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OPTIMALITY CONDITIONS IN
DC-CONSTRAINED OPTIMIZATION

M. LAGHDIR

Abstract. This paper studies the necessary and sufficient optimality condi-
tions associated with the problem of minimizing a DC-function (difference of
two convex functions) subject to a DC-constraint.

1. Introduction

We consider the following DC-constrained minimization problem

(P) inf
{
f1(x) − f2(x) : h1(x) − h2(x) /∈ − int Y+

}
,

where f1, f2 : X −→ R ∪ {+∞} are two extended real-valued functions and h1,
h2 are two convex mappings defined from X and taking values in a topological
vector real space Y equipped with a partial order induced by a convex cone
Y+ ⊂ Y . This model is versatile and various models arising from optimization,
economics, operation research and others (see [4] and references therein) can
be stated in the form (P). So problem (P) provides an unified frame work for
obtaining various results of DC-optimization. Let us point out that this large
class contains an important subclass of programming problems namely reverse
convex optimization problems by taking f2 ≡ 0 and h2 ≡ 0.

In recent years significant advances have been made in the study of duality
theory associated with constrained DC-optimization (see [5], [7], [6], [9], [10] and
[13]).

Recently, the author [8] has developed sufficient optimality conditions for prob-
lem (P) subject to a vector reverse convex constraint termed by h1(x) /∈ − int Y+

(with h2 ≡ 0). He also stated, under the same above constraint, the necessary
optimality conditions in the case where f2 is supposed to be strictly Hadamard
differentiable without convexity.

In the present work, our purpose is to study optimality conditions for the prob-
lem (P), extending the recent result on reverse convex programming by Laghdir
[8]. Let us point out that the same problem has been considered in [3] where the
objective function takes vector values by using a scalarization method.
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The paper is organized as follows. In Section 2, we introduce some notations
and preliminaries. Section 3 is devoted to extend the necessary conditions estab-
lished by Laghdir [8], to the case where the objective function is DC. In Sections
4 and 5, we formulate the optimality conditions associated with problem (P).
The approach that we will adopt for getting our main results, is based on the use
of an equivalent transformation of (P) into a minimization problem given by

inf{F1(x, y) − F2(x, y) : H(x, y) /∈ −int Y+},
where F1, F2 and H are auxiliary convex functions on X × Y defined by means
of the functions g1, g2, h1 and h2. This allows to derive the desired results by
applying the recent results in [8] and the related necessary conditions proved in
Section 3.

2. Definitions and notations

Throughout the paper, (X, ‖.‖) stands for a real normed vector space and X∗ is
its topological dual. Let f : X −→ R∪{+∞} be an extended-real-valued function
and let x̄ be any point where f is finite. f is said to be locally Lipschitzian around
x̄ if there exist two real numbers k > 0 and δ > 0 such that

|f(x) − f(y)| ≤ k ‖x − y‖, ∀x, y ∈ x̄ + δBX ,

where BX denotes the closed unit ball of X. In [1], it was shown that when f is
locally Lipschitzian, the Clarke’s generalized directional of f at x̄ defined by

v −→ f0(x̄, v) := lim sup
x→x̄
t→0+

f(x + tv) − f(x)
t

,

is a finite sublinear function. The following set

∂cf(x̄) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f0(x̄, v), ∀v ∈ X},
called the Clarke subdifferential of f at x̄, is a nonempty convex σ(X∗,X)-
compact subset of X∗. If f is convex and continuous at x̄, then f is locally
Lipschitzian and f

′
(x̄, v) = f0(x̄, v) for any v ∈ X, where v −→ f

′
(x̄, v) is the

usual directional derivative defined by

v −→ f
′
(x̄, v) := lim

t→0+

f(x̄ + tv) − f(x̄)
t

,

and therefore, ∂cf(x̄) is exact the subdifferential of f in the sense of the convex
analysis, usually denoted by ∂f(x̄).

Recall that the Fréchet subdifferential ∂F f(x̄) is the set of all x∗ ∈ X∗ such
that for any ε > 0 there exists some δ > 0 such that

〈x∗, x − x̄〉 ≤ f(x) − f(x̄) + ε‖x − x̄‖, ∀x ∈ x̄ + δBX .

When f is convex then the Fréchet subdifferential coincides with the the subdif-
ferential of convex analysis. Note that one always has

∂F f(x̄) ⊂ ∂cf(x̄).
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Let S be a nonempty closed subset of X. Consider the distance function
dS : X −→ [0,+∞[ defined, by

dS(x) := inf
y∈S

‖x − y‖, ∀x ∈ X.

The Clarke normal cone to S at x̄ is given by

N c
S(x̄) := cl

( ⋃
λ≥0

λ∂cdS(x̄)
)
,

where ”cl” stands for weak star closure in X∗. When S is a convex subset, N c
S(x̄)

coincides with the normal cone

NS(x̄) := {x∗ ∈ X∗ : 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ X},
in the sense of convex analysis.

Let us recall (see [11] and [12]) that a subset S is said to be epi-Lipschitzian
at x̄ (x̄ is a cluster point of S) if there exist some neighborhood V of x̄, λ > 0
and a nonempty open subset O such that

x + ty ∈ S, ∀x ∈ S ∩ V, ∀y ∈ O, ∀t ∈ (0, λ).

It was demonstrated in [12] that if S is epi-Lipschitzian and x̄ is a boundary point
of S then

N c
X\S(x̄) = −NS(x̄).

Every nonempty open convex subset is epi-Lipschitzian.

3. Necessary conditions associated with the
problem of minimizing a DC-function subject

to a reverse convex constraint

Consider the following minimization problem

(P1) inf
{
f1(x) − f2(x) : x ∈ X\S

}
,

where f1, f2 : X −→ R∪{−∞, +∞} are two extended real-valued functions and
S is a nonempty open convex subset of X.

Recently, necessary conditions for problem (P1) are discussed in [8] in the
case where f2 : X −→ R ∪ {−∞, +∞} is supposed only strictly Hadamard
differentiable without convexity. In this section, our goal is to establish necessary
conditions for problem (P1) in the larger class of objective functions that can be
written as a difference of two convex functions.

Proposition 3.1. Assume that (P1) admits a local minimum at x̄, f1 and f2

are convex, finite and continuous at x̄. Then
(i) For any boundary point x̄ of to S, ∂f2(x̄) ⊂ ∂f1(x̄) − NS(x̄);
(ii) For any topological interior point x̄ of X\S, ∂f2(x̄) ⊂ ∂f1(x̄).
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Proof. (i) Since f1 and f2 are convex, finite and continuous at x̄, it follows from a
classical result (see [2]) that f1 and f2 are locally Lipschitzian at x̄. By k > 0 we
denote a common Lipschitz constant of f1 and f2. As x̄ is a local minimum of (P1),
by Proposition 2.4.3 in Clarke [1], the function x −→ f1(x) − f2(x) + kdX\S(x)
attains its local minimum at x̄; that is, there exists some δ > 0 such that

f1(x̄) − f2(x̄) + kdX\S(x̄) ≤ f1(x) − f2(x) + kdX\S(x),

for any x ∈ x̄ + δBX . Setting

F (x) := f1(x) + kdX\S(x) + f2(x̄),

G(x) := f2(x) + f1(x̄),

we have F (x̄) = G(x̄) and

F (x) ≥ G(x), ∀x ∈ x̄ + δBX .

Hence, by means of Fréchet subdifferential, we get

∂F G(x̄) ⊂ ∂F F (x̄).(3.1)

As

∂F G(x̄) = ∂F f2(x̄),

∂F F (x̄) = ∂F (f1 + kdX\S)(x̄),

and f2 is convex, it follows from 3.1 that

∂f2(x̄) ⊂ ∂F (f1 + kdX\S)(x̄)

⊂ ∂c(f1 + k∂cdX\S)(x̄)

⊂ ∂cf1(x̄) + k∂cdX\S(x̄)

⊂ ∂f1(x̄) + N c
X\S(x̄).

Since S is an open convex subset, it follows from [12] that it is epi-Lipschitzian
at x̄ which is a boundary point to S. According to a result from [12], we have

N c
X\S(x̄) = −NS(x̄).

Thus we get
∂f2(x̄) ⊂ ∂f1(x̄) − NS(x̄).

(ii) If x̄ is a topological interior point of X\S then x̄ is indeed a local minimum
of (P1) without constraint and, therefore, ∂f2(x̄) ⊂ f1(x̄).

Now, we apply the above Proposition 3.1 in order to derive necessary conditions
related to the following reverse convex programming problem

(P2) inf {f1(x) − f2(x) : h(x) /∈ − int Y+},
where h : X −→ Y ∪ {+∞} is a convex and proper mapping taking values in a
topological vector real space equipped with a partial ordered induced by a convex
cone Y+ :

y1 ≤Y y2 ⇐⇒ y2 − y1 ∈ Y+.
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By ”intY+” we denote the topological interior of the cone Y+. The convexity
of the mapping h is taken with respect to the partial order in the following sense

h(αx1 + (1 − α)x2) ≤Y αh(x1) + (1 − α)h(x2),

for any α ∈ [0, 1] and any x1, x2 ∈ X. Let us notice that the mapping h is
authorized to take the value +∞ supposed the greatest element adjoined to Y :
y ≤ +∞, ∀y ∈ Y.

Throughout, we assume that the positive cone Y+ is with nonempty topological
interior and h is continuous. By Y ∗

+ we denote the polar positive cone of Y+

defined as
Y ∗

+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ Y+},
where the symbol 〈 , 〉 denotes the bilinear pairing between Y and Y ∗ (resp. X
and X∗).

Let us consider the subset S of X defined by

S := {x ∈ X : h(x) ∈ − int Y+} = h−1(int Y+),(3.2)

and the constraint qualification

(C.Q.S) ∃a ∈ X such that h(a) ∈ − int Y+,

called usually the Slater condition. From convexity and continuity of the mapping
h and the condition (C.Q.S), it follows that S is a nonempty convex open subset
of X. By adopting the same reasoning used in [8] combined with Proposition 3.1,
we get the related necessary conditions given by

Proposition 3.2. Assume that f1, f2 : X → R ∪ {+∞} are convex, proper and
continuous at x̄, h : X −→ Y ∪ {+∞} is continuous, Y+ - convex, the Slater’s
condition (C.Q.S) is satisfied and x̄ is a local minimum of (P2). Then we have

(i) If x̄ is a boundary point of S, then: ∀x∗ ∈ ∂f2(x̄),∃y∗ ∈ Y ∗
+ satisfying

x∗ ∈ ∂f1(x̄) − ∂(y∗ ◦ h)(x̄) and 〈y∗, h(x̄)〉 = 0.
(ii) If x̄ is a topological interior point of X\S, then ∂f2(x̄) ⊂ ∂f1(x̄).

4. Necessary conditions associated with (P)

Now, coming back to our minimization problem (P) and in order to state the
related necessary conditions, we start with the following lemmas.

Lemma 4.1. If we set, for any y ∈ Y ,

Ey := {x ∈ X : h1(x) − y /∈ − intY+ and h2(x) − y ∈ −Y+},
and we suppose that dom h2 = X, then we have

{x ∈ X : h1(x) − h2(x) /∈ −intY+} =
⋃
y∈Y

Ey.

Proof. Let x ∈ X be such that h1(x) − h2(x) /∈ − int Y+. By putting y = h2(x)
we obtain x ∈ Ey. Conversely, let x ∈ ∪

y∈Y
Ey, there exists some y ∈ Y satisfying
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h1(x)−y /∈ − int Y+ and h2(x)−y ∈ −Y+. If we suppose h1(x)−h2(x) ∈ −int Y+,
then we get

h1(x) − y = h1(x) − h2(x) + h2(x) − y ∈ −int Y+ − Y+ ⊂ −int Y+,

which contradicts the fact that h1(x) − y /∈ − int Y+.

Lemma 4.2. If we assume that the mapping h : X −→ Y ∪{+∞} is Y+-convex,
continuous and the cone Y+ is closed then we have under the Slater condition
(C.Q.S) that

{x ∈ X : h(x) /∈ −Y+} = {x ∈ X : h(x) /∈ −intY+}.
Here the closure is taken with respect to the norm topology in X.

Proof. By considering the subset S defined in (3.2), it was proved in [8] that

S̄ = {x ∈ X : h(x) ∈ −Y+}.
By virtue of convexity and continuity of the mapping h and tha Slater’s condition,
the subset S is nonempty, convex and open and therefore it follows from a classical
result of convex analysis [2] that

S = int S̄ = int {x ∈ X : h(x) ∈ −Y+}.(4.1)

Passing to the complementary of (4.1), we obtain

{x ∈ X : h(x) /∈ −Y+} = {x ∈ X : h(x) /∈ − int Y+}.

Remark 4.1. Under the same assumptions of the above Lemma 4.2, a boundary
point x̄ of the feasible set {x ∈ X : h(x) /∈ − int Y+} is characterized by h(x̄) ∈
−Y+ and h(x̄) /∈ − int Y+.

Now, let us consider the following auxiliary minimization problem

(P3)

{
inf F1(x, y) − F2(x, y)
H(x, y) /∈ − int Y+,

where F1, F2 : X × Y −→ R∪ {+∞} and H : X × Y −→ Y ∪ {+∞} are given by


F1(x, y) := f1(x) + δ−Y+(h2(x) − y),
F2(x, y) := f2(x),
H(x, y) := h1(x) − y.

Here δ−Y+ : Y −→ R ∪ {+∞} stands for the indicator function defined by
δ−Y+(y) = 0 if y ∈ −Y+ and δ−Y+(y) = +∞ otherwise.

Proposition 4.1. Assume that dom h2 = X. Then we have
(i)

inf
h1(x)−h2(x)/∈−intY+

f1(x) − f2(x) = inf
H(x,y)/∈−intY+

F1(x, y) − F2(x, y).

(ii) If x̄ is a local minimum of problem (P) then (x̄, h2(x̄)) is a local minimum
of (P3). If, furthermore, h2 is continuous we have the equivalence.
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Proof. (i) According to Lemma 4.1 we have

inf
h1(x)−h2(x)/∈ int Y+

f1(x) − f2(x)

= inf
h1(x)−y/∈ int Y+

{f1(x) − f2(x) + δ−Y+(h2(x) − y)}
= inf

H(x,y)/∈− int Y+

F1(x, y) − F2(x, y).

(ii) If x̄ is a local minimum of problem (P) then there exists some neighborhood
V of x̄ such that

f1(x̄) − f2(x̄) ≤ f1(x) − f2(x), ∀x ∈ V ∩ C,

where
C := {x ∈ X : h1(x) − h2(x) /∈ − int Y+}.

By setting
E := {(x, y) ∈ X × Y : H(x, y) /∈ − int Y+},

and W := (V × Y ) ∩ E we argue for any (x, y) ∈ W as follows.
If h2(x) − y ∈ −Y+ then we claim that h1(x) − h2(x) /∈ − int Y+. First,

let us note that x ∈ V and h1(x) − y /∈ − int Y+. Suppose the contrary, i.e.,
h1(x) − h2(x) ∈ − int Y+. Then

h1(x) − y = h1(x) − h2(x) + h2(x) − y ∈ − int Y+ − Y+ ⊂ − int Y+,

which contradicts the fact that h1(x) − y /∈ −Y+. Therefore we obtain

F1(x̄, h2(x̄)) − F2(x̄, h2(x̄)) ≤ f1(x) − f2(x)

= f1(x) + δ−Y+(h2(x) − y) − f2(x)

= F1(x, y) − F2(x, y),

and thus we get finally

F1(x̄, h2(x̄)) − F2(x̄, h2(x̄)) ≤ F1(x, y) − F2(x, y),

for any (x, y) ∈ W, which yields that (x̄, h2(x̄)) is a local minimum of problem
(P3).

Conversely, if (x̄, h2(x̄)) is a local minimum of problem (P3), then there exists
some neighborhood O of x̄ and some neighborhood U of h2(x̄) such that

f1(x̄) − f2(x̄) ≤ F1(x, y) − F2(x, y), ∀(x, y) ∈ (O × U) ∩ E.

If we set V := O∩h−1
2 (U), which is a neighborhood of x̄ since h2 is continuous at

x̄, then for any x ∈ V ∩C we have (x, h2(x)) ∈ (O ×U)∩E and hence it follows
that

f1(x̄) − f2(x̄) ≤ F1(x, h2(x)) − F2(x, h2(x)) ∀x ∈ V ∩ C,

which means
f1(x̄) − f2(x̄) ≤ f1(x) − f2(x), ∀c ∈ V ∩ C.

Thus x̄ is a local minimum of (P).

Before stating the necessary conditions for problem P, we will need the follow-
ing lemma.



176 M. LAGHDIR

Lemma 4.3. For any (x̄, ȳ) ∈ X × Y, we have
(i ) ∂F2(x̄, ȳ) = ∂f2(x̄) × {0}.
(ii ) ∂F1(x̄, h2(x̄)) = ∪

y∗∈−Y ∗
+

∂(f1 − y∗ ◦ h2)(x̄) × {−y∗}.

(iii ) ∂(y∗ ◦ H)(x̄, ȳ) = ∂(y∗ ◦ h1)(x̄) × {−y∗}.
Proof. (i) We have (x∗, y∗) ∈ ∂F2(x̄, ȳ) if and only if

〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉 ≤ F2(x, y) − F2(x̄, ȳ), ∀(x, y) ∈ X × Y,

which means

〈x∗, x − x̄〉 + 〈y∗, y − ȳ〉 ≤ f2(x) − f2(x̄), ∀(x, y) ∈ X × Y,

and hence
x∗ ∈ ∂f2(x̄) and y∗ = 0.

(ii) We have (x∗, y∗) ∈ ∂F1(x̄, h2(x̄)) if and only if

〈x∗, x− x̄〉+ 〈y∗, y−h2(x̄)〉 ≤ f1(x)− f1(x̄)+ δ−Y+(h2(x)− y), ∀(x, y) ∈ X ×Y.

By setting z := h2(x) − y, we get (x∗, y∗) ∈ ∂F1(x̄, h2(x̄)) if and only if

〈x∗, x−x̄〉+〈−y∗, z〉 ≤ (f1−y∗◦h2)(x)+(f1−y∗◦h2)(x̄)+δ−Y+(z), ∀(x, z) ∈ X×Y.

Accordingly,
x∗ ∈ ∂(f1 − y∗ ◦ h2)(x̄) and − y∗ ∈ Y ∗

+,

therefore we obtain

∂F1(x̄, h2(x̄)) = ∪
y∗∈−Y ∗

+

∂(f1 − y∗ ◦ h2)(x̄) × {−y∗}.

(iii) (x∗, z∗) ∈ ∂(y∗ ◦ H)(x̄, ȳ) if and only if

〈x∗, x − x̄〉 + 〈z∗, y − ȳ〉 ≤ (y∗ ◦ H)(x, y) − (y∗ ◦ H)(x̄, ȳ), (x, y) ∈ X × Y.

or, equivalently,

〈x∗, x−x̄〉+〈z∗, y−ȳ〉 ≤ (y∗◦h1)(x)−〈y∗, y〉−(y∗◦h1)(x̄)+〈y∗, ȳ〉, (x, y) ∈ X×Y.

Accordingly,
x∗ ∈ ∂(y∗ ◦ h1)(x̄) and z∗ = −y∗,

hence
∂(y∗ ◦ H)(x̄, ȳ) = ∂(y∗ ◦ h1)(x̄) × {−y∗}.

Now, we are able to provide necessary conditions associated with problem (P).

Proposition 4.2. Assume that f1, f2 : X −→ R∪{+∞} are convex, continuous
and proper functions, h1, h2 : X −→ Y ∪ {+∞} are Y+-convex, continuous and
proper, domh2 = X, there exists some a ∈ domh1 such that h1(a) ∈ −intY+ and
x̄ is a local minimum of problem (P). Then we have

(i) If h1(x̄)−h2(x̄) ∈ −Y+ and h1(x̄)−h2(x̄) /∈ intY+ then ∀x∗
2 ∈ ∂f2(x̄),∃y∗ ∈

Y ∗
+ such that

x∗
2 ∈ ∂(f1 + y∗ ◦ h2)(x̄) − ∂(y∗ ◦ h1)(x̄)
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and
(y∗ ◦ h1)(x̄) = (y∗ ◦ h2)(x̄).

(ii) If h1(x̄) − h2(x̄) /∈ −Y+, then ∂f2(x̄) ⊂ ∂f1(x̄).

Proof. First of all, let us observe that the condition

∃a ∈ dom h1 : h1(a) ∈ − int Y+,

may be transformed, in the product space X × Y by means the mapping H :
X × Y −→ Y ∪ {+∞}, into

(C.Q.S1) ∃a ∈ dom h1 : H(a, 0) ∈ int Y+,

which is indeed the Slater’s condition linked to problem (P3).
If x̄ is a local minimum of problem (P), then according to Proposition 4.1,

(x̄, h2(x̄)) is a local minimum of problem (P3) and therefore it follows from Propo-
sition 3.2 that

(i) If (x̄, h2(x̄)) is a boundary point of the set {(x, y) ∈ X × Y : H(x, y) /∈
− int Y+} which means according to Remark 4.1 that h1(x̄) − h2(x̄) ∈ −Y+ and
h1(x̄) − h2(x̄) /∈ − int Y+, then for any (x∗, p∗) ∈ ∂F2(x̄, h2(x̄)) there exist some
(x∗

1, p
∗
1) ∈ ∂F1(x̄, h2(x̄)), y∗ ∈ Y ∗

+ and (x∗
2, p

∗
2) ∈ ∂(y∗ ◦ H)(x̄, h2(x̄)) such that

x∗ = x∗
! −x∗

2, p∗ = p∗1−p∗2 and 〈y∗,H(x̄, h2(x̄))〉 = 0. By virtue of Lemma 4.3, we
get p∗ = 0, p∗1 = p∗2 = −y∗, x∗ ∈ ∂f2(x̄), x∗

1 ∈ ∂(f1+y∗◦h2)(x̄), x∗
2 ∈ ∂(y∗◦h1)(x̄)

and (y∗ ◦ h1)(x̄) = (y∗ ◦ h2)(x̄).
(ii) If (x̄, h2(x̄)) is a topological interior point of the set

{(x, y) ∈ X × Y : H(x, y) /∈ − int Y+},
i.e.,

h1(x̄) − h2(x̄) /∈ −Y+,

then from Proposition 3.2 we deduce that

∂F2(x̄, h2(x̄)) ⊂ ∂F1(x̄, h2(x̄)).

In other words, we have

∂f2(x̄) × {0} ⊂
⋃

z∗∈−Y ∗
+

∂(f1 − z∗ ◦ h2)(x̄) × {−z∗},

which yields
∂f2(x̄) ⊂ f1(x̄).

5. Sufficient conditions associated with (P)

Before stating the sufficient conditions related to problem (P), first we need
to recall a recent result due to Laghdir [8] expressing the sufficient optimality
conditions associated with problem (P2) given by
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Proposition 5.1. [8] Suppose that f1, f2 : X −→ R ∪ {+∞} are convex, proper
and lower semicontinuous functions, h : X −→ Y ∪ {+∞} is proper, continuous
and Y+-convex, x̄ ∈ domf1 ∩ domf2 satisfying h(x̄) ∈ −Y+ and h(x̄) /∈ −intY+,
and the Slater condition (C.Q.S) is satisfied. If for any y∗ ∈ Y ∗

+ satisfying
〈y∗, h(x̄)〉 = 0 and

∂εf2(x̄) + ∂(y∗ ◦ h)(x̄) ⊂ ∂εf1(x̄), ∀ε > 0,(5.1)

then x̄ is a global minimum of (P2). Here

∂εf(x̄) := {x∗ ∈ X∗ : f(x) ≥ f(x̄) + 〈x∗, x − x̄〉 − ε, ∀x ∈ X},
denotes the ε-subdifferential of the function f : X → R ∪ {+∞} at x̄.

Now, we are in a position to state sufficient conditions related to problem (P).

Proposition 5.2. Assume that f1, f2 : X −→ R∪{+∞} are convex, proper and
lower semicontinuous, h1, h2 : X −→ Y ∪ {+∞} are proper, continuous and Y+-
convex, x̄ ∈ domf1 ∩ domf2 satisfying h1(x̄)− h2(x̄) ∈ −Y+ and h1(x̄)− h2(x̄) /∈
−intY+, and there exists some a ∈ domh1 such that h1(a) ∈ intY+. If for any
y∗ ∈ Y ∗

+ satisfying (y∗ ◦ h1)(x̄) = (y∗ ◦ h2)(x̄) and

∂εf2(x̄) + ∂(y∗ ◦ h1)(x̄) ⊂ ∂ε(f1 + y∗ ◦ h2)(x̄), ∀ε > 0,(5.2)

then x̄ is global minimum of (P).

Proof. For obtaining our desired result, it suffices to check that problem (P3)
satisfies all assumptions of Proposition 5.1 and therefore we get that (x̄, h2(x̄)) is
a global minimum of problem (P3) which asserts, thanks to Proposition 4.1, that
x̄ is a global minimum of problem (P ). For this, let us note that the mapping
(x, y) −→ δ−Y+(h2(x) − y) is proper, convex and lower semicontinuous since its
epigraph Epi h2×R

+ is nonempty, convex and closed. This allows to ensure that
the function (x, y) −→ F1(x, y) is proper, convex and lower semicontinuous. Ob-
viously, F2 is proper, convex and lower semicontinous and H is proper, continuous
and Y+-convex. The condition h1(x̄)−h2(x̄) ∈ −Y+ and h1(x̄)−h2(x̄) /∈ − int Y+

means, by virtue of Remark 4.1, that (x̄, h2(x̄)) is a boundary point of the set
{(x, y) ∈ X × Y : H(x, y) /∈ − int Y+}. Notice also that the condition:

∃a ∈ dom h1 : h1(a) ∈ − int Y+,

translates the Slater condition linked to problem (P3), i.e., H(a, 0) ∈ − int Y+.

Now, it remains to check that

∂εF2(x̄, h2(x̄)) + ∂(y∗ ◦ H)(x̄, h2(x̄)) ⊂ ∂εF1(x̄, h2(x̄)), ∀ε > 0,

and this is obtained easily by combining conditions (5.1) and the following ex-
pressions obtained in a similar way as in Lemma 4.3:

∂εF2(x̄, h2(x̄)) = ∂εf2(x̄) × {0},
∂(y∗ ◦ H)(x̄, h2(x̄)) = ∂(y∗ ◦ h1)(x̄) × {−y∗},

∂εF1(x̄, h2(x̄)) = ∪
y∗∈−Y ∗

+

∂ε(f1 − y∗ ◦ h2)(x̄) × {−y∗}.

This completes the proof.
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Remark 5.1. In the case where Y = R and Y+ = R+ we have Y ∗
+ = R+ and (P)

becomes
inf {f1(x) − f2(x) : h1(x) − h2(x) ≥ 0}.

Keeping in mind that ∂(λhi)(x̄) = λ∂hi(x̄) (i = 1, 2) for any λ > 0 and ∂(0.hi)(x̄) =
{0}, by involving the following convention

(y∗ ◦ hi)(x) :=




y∗(hi(x)) if x ∈ dom hi,

sup
y∈Y

〈y∗, y〉 otherwise,

we derive easily from Proposition 4.2 and Proposition 5.2 optimality conditions
for the above scalar minimization problem.
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