathbb{C}^{n}, 0}$. (Whence $I_{j}=\left\langle f_{1, \mathbb{C}}, f_{2, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, g_{2, \mathbb{C}}, \ldots, g_{j-1, \mathbb{C}}, J_{j}\right\rangle \mathcal{O}_{\mathbb{C}^{n}, 0}$. . Let C_{j} be the germ of complex zeros of J_{j}. According to a result of Saito (1973), $\mathcal{O}_{\mathbb{C}^{n}, 0} / J_{j}$ is a Cohen-Macaulay ring of dimension $k+j$, and so C_{j} is equidimensional of dimension $k+j$. Then a result about multiplicity from Serre (1989) gives the following relation

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I_{j}=\left(\Phi_{j, \mathbb{C}}^{-1}(0), C_{j}\right)_{0}
$$

where $\Phi_{j, \mathbb{C}}:=\left(f_{1, \mathbb{C}}, f_{2, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, g_{2, \mathbb{C}}, \ldots, g_{j-1, \mathbb{C}}\right)$, and $\left(\Phi_{j, \mathbb{C}}^{-1}(0), C_{j}\right)_{0}$ is the intersection multiplicity of $\Phi_{j, \mathbb{C}}^{-1}(0)$ and C_{j} at $0 \in \mathbb{C}^{n}$. Let \tilde{g}_{j} be a suitable perturbation of g_{j}, and let \tilde{C}_{j} be the germ of complex zeros of the ideal, generated by all $(k+j) \times(k+j)$-minors $\frac{\partial\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, \ldots, g_{j-1, \mathbb{C}}, \tilde{g}_{j, \mathbb{C}}\right)}{\partial\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k+j}}\right)}$. Then the intersection multiplicity $\left(\Phi_{j, \mathbb{C}}^{-1}(0), C_{j}\right)_{0}$ is equal to the number of the intersection points of $\Phi_{j, \mathbb{C}}^{-1}(\delta)$ and \tilde{C}_{j}, where δ is generic and sufficiently close to $0 \in \mathbb{C}^{k+j-1}$. Hence, we can assume, without loss of generality, that $\delta \in \mathbb{R}_{-}^{k+j-1}$ and \tilde{C}_{j} intersects $\Phi_{j, \mathbb{C}}^{-1}(\delta)$ transversally at regular points. By Lemma 3.7 of Dutertre (2002), $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I_{j}$ is equal modulo 2 to the number of real non-degenerate critical points of the restriction $\left.\tilde{g}_{j, \mathbb{C}}\right|_{\Phi_{j, \mathbb{C}}^{-1}(\delta) \cap B_{\epsilon}^{2 n}}$. But, $0 \in \mathbb{R}^{n}$ is a local Pareto optimum of $\Phi_{j}=\left(f_{1}, f_{2}, \ldots, f_{k}, g_{1}, g_{2}, \ldots, g_{j-1}\right)$ and $\delta \in \mathbb{R}_{-}^{k+j-1}$, therefore the number of real non-degenerate critical points of $\left.\tilde{g}_{j, \mathbb{C}}\right|_{\Phi_{j, \mathbb{C}}^{-1}(\delta) \cap B_{\epsilon}^{2 n}}$ is evidently equal to 0 . Hence

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I_{j}=0 \bmod 2 \tag{3}
\end{equation*}
$$

Now, we easily get the proof of the theorem. In fact, it follows from the formula of Lê Dũng Tráng (1974) and Greuel (1975) and from (3) that

$$
\begin{aligned}
\mu\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, \ldots, g_{n-k-1, \mathbb{C}}\right) & +\mu\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}, \ldots, g_{n-k, \mathbb{C}}\right) \\
& =\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I_{n-k}=0 \bmod 2 \\
& \ldots \\
\mu\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}\right)+ & \mu\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}, g_{1, \mathbb{C}}\right) \\
= & \operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I_{1}=0 \bmod 2 .
\end{aligned}
$$

All these equalities and (2) imply that

$$
\mu\left(f_{1, \mathbb{C}}, \ldots, f_{k, \mathbb{C}}\right)=1 \bmod 2 .
$$

The theorem is proved.
Example 1. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}(n \geq 2)$ be distinct numbers. Then the mapping $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right), \quad x \mapsto\left(f_{1}:=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}, f_{2}:=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n} x_{n}^{2}\right)$ is a complete intersection with isolated singularity, and f has a local Pareto optimum at $0 \in \mathbb{R}^{n}$. Consider the ideal $I \subset \mathcal{O}_{\mathbb{C}^{n}, 0}$ generated by f_{1} and all 2×2 minors $\frac{\partial\left(f_{1}, f_{2}\right)}{\partial\left(x_{i}, x_{j}\right)}, 1 \leq i \leq j \leq n$. Then it is easy to check that

$$
I=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}, x_{i} x_{j}: 1 \leq i \leq j \leq n\right) .
$$

This ideal contains all homogeneous polynomials of degree 3 so that if we denote by \mathfrak{m} the maximal ideal in $\mathcal{O}_{\mathbb{C}^{n}, 0}$, then $I+\mathfrak{m}^{4} \supset \mathfrak{m}^{3}$. It then follows from Nakayama's lemma that $I \supset \mathfrak{m}^{3}$. This implies that $\mathcal{O}_{\mathbb{C}^{n}, 0} / I$ is generated by the residue classes of $1, x_{1}, \ldots, x_{n}, x_{1}^{2}, \ldots, x_{n-1}^{2}$. Consequently,

$$
\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{\mathbb{C}^{n}, 0} / I\right)=2 n
$$

On the other hand, it is clear that the dimension of $\mathcal{O}_{\mathbb{C}^{n}, 0} /\left(\frac{\partial f_{1}}{\partial x_{1}}, \ldots, \frac{\partial f_{1}}{\partial x_{n}}\right)$ is 1 . Therefore,

$$
\mu\left(f_{1}, f_{2}\right)=2 n-1=1 \bmod 2 .
$$

3. Necessary and sufficient conditions for local Pareto optima

In this section, we give the high-order necessary and sufficient conditions for a local Pareto optimum. First let us recall the definition of the Newton polyhedron of mappings in the real space \mathbb{R}^{n} (see, for example, Kouchnirenko, 1976). Let $\mathbb{N} \subset \mathbb{R}_{+} \subset \mathbb{R}$ be the sets of all nonnegative integers, all nonnegative real numbers, and all real numbers respectively. Let $f_{i}:=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha}(i) x^{\alpha}, i=1,2, \ldots, k$. Let us write

$$
\operatorname{supp}(f):=\cup_{i=1}^{k}\left\{\alpha \in \mathbb{N}^{n} \mid a_{\alpha}(i) \neq 0\right\} .
$$

Then the Newton polyhedron $\Gamma_{+}(f)$ of f is the convex hull in \mathbb{R}_{+}^{n} of the set $\cup_{\alpha \in \operatorname{supp}(f)}\left(\alpha+\mathbb{R}_{+}^{n}\right)$. For any $m \in \mathbb{R}_{+}^{n}, m \neq 0$, we consider a supporting hyperplane
$\left\{\alpha \in \mathbb{R}^{n} \mid\langle m, \alpha\rangle=\nu(m)\right\}$ such that

$$
\langle m, \alpha\rangle \geq \nu(m), \quad \text { for all } \alpha \in \Gamma_{+}(f) .
$$

These conditions determine $\nu(m)$ uniquely, while $\Gamma_{+}(f)$ is given by the system of inequalities ${ }^{1}$

$$
\langle m, \alpha\rangle \geq \nu(m), \quad m \in \mathbb{R}_{+}^{n} .
$$

A face of the boundary of the Newton polyhedron $\Gamma_{+}(f)$ is an intersection of $\Gamma_{+}(f)$ with some supporting hyperplane. The Newton $\operatorname{diagram} \Gamma(f)$ of f is the union of the compact faces of the Newton polyhedron $\Gamma_{+}(f)$. The mapping f is called convenient if the Newton diagram $\Gamma(f)$ of f meets all coordinate axes. For each face $\gamma \in \Gamma(f)$, the restrictions

$$
f_{i, \gamma}(x):=\sum_{\alpha \in \gamma} a_{\alpha}(i) x^{\alpha}, \quad i=1,2, \ldots, k,
$$

are called the quasi-homogeneous components of f with respect to γ.
Let $\left\{\alpha \in \mathbb{R}^{n} \mid\langle m, \alpha\rangle=\nu(m)\right\}$ be the supporting hyperplane of a given face $\gamma \in \Gamma(f)$. The following lemma indicates a convenient way to determine $f_{i, \gamma}$ from f_{i}.

Lemma 1. Let $x \in \mathbb{R}^{n}, x \neq 0$. We have

$$
f_{i}\left(t^{m} \bullet x\right)=t^{\nu(m)} f_{i, \gamma}(x)+o\left(t^{\nu(m)}\right) \quad \text { as } \quad t \rightarrow 0,
$$

where $t^{m} \bullet x:=\left(t^{m_{1}} x_{1}, t^{m_{2}} x_{2}, \ldots, t^{m_{n}} x_{n}\right)$.
Proof. By definition, $\langle m, \alpha\rangle \geq \nu(m)$ for all $\alpha \in \Gamma_{+}(f)$ with equality if and only if $\alpha \in \gamma$. Moreover, by the definition of the quasi-homogeneous components with respect to the face γ, we get

$$
f_{i, \gamma}\left(t^{m} \bullet x\right)=t^{\nu(m)} f_{i, \gamma}(x) .
$$

From this the lemma follows.
Theorem 2. Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{k}, 0\right)$ be a real analytic mapping defined in a neighborhood of the origin with $f(0)=0$.
(i) If 0 is a local Pareto optimum for f, then

$$
\max _{i=1,2, \ldots, k} f_{i, \gamma}(x) \geq 0
$$

for all $\gamma \in \Gamma(f)$ and $x \in \mathbb{R}^{n}$.
(ii) Suppose that f is convenient. If for any $\gamma \in \Gamma(f)$ we have

$$
\max _{i=1,2, \ldots, k} f_{i, \gamma}(x)>0
$$

everywhere except in the coordinate planes, then 0 is a strict local Pareto optimum for f.

[^1]Proof. (i) Suppose on the contrary that there exist $\gamma \in \Gamma(f)$ and $x^{0} \in \mathbb{R}^{n}$ such that

$$
\max _{i=1,2, \ldots, k} f_{i, \gamma}\left(x^{0}\right)<0
$$

Then, it follows from Lemma 1 that

$$
f_{i}\left(t^{m} \bullet x^{0}\right)<0, i=1,2, \ldots, k, \quad \text { for all } 0<t \ll 1 .
$$

Thus 0 is not a local Pareto optimum for f, which contradicts the hypothesis.
(ii) We now suppose that for any $\gamma \in \Gamma(f)$ we have $\max _{i=1,2, \ldots, k} f_{i, \gamma}(x)>0$ everywhere except in the coordinate planes. We will prove that 0 is a strict local Pareto optimum for f. Indeed, suppose that contrary to our claim, in any neighborhood of 0 there are points of the set where the functions $f_{i}, i=1,2, \ldots, k$, are non-positive. Then, by the Curve Selection Lemma (see Milnor, 1968), there exists an analytic curve $\varphi:[0, \epsilon) \rightarrow \mathbb{R}^{n}, t \mapsto \varphi(t)$, such that
(a) $f_{i}[\varphi(t)] \leq 0, i=1,2, \ldots, k$, for $t \in[0, \epsilon)$;
(b) $\varphi(t)=0$ if and only if $t=0$.

Without loss of generality, we may assume that this curve lies entirely in the coordinate planes $\left\{x_{j}=0\right\}, j=l+1, l+2, \ldots, n$, where $1 \leq l \leq n$, and does not lie in the remaining coordinate planes. Then we can write

$$
\varphi(t):=\left\{\begin{array}{c}
x_{1}(t)=x_{1}^{0} t^{m_{1}}+\text { higher order terms in } t \\
x_{2}(t)=x_{2}^{0} t^{m_{2}}+\text { higher order terms in } t \\
\quad \cdots \\
x_{l}(t)=x_{l}^{0} t^{m_{l}}+\text { higher order terms in } t \\
x_{l+1}(t)=x_{l+2}(t)=\cdots=x_{n}(t)=0
\end{array}\right.
$$

for $t \in[0, \epsilon)$, where $x_{j}^{0}, j=1,2, \ldots, l$, are non-zero real numbers and $\min _{j=1,2, \ldots, l} m_{j}>$ 0 . We consider the set Γ^{\prime} obtained by intersecting the Newton diagram $\Gamma(f)$ and the subspace $A:=\left\{\alpha_{j}=0, j=l+1, l+2, \ldots n\right\}$. If f is convenient, then its restriction to the subspace A will again be convenient. Consequently, Γ^{\prime} is the Newton diagram of the restriction $\left.f\right|_{A}$. Let $\gamma($ resp., $\nu(m))$ be the set of minimal solutions (resp., the minimal value) of the following programming problem

$$
\min _{\alpha \in \Gamma^{\prime}}\langle m, \alpha\rangle,
$$

where m is the column vector ($\left.m_{1}, m_{2}, \ldots, m_{l}, 0,0, \ldots, 0\right)^{t}$. Then γ is some face of the diagrams Γ^{\prime} and $\Gamma(f)$. Let $x^{0}:=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{l}^{0}, 1,1, \ldots, 1\right)$. By assumption,

$$
\begin{equation*}
\max _{i=1,2, \ldots, k} f_{i, \gamma}\left(x^{0}\right)>0 . \tag{4}
\end{equation*}
$$

On the other hand, from the fact that $f_{i}[\varphi(t)] \leq 0, i=1,2, \ldots, k$, on the curve φ, it follows that on the curve $\bar{\varphi}:[0, \epsilon) \rightarrow \mathbb{R}^{n}$, which is defined by

$$
\bar{\varphi}:=\left\{\begin{array}{l}
\bar{x}_{1}(t)=x_{1}^{0} t^{m_{1}}, \bar{x}_{2}(t)=x_{2}^{0} t^{m_{2}}, \ldots, \bar{x}_{l}(t)=x_{l}^{0} t^{m_{l}}, \\
\bar{x}_{l+1}(t)=\bar{x}_{l+2}(t)=\cdots=\bar{x}_{n}(t)=0,
\end{array}\right.
$$

one has the relations $f_{i}[\bar{\varphi}(t)] \leq 0, i=1,2, \ldots, k$. However, by Lemma 1 , for $i=1,2, \ldots, k$,

$$
\begin{aligned}
0 \geq f_{i}[\bar{\varphi}(t)] & =f_{i, \gamma}[\bar{\varphi}(t)]+o\left(t^{\nu(m)}\right) \\
& =t^{\nu(m)} f_{i, \gamma}\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{l}^{0}, 0,0, \ldots, 0\right)+o\left(t^{\nu(m)}\right) \\
& =t^{\nu(m)} f_{i, \gamma}\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{l}^{0}, 1,1, \ldots, 1\right)+o\left(t^{\nu(m)}\right)
\end{aligned}
$$

which contradicts (4). (The last equality follows from the independence of the quasi-homogeneous component $f_{i, \gamma}$ in the variables $x_{l+1}, x_{l+2}, \ldots, x_{n}$.)

Remark 1. Theorem 2 has been proved by Vassiliev (1977) in the case where $k=1$.

Example 2. (i) Consider the following real analytic mapping
$f(x, y):=\left(f_{1}(x, y):=y^{6}+x^{3} y^{2}, f_{2}(x, y):=x^{8}+2 x^{3} y^{2}+x y^{4}\right):\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{2}, 0\right)$.
The Newton diagram $\Gamma(f)$ of f consists of the three line segments $A B, B C$ and $C D$, where A, B, C and D are the points of coordinates $(0,6),(1,4),(3,2)$ and $(8,0)$, respectively. Choose $\gamma=\{C(3,2)\}$-the vertex of $\Gamma(f)$. We have

$$
f_{1, \gamma}(x, y)=x^{3} y^{2}, \quad f_{2, \gamma}(x, y)=2 x^{3} y^{2}
$$

Hence, $\max _{i=1,2} f_{i, \gamma}(x, y)<0$ for all (x, y) such that $x<0, y \neq 0$. Therefore, by Theorem 2 (i), 0 is not a local Pareto optimum for f.
(ii) Let k be a positive integer number. Let

$$
\begin{aligned}
f:\left(\mathbb{R}^{n}, 0\right) & \rightarrow\left(\mathbb{R}^{2}, 0\right) \\
x & \mapsto\left(f_{1}(x), f_{2}(x)\right),
\end{aligned}
$$

be an analytic mapping which is defined by

$$
\begin{aligned}
f_{1}(x) & :=x_{1}^{2 k}+x_{2}^{2 k}+\cdots+x_{n-1}^{2 k}-x_{n}^{2 k+1}+\sum_{j>2 k+1} H_{j}(x) \\
f_{2}(x) & :=x_{n}^{2 k+1}+\sum_{j>2 k+1} G_{j}(x)
\end{aligned}
$$

where H_{j}, G_{j} are homogeneous polynomials of degree j. Then, it is easy to check that the Newton diagram $\Gamma(f)$ of f is the convex hull of the following points:
$A_{1}(2 k, 0, \ldots, 0), A_{2}(0,2 k, \ldots, 0), \ldots, A_{n-1}(0,0, \ldots, 2 k, 0), A_{n}(0,0, \ldots, 0,2 k+1)$.
Let γ be a face of $\Gamma(f)$. There are two cases to be considered.
Case 1: $A_{n} \notin \gamma$. We have

$$
f_{1, \gamma}(x)=\sum_{\left\{j \mid A_{j} \in \gamma\right\}} x_{j}^{2 k}, \quad f_{2, \gamma}(x)=0 .
$$

Therefore, $\max _{i=1,2} f_{i, \gamma}(x) \geq 0$, with equality if and only if $x_{j}=0$ for all j with $A_{j} \in \gamma$.

Case 2: $A_{n} \in \gamma$. In this case, we have

$$
f_{1, \gamma}(x)=\sum_{\left\{j \mid A_{j} \in \gamma, j \neq n\right\}} x_{j}^{2 k}-x_{n}^{2 k+1}, \quad f_{2, \gamma}(x)=x_{n}^{2 k+1}
$$

Thus, $\max _{i=1,2} f_{i, \gamma}(x) \geq\left|x_{n}\right|^{2 k+1} \geq 0$. In particular, the equality $\max _{i=1,2} f_{i, \gamma}(x)=0$ implies that $x_{n}=0$.

Combining cases (1) and (2), we get the following inequality

$$
\max _{i=1,2} f_{i, \gamma}(x)>0
$$

everywhere except in the coordinate planes. Hence, we can apply the sufficient condition (ii) in Theorem 2 and obtain that f has 0 as a strict local Pareto optimum.

The following result has been proved by Smale (1973) and (1975), and Wan (1975); (the proofs were simplified later in Geldrop (1980), see also Wan (1977), Hà Huy Vui (1980) and (1982)). We will prove it in a quite different way, using the Curve Selection Lemma (see Milnor, 1968).
Theorem 3. Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{k}, 0\right)$ be a real analytic mapping defined in a neighborhood of the origin with $f(0)=0$.
(i) If 0 is a local Pareto optimum for f, then there exist real numbers $\lambda_{1}, \lambda_{2}, \ldots$, $\lambda_{k} \geq 0$, not all zero, such that

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} D f_{i}(0)=0 \tag{5}
\end{equation*}
$$

(ii) Let be given $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \geq 0$ not all zero satisfying (5). If the bilinear symmetric form $\left[\sum_{i=1}^{k} \lambda_{i} D^{2} f_{i}(0)\right]$ is positive definite on the linear subspace

$$
\left\{v \in \mathbb{R}^{n} \mid\left\langle\lambda_{i} D f_{i}(0), v\right\rangle=0, \text { for all } i\right\},
$$

then 0 is a strict local Pareto optimum for f.
Proof. (i) It is clear that we only have to consider the case $D f_{i}(0) \neq 0, i=$ $1,2, \ldots, k$. Let γ be the set of minimal solutions of the following linear programming problem

$$
\min _{\alpha \in \Gamma_{+}(f)}\langle m, \alpha\rangle,
$$

where m is the column vector $(1,1, \ldots, 1)^{t}$. Then γ is some face of the polyhedron with the vertices $e^{(j)}:=(0,0, \ldots, \stackrel{j}{1}, 0 \ldots, 0)$ for $j=1,2, \ldots, n$. This leads to the fact that the quasi-homogeneous components of f with respect to γ is defined by

$$
f_{i, \gamma}(x)=\left\langle D f_{i}(0), x\right\rangle, \quad i=1,2, \ldots, k
$$

By Theorem $2, \max _{i=1,2, \ldots, k} f_{i, \gamma}(x) \geq 0$ on \mathbb{R}^{n}. Hence, the set

$$
\left\{x \in \mathbb{R}^{n} \mid\left\langle D f_{i}(0), x\right\rangle<0, \quad i=1,2, \ldots, k\right\}
$$

is empty. It follows from Farkas's lemma that this relation is equivalent to (5).
(ii) Suppose, by contradiction, that in any neighborhood of 0 there are points of the set where the functions $f_{i}, i=1,2, \ldots, k$, are non-positive. Then, by the Curve Selection Lemma (see Milnor, 1968), there exists an analytic curve $\varphi:[0, \epsilon) \rightarrow \mathbb{R}^{n}, t \mapsto \varphi(t)$, such that
(a) $f_{i}[\varphi(t)] \leq 0, i=1,2, \ldots, k$, for $t \in[0, \epsilon)$;
(b) $\varphi(t)=0$ if and only if $t=0$.

Without loss of generality, we can suppose that this curve lies entirely in the coordinate planes $\left\{x_{j}=0\right\}, j=l+1, l+2, \ldots, n$, where $1 \leq l \leq n$, and does not lie in the remaining coordinate planes. Then we can write

$$
\varphi(t):=\left\{\begin{array}{c}
x_{1}(t)=x_{1}^{0} t^{m_{1}}+\text { higher order terms in } t \\
x_{2}(t)=x_{2}^{0} t^{m_{2}}+\text { higher order terms in } t \\
\\
\cdots \\
x_{l}(t)=x_{l}^{0} t^{m_{l}}+\text { higher order terms in } t \\
x_{l+1}(t)=x_{l+2}(t)=\cdots=x_{n}(t)=0
\end{array}\right.
$$

for $t \in[0, \epsilon)$, where $x_{j}^{0}, j=1,2, \ldots, l$, are non-zero real numbers and

$$
\begin{equation*}
\nu:=\min _{j=1,2, \ldots, l} m_{j}>0 . \tag{6}
\end{equation*}
$$

From the fact that $f_{i}[\varphi(t)] \leq 0, i=1,2, \ldots, k$, on the curve φ, it follows that on the curve

$$
\bar{\varphi}:=\left\{\begin{array}{l}
\bar{x}_{1}(t)=x_{1}^{0} t^{m_{1}}, \bar{x}_{2}(t)=x_{2}^{0} t^{m_{2}}, \ldots, \bar{x}_{l}(t)=x_{l}^{0} t^{m_{l}} \\
\bar{x}_{l+1}(t)=\bar{x}_{l+2}(t)=\cdots=\bar{x}_{n}(t)=0,
\end{array}\right.
$$

for sufficiently small $t>0$ one has the inequalities

$$
\begin{equation*}
f_{i}[\bar{\varphi}(t)] \leq 0, \quad i=1,2, \ldots, k . \tag{7}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
f_{i}(x) & =\left\langle D f_{i}(0), x\right\rangle+o(\|x\|) \\
f_{i}(x) & =\left\langle D f_{i}(0), x\right\rangle+\left[D^{2} f_{i}(0)\right](x, x)+o\left(\|x\|^{2}\right) .
\end{aligned}
$$

Replacing x by $\bar{\varphi}(t)$, for $0<t \ll 1$, we get

$$
\begin{align*}
f_{i}[\bar{\varphi}(t)] & =\left\langle D f_{i}(0), \bar{\varphi}(t)\right\rangle+o\left(t^{\nu}\right) \tag{8}\\
f_{i}[\bar{\varphi}(t)] & =\left\langle D f_{i}(0), \bar{\varphi}(t)\right\rangle+\left[D^{2} f_{i}(0)\right](\bar{\varphi}(t), \bar{\varphi}(t))+o\left(t^{2 \nu}\right),
\end{align*}
$$

for $i=1,2, \ldots, k$.
We now define the vector $w:=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ componentwise by

$$
w_{j}:= \begin{cases}x_{j}^{0} & \text { if } m_{j}=\nu, \\ 0 & \text { if } m_{j}>\nu\end{cases}
$$

Then it is clear that $w \neq 0$. Using (6) and (8), we obviously have, for $0<t \ll 1$,

$$
f_{i}[\bar{\varphi}(t)]=\left\langle D f_{i}(0), w\right\rangle t^{\nu}+o\left(t^{\nu}\right), \quad \text { for all } i=1,2, \ldots, k
$$

This relation and (7) imply that

$$
\left\langle D f_{i}(0), w\right\rangle \leq 0, \quad \text { for all } i=1,2, \ldots, k
$$

Therefore, it follows from (5) that

$$
\left\langle\lambda_{i} D f_{i}(0), w\right\rangle=0, \quad \text { for all } i=1,2, \ldots, k
$$

In other words, $w \in\left\{v \in \mathbb{R}^{n} \mid\left\langle\lambda_{i} D f_{i}(0), v\right\rangle=0\right.$, for all $\left.i\right\}$.
Moreover, from (5) and (9) we get

$$
\begin{aligned}
\sum_{i=1}^{k} \lambda_{i} f_{i}[\bar{\varphi}(t)] & =\left[\sum_{i=1}^{k} \lambda_{i} D^{2} f_{i}(0)\right](\bar{\varphi}(t), \bar{\varphi}(t))+o\left(t^{2 \nu}\right) \\
& =\left[\sum_{i=1}^{k} \lambda_{i} D^{2} f_{i}(0)\right](w, w) t^{2 \nu}+o\left(t^{2 \nu}\right)
\end{aligned}
$$

Hence, by (7) we obtain

$$
\left[\sum_{i=1}^{k} \lambda_{i} D^{2} f_{i}(0)\right](w, w) \leq 0
$$

which contradicts the fact that the bilinear symmetric form $\left[\sum_{i=1}^{k} \lambda_{i} D^{2} f_{i}(0)\right]$ is positive definite on the linear subspace $\left\{v \in \mathbb{R}^{n} \mid\left\langle\lambda_{i} D f_{i}(0), v\right\rangle=0\right.$, for all $\left.i\right\}$.

Acknowledgments

The paper was completed when the second author visited LMI-INSA Rouen, under the post-doctorant program supported by the "Agence Universitaire de la Francophonie". He would like to express his deep gratitude to these organizations for hospitality as well as for financial support.

References

[1] N. Dutertre, On the Milnor fiber of a real map-germ, Hokkaido Math. J. 31 (2002), 301-319.
[2] J. H. van Geldrop, A note on local Pareto optima, J. Math. Economics. 7 (1980), 51-54.
[3] G. M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266.
[4] Hà Huy Vui, Sur les points d'optimum de Pareto local à détermination finie ou infinie, C. R. Math. Acad. Sci, Series A 290 (1980), 685-688.
[5] Hà Huy Vui, Minimums de Pareto locaux, C. R. Math. Acad. Sci, Series A, 294 (1982), 329-331.
[6] H. Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235-252.
[7] A. G. Kushnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
[8] Lê Dũng Tráng, Calcul du nombre de Milnor d'une singularité isolée d'intersection complète, Func. Anal. Appl. 8 (1974), 45-52.
[9] E. J. N. Looijenga, Isolated singular points on complete intersections, London Math. Soc. Lecture Note Series 77, Cambridge University Press, 1984.
[10] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Stud. 61, Princeton University Press, 1968
[11] V. P. Palamodov, Multiplicity of holomorphic mappings, Funct. Anal. Appl. 1 (1967), 218226.
[12] K. Saito, Regularity of Gauss-Manin connection of flat family of isolated singularities, Quelques Journees singulieres, Publications du Centre de L'Ecole Polytechnique Paris, 1973.
[13] J. P. Serre, Algèbre locale. Multiplicités. Cours au College de France, 1957-1958. Rédigé par Pierre Gabriel. Troisième éd., Lecture Notes in Math 11, Springer-Verlag, 1989.
[14] S. Smale, Optimizing several functions, Proc. Tokyo Manifolds Conference, pp. 69-74, 1973.
[15] S. Smale, Sufficient conditions for an optimum, Warwick Dynamical Systems 1974, Lecture Notes in Math 468 (1975), 287-292.
[16] V. A. Vassiliev, Asymptotic exponential integrals, Newton's diagram, and the classification of minimal points, Funct. Anal. Appl. 11, No. 3 (1977), 163-172.
[17] Y. H. Wan, On local Pareto Optima. J. Math. Economics. 2 (1975), 35-42.
[18] Y. H. Wan, On the algebraic criteria for local Pareto optima, I, Topology 16 (1977), 113117.

Institute of Mathematics
18 Hoang Quoc Viet
10307 Hanoi, Vietnam
E-mail address: hhvui@math.ac.vn

Department of Mathematics
University of Dalat
Dalat, Vietnam
E-mail address: pham_ts@yahoo.co.uk

[^0]: Received November 29, 2004; in revised form April 13, 2005.
 Mathematics Subject Classification. C62, C65, C69.
 Key words and phrases. Local Pareto optimum, Milnor number, complete intersection with isolated singularities, high-order necessary and sufficient conditions for a local Pareto optimum, Newton diagram.

[^1]: ${ }^{1}$ The system of inequalities is infinite; however, there exists a finite number of inequalities of which the remaining inequalities are a consequence.

