SOME STRONG COMPARISON PRINCIPLES AND CONVERGENCE THEOREMS IN THE CAPACITY AND THE DIRICHLET PROBLEM IN THE CLASS $\mathcal{F}_p(h)$

LE MAU HAI AND TANG VAN LONG

ABSTRACT. The aim of this paper is to establish the strong comparison principle of Xing type ([Xi1], [Xi2]) for the classes \mathcal{E}_p and \mathcal{F}_p . As an application of the obtained results, we investigate the convergence in the capacity of the complex Monge-Ampère operator for the class \mathcal{F}_p as well as solve the Dirichlet problem in the class $\mathcal{F}_p(h)$.

1. INTRODUCTION

After constructing the complex Monge-Ampère operator on the class of locally bounded plurisubharmonic functions Bedford and Taylor have proved the comparison principle for the class of bounded plurisubharmonic functions on a bounded domain Ω in \mathbb{C}^n (see Theorem 4.1 in [Bed-Ta2]). Recently, after introducing and investigating many essential results for the classes \mathcal{E}_p and \mathcal{F}_p , Cegrell (see [Ce2]) established this principle for the class \mathcal{F}_p . However, in 1996 and 2000 Xing proved a stronger inequality than the comparison principle first for the class of bounded psh functions and next for psh functions in the class \mathcal{B} (see [Xi1], [Xi 2]). In this paper we first prove the inequality of Xing type for the classes \mathcal{E}_p and \mathcal{F}_p . Next, we apply the obtained results to investigate the weak convergence in the capacity for the complex Monge-Ampère operator on the class \mathcal{F}_p and to solve the Dirichlet problem in the class $\mathcal{F}_p(h)$.

2. Some notions

In this section we recall some definitions and results concerning the classes \mathcal{E}_p and \mathcal{F}_p introduced and investigated by Cegrell (see [Ce2], [Ce3]).

2.1. Let Ω be a hyperconvex domain in \mathbb{C}^n . By $\mathcal{E}_0 = \mathcal{E}_0(\Omega)$ we denote the class of negative and bounded psh functions φ on Ω such that $\lim_{z \to \xi} \varphi(z) = 0 \ \forall \xi \in \partial \Omega$ and $\int_{\Omega} (dd^c \varphi)^n < \infty$.

For each $p \geq 1$, by $\mathcal{E}_p = \mathcal{E}_p(\Omega)$ we denote the class of psh functions φ on Ω such that there exists a sequence $\{\varphi_j\} \subset \mathcal{E}_0$ with $\varphi_j \downarrow \varphi, \ j \to \infty$, and

$$\sup_{j} \int_{\Omega} (-\varphi_j)^p (dd^c \varphi_j)^n < \infty.$$

Received October 22, 2004; in revised form July 1, 2005.

If also φ_j can be choosen so that $\sup_{j=\Omega} \int (dd^c \varphi_j)^n < \infty$ then we say that $\varphi \in \mathcal{F}_p = \mathcal{F}_p(\Omega)$.

In [Ce2] Cegrell showed that $\mathcal{E}_0 \subset \mathcal{F}_p \subset \mathcal{E}_p$ and $\mathcal{F}_q \subset \mathcal{F}_p$ if q > p.

2.2. By Theorem 3.5 in [Ce2] it follows that the operator $(dd^c)^n$ is well-defined on the class \mathcal{E}_p . Moreover, Theorem 3.7 in [Ce2] says that if $\{u_j\} \subset \mathcal{E}_p$ and $u_j \uparrow$ $u, j \to \infty$, then $u \in \mathcal{E}_p$ and $(dd^c u_j)^n$ converges weakly to $(dd^c u)^n$. Another result of Pesson showed that if $\{u_j\}$, u are in \mathcal{E}_p and $u_j \downarrow u$ then $(dd^c u_j)^n \longrightarrow (dd^c u)^n$ weakly (see Corollary 3.8 in [Per]).

2.3. Next we deal with the comparison principle for the class \mathcal{F}_p . As in [Ce2] Cegrell proved that if $u, v \in \mathcal{F}_p$ and $u \leq v$ on Ω then

$$\int_{\Omega} (dd^c u)^n \ge \int_{\Omega} (dd^c v)^n.$$

Moreover, Lemma 4.4 in [Ce2] claims that if $u, v \in \mathcal{F}_p$ then

$$\int_{\{u < v\}} (dd^c v)^n \le \int_{\{u < v\}} (dd^c u)^n.$$

From the above results it follows that the comparison principle is valid for the \mathcal{F}_p . Namely, if $u, v \in \mathcal{F}_p$ and $(dd^c u)^n \leq (dd^c v)^n$ then $u \geq v$ on Ω (see Theorem 4.5 [Ce2]).

2.4. Now we recall the notions about the convergence in C_n - capacity and the uniform absolute continuity in C_n - capacity and the uniform absolute continuity of a sequence of measures with respect to C_n in a domain Ω in \mathbb{C}^n .

Let C_n be the inner capacity given by Bedford-Taylor in [Be-Ta2], as defined by

$$C_n(E) = C_n(E, \Omega) = \sup\left\{ \int_E (dd^c u)^n : u \in PSH(\Omega), 0 < u < 1 \right\}$$

for any Borel subset E of Ω . A sequence of functions $\{u_j\}$ is said to converge to a function u in C_n - capacity on a set $E \subset \Omega$ if for each $\delta > 0$ we have

$$\lim_{j \to \infty} C_n(\{z \in E : |u_j(z) - u(z)| \ge \delta\}) = 0.$$

A sequence of positive Borel measures $\{\mu_j\}$ is said to be uniformly absolutely continuous with respect to C_n - capacity in Ω (briefly $\mu_j \ll C_n$ in Ω) if for each $\varepsilon > 0$ there exists $\delta > 0$ such that for each Borel set $E \subset \Omega$ with $C_n(E) \ll \delta$ the inequality $\mu_j(E) \ll \varepsilon$ holds for all j > 1. For details concerning properties of C_n - capacity and the convergence in C_n - capacity as well as the uniform absolute continuity of a sequence of positive measures with respect to C_n - capacity we refer to the papers of Bedford-Taylor [Be-Ta2] and Xing [Xi2]. 2.5. Now we deal with the classes $\mathcal{F}_p(h)$ and $\mathcal{E}_p(h)$ introduced and investigated in [Ce2]. Let Ω be a bounded hyperconvex domain in \mathbb{C}^n and $h \in C(\partial\Omega)$. Put

$$U(0,h)(z) = \sup\left\{v(z) : v \in PSH(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega), \overline{\lim_{z \to \xi}}v(z) \le h(\xi), \forall \xi \in \partial\Omega\right\}.$$

Then from [Ce-Ko] it follows that $U(0,h) \in PSH \cap L^{\infty}_{loc}(\Omega)$ and $\overline{\lim_{z \to \xi}} U(0,h)(z) \leq h(\xi), \ \forall \xi \in \partial \Omega.$

Now as in [Ce2] we consider functions $h \in C(\partial\Omega)$ such that $\lim_{z\to\xi} U(0,h)(z) = h(\xi), \ \forall \xi \in \partial\Omega$. For such functions we denote by $\mathcal{F}_p(h)$ (resp. $\mathcal{E}_p(h)$), $p \ge 1$, the

class of plurisubharmonic functions u such that there exists $\varphi \in \mathcal{F}_p$ (resp. \mathcal{E}_p) with $U(0,h) \ge u \ge \varphi + U(0,h)$. By Theorem 7.2 in [Ce2] we know that $(dd^c.)^n$ is well-defined on $\mathcal{F}_p(h)$. A recent result of P.Ahag (see Theorem 4.11 in [Ah]) implies that $(dd^c.)^n$ is well-defined on $\mathcal{E}_p(h)$.

2.6. Finally we recall the class \mathcal{E} introduced and investigated by Cegrell (see [Ce3]) recently. Let u be a negative psh function on a hyperconvex domain Ω . We say that $u \in \mathcal{E} = \mathcal{E}(\Omega)$ if for every $z_0 \in \Omega$ there exists a neighbourhood ω of z_0 in Ω and a decreasing sequence $h_j \in \mathcal{E}_0$ such that $h_j \downarrow u$ on ω and $\sup \int (dd^c h_j)^n < \infty$.

j $\tilde{\Omega}$

In [Ce3] Cegrell showed that if $u \in \mathcal{E}$ then $(dd^c u)^n$ is well-defined and PSH⁻ \cap $L^{\infty}_{loc}(\Omega) \subset \mathcal{E}$ (see Definition 4.2 and the remark after Theorem 4.5 in [Ce3]).

3. The strong comparison principle for the classes \mathcal{E}_p and \mathcal{F}_p

As we say in the introduction of this paper, one of the main purposes of this paper is to establish the strong comparison principle for the classes \mathcal{E}_p and \mathcal{F}_p . First, the following result shows that the strong comparison principle holds for the class \mathcal{E}_p .

Theorem 3.1. Let Ω be a bounded hyperconvex domain $in\mathbb{C}^n$ and $u, v \in \mathcal{E}_p, p \geq 1$, with $\underline{\lim}_{z\to\xi} (u(z) - v(z)) \geq 0$, $\forall \xi \in \partial \Omega$. Then for all $r \geq 1$ and $w_j \in PSH(\Omega)$, $0 \leq w_j \leq 1$, $1 \leq j \leq n$, the inequality

$$\frac{1}{(n!)^2} \int\limits_{\{u < v\}} (v-u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n \leq \int\limits_{\{u < v\}} (r-w_1) (dd^c u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 \wedge \ldots \wedge dd^c w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n dd^c w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n du^d w_1 + \int\limits_{\{u < v\}}$$

holds. Therefore, under the additional assumption $(dd^cv)^n \ge (dd^cu)^n$ in Ω we obtain that $u \ge v$ in Ω .

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.1. Let Ω be a bounded hyperconvex domain in \mathbb{C}^n and $u \in \mathcal{E}_p$, $p \ge 1$. Then $\lim_{c \to +\infty} c^n C_n(\{u < -c\}, \Omega) = 0$. *Proof.* Let $\mathcal{E}_0 \ni u_k \downarrow u$ be as in the definition of \mathcal{E}_p satisfying the condition

$$\alpha = \sup_{k} \int_{\Omega} (-u_k)^p (dd^c u_k)^n < \infty.$$

Then for c > 0 we have

$$\{u_k < -c\} \uparrow \{u < -c\}$$

and

$$\{u < -c\} = \bigcup_{k \ge 1} \{u_k < -c\}.$$

Proposition 3.2 in [Be-Ta2] yields

$$C_n(\{u < -c\}, \Omega) = \lim_{k \to \infty} C_n(\{u_k < -c\}, \Omega).$$

Let $w \in PSH(\Omega)$, $0 \le w \le 1$, be arbitrary. From Lemma 1 in [Xi1] we get the following estimations

$$\int_{\{u_k < -c\}} (dd^c w)^n \leq \int_{\{u_k < -c\}} (-1 - \frac{2u_k}{c})^n (dd^c w)^n$$
$$\leq \frac{2^n}{c^n} \int_{\{u_k < -\frac{c}{2}\}} (-\frac{c}{2} - u_k)^n (dd^c w)^n$$
$$\frac{\{u_k < -\frac{c}{2}\}}{\frac{(n!)^2 \cdot 2^n}{c^n}} \int_{\{u_k < -\frac{c}{2}\}} (1 - w) (dd^c u_k)^n$$
$$\leq \frac{(n!)^2 \cdot 2^{n+p}}{c^{n+p}} \int_{\Omega} (-u_k)^p (dd^c u_k)^n$$
$$\leq \frac{(n!)^2 \cdot 2^{n+p} \cdot \alpha}{c^{n+p}}.$$

Hence, for all $k \ge 1$,

$$C_n(\{u_k < -c\}) \le \frac{(n!)^2 \cdot 2^{n+p} \cdot \alpha}{c^{n+p}}$$

and, consequently,

$$C_n(\{u < -c\}) = \lim_{k \to \infty} C_n(\{u_k < -c\}) \le \frac{(n!)^2 \cdot 2^{n+p} \cdot \alpha}{c^{n+p}}$$

and the desired conclusion follows.

Lemma 3.2. Let $u_j \in PSH(\Omega) \cap L^{\infty}(\Omega)$, $u_j \downarrow u$ on Ω , where $u \in \mathcal{E}$. Assume that $\lim_{s \to \infty} s^n C_n(\{u < -s\}) = 0$. Then $(dd^c u_j)^n$ is uniformly absolutely continuous with respect to C_n - capacity.

Proof. Without loss of generality we may assume that $u_j \leq 0, \forall j \geq 1$. By [Ce3] for each $j \geq 1$, $\exists u_j^k \in \text{PSH} \cap C(\bar{\Omega}), u_j^k \downarrow u_j \text{ as } k \to \infty \text{ and } u_j^k \mid_{\partial\Omega} = 0$. As in [Ce Ko Ze] for s > 0 put

$$\Omega_{kj}(s) = \{u_j^k < -s\}, \ \Omega_j(s) = \{u_j < -s\}, \ \Omega(s) = \{u < -s\}, \\ a_{kj}(s) = C_n(\Omega_{kj}(s)), \ a_j(s) = C_n(\Omega_j(s)), \ a(s) = C_n(\Omega(s)), \\ b_{kj}(s) = \int_{\Omega_{kj}(s)} (dd^c u_j^k)^n, \ b_j(s) = \int_{\Omega_j(s)} (dd^c u_j)^n, \ b(s) = \int_{\Omega(s)} (dd^c u)^n.$$

For 0 < s < t we have $\max(u_j^k, -t) = u_j^k$ on $\{u_j^k > -t\}$, an open neighbourhood of $\partial \Omega_{kj}(s)$. Then

$$a_{kj}(s) \ge t^{-n} \int_{\Omega_{kj}(s)} (dd^c \max(u_j^k, -t))^n = t^{-n} \int_{\Omega_{kj}(s)} (dd^c u_j^k)^n,$$

where the second equality follows from Lemma 4.1 in [Ce2]. Now if t tends to s, we get

(1)
$$s^{n}a_{kj}(s) \ge \int_{\Omega_{kj}(s)} (dd^{c}u_{j}^{k})^{n}, \ \forall \ k, j \ge 1, \ \forall s > 0.$$

Given $\varepsilon > 0$. By the hypothesis there exists $s_0 > 0$ such that

(2)
$$s_0^n a(s_0) < \varepsilon.$$

Let $E \subset \Omega$ be a Borel set with $C_n(E) < \frac{\varepsilon}{s_0^n}$. Take an open neighbourhood G of E such that $C_n(G) < \frac{\varepsilon}{s_0^n}$. It follows that

$$\begin{split} \int_{E} (dd^{c}u_{j})^{n} &\leq \int_{G} (dd^{c}u_{j})^{n} \leq \underline{\lim}_{k} \int_{G} (dd^{c}u_{j}^{k})^{n} \\ &\leq \underline{\lim}_{k} \left[\int_{\Omega_{kj}(s_{0})} (dd^{c}u_{j}^{k})^{n} + \int_{G \setminus \Omega_{kj}(s_{0})} (dd^{c}u_{j}^{k})^{n} \right] \\ &\leq \underline{\lim}_{k} \left[s_{0}^{n}a_{kj}(s_{0}) + s_{0}^{n}C_{n}(G) \right] \leq s_{0}^{n}a(s_{0}) + \varepsilon < 2\varepsilon \quad \forall j \geq 1. \end{split}$$

Hence, $(dd^c u_i)^n$ is uniformly absolutely continuous in Ω .

Lemma 3.3. Let $u \in \mathcal{E}_p$ and $u_j \in \mathcal{E}_0$, $u_j \downarrow u$ as in the definition of the class \mathcal{E}_p . Then for every bounded psh function ω on Ω the sequence $\{\omega(dd^c u_j)^n\}$ converges weakly to $\omega(dd^c u)^n$.

Proof. Without loss of generality we may assume that $-1 \leq \omega \leq 0$ on Ω . Given $\varphi \in C_0(\Omega)$. We can assume that $\sup\{|\varphi(z)| : z \in \Omega\} \leq 1$. Since ω is quasicontinuous (see [Bed-Ta2]), from Lemma 3.2 it follows that for each $\varepsilon > 0$ there

exists an open subset $G \subset \Omega$ such that ω is continuous on $F = \Omega \setminus G$ and

(3)
$$\sup_{j} \int_{G} (dd^{c}u_{j})^{n} < \varepsilon.$$

Take a continuous function h on Ω such that $h = \omega$ on F. Since $\{(dd^c u_j)^n\}$ converges weakly to $(dd^c u)^n$ (see Theorem 3.5 in [Ce2]) it follows that there exists j_0 such that for $j > j_0$ we have

$$\left|\int_{\Omega} \varphi h(dd^{c}u_{j})^{n} - \int_{\Omega} \varphi h(dd^{c}u)^{n}\right| < \varepsilon.$$

On the other hand, since G is open, by (3) we have

$$\left|\int_{G} \varphi \omega (dd^{c}u)^{n}\right| \leq \int_{G} (dd^{c}u)^{n} \leq \underline{\lim}_{j} \int_{G} (dd^{c}u_{j})^{n} < \varepsilon.$$

Similarly,

$$\left|\int_{G} \varphi h(dd^{c}u)^{n}\right| \leq M \int_{G} (dd^{c}u)^{n} \leq M \underline{\lim}_{j} \int_{G} (dd^{c}u_{j})^{n} < M\varepsilon$$

where $M = \sup\{|h(z)| : z \in \operatorname{supp} \varphi\}.$

Because $h = \omega$ on F then for $j > j_0$ we have

$$\begin{split} \left| \int_{\Omega} \varphi \omega (dd^{c}u_{j})^{n} - \int_{\Omega} \varphi \omega (dd^{c}u)^{n} \right| &\leq \left| \int_{\Omega} \varphi h (dd^{c}u_{j})^{n} - \int_{\Omega} \varphi h (dd^{c}u)^{n} \right| + \\ &+ \left| \int_{G} \varphi \omega (dd^{c}u_{j})^{n} \right| + \left| \int_{G} \varphi \omega (dd^{c}u)^{n} \right| + \left| \int_{G} \varphi h (dd^{c}u_{j})^{n} \right| + \left| \int_{G} \varphi h (dd^{c}u)^{n} \right| \\ &< (2M+3)\varepsilon. \end{split}$$

The lemma is proved.

The next lemma is an extension of Lemma 4.3 in [Ce2].

Lemma 3.4. Let $\omega \in \mathcal{E}_p$ and $\mathcal{E}_0 \ni u_j \downarrow \omega$ as in the definition of \mathcal{E}_p . If $u, v \in PSH(\Omega)$ and $\varphi \in PSH(\Omega)$, $0 \le \varphi \le 1$ and $r \ge 1$, then

(4)
$$\int_{\{u < v\}} (r - \varphi) (dd^c \omega)^n \leq \underline{\lim}_j \int_{\{u < v\}} (r - \varphi) (dd^c u_j)^n.$$

Proof. Let $\varepsilon > 0$ be given. Because of the quasi- continuity of u and v, repeating the arguments of Lemma 3.3 shows that there exist an open subset $G \subset \Omega$ and two continuous functions \tilde{u} and \tilde{v} on Ω such that

(5)
$$\{u \neq \tilde{u}\} \cup \{v \neq \tilde{v}\} \subset G \text{ and } \sup_{j} \int_{G} (dd^{c}u_{j})^{n} < \frac{\varepsilon}{r}$$

Then $\{u < v\} \subset \{\tilde{u} < \tilde{v}\} \cup G \subset \{u < v\} \cup G$. Hence, from Lemma 3.3 and (5) it follows that

$$\int_{\{u < v\}} (r - \varphi) (dd^c \omega)^n \leq \int_{\{\tilde{u} < \tilde{v}\} \cup G} (r - \varphi) (dd^c \omega)^n$$
$$\leq \underbrace{\lim_j}_{j} \int_{\{\tilde{u} < \tilde{v}\} \cup G} (r - \varphi) (dd^c u_j)^n$$
$$\leq \underbrace{\lim_j}_{j} \int_{\{u < v\} \cup G} (r - \varphi) (dd^c u_j)^n$$
$$\leq \underbrace{\lim_j}_{j} \int_{\{u < v\}} (r - \varphi) (dd^c u_j)^n + \varepsilon$$

Now, if we let ε tend to zero and the desired conclusion follows.

Proof of Theorem 3.1. Instead of u we consider $u + 2\delta$, $\delta > 0$, and notice that $\{u+2\delta < v\} \uparrow \{u < v\}$ as $\delta \downarrow 0$. Then we may assume that $\underline{\lim}_{z \to \partial \Omega} (u(z)-v(z)) \ge 2\delta$ on $\partial \Omega$. Thus $\{u < v+\delta\} \Subset \Omega$. Let $\mathcal{E}_0 \ni u_k \downarrow u$ and $\mathcal{E}_0 \ni v_j \downarrow v$ as in the definition of \mathcal{E}_p . Using Lemma 1 in [Xi1] we have

$$\frac{1}{(n!)^2} \int_{\{u_k < v_j\}} (v_j - u_k)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u_k < v_j\}} (r - w_1) (dd^c v_j)^n \\
\leq \int_{\{u_k < v_j\}} (r - w_1) (dd^c u_k)^n.$$

Since $\{u_k < v_j\}_{j \ge 1}$ decreases to $\bigcap_{j=1}^{\infty} \{u_k < v_j\} \supset \{u_k < v\}$, by Fatou lemma and Lemma 3.4 it follows that

$$\frac{1}{(n!)^2} \int_{\{u_k < v\}} (v - u_k)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u_k < v\}} (r - w_1) (dd^c v)^n \\
\leq \lim_{j} \left[\frac{1}{(n!)^2} \int_{\{u_k < v_j\}} (v_j - u_k)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u_k < v_j\}} (r - w_1) (dd^c v_j)^n \right] \\
\leq \lim_{j} \int_{\{u_k < v_j\}} (r - w_1) (dd^c u_k)^n$$
(6)
$$= \int_{\{u_k \le v\}} (r - w_1) (dd^c u_k)^n$$

for all $k \ge 1$. By applying the Lebesgue monotone convergence theorem to the two sides of (6) we obtain the inequality

(7)
$$\frac{1}{(n!)^2} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1) (dd^c v)^n$$
$$\leq \overline{\lim_k} \int_{\{u_k \le v\}} (r - w_1) (dd^c u_k)^n$$
$$\leq \overline{\lim_k} \int_{\{u \le v\}} (r - w_1) (dd^c u_k)^n.$$

Now let $\varepsilon > 0$ be given. Take an open subset $G \subset \Omega$ with $\sup_k \int_G (dd^c u_k)^n < \varepsilon$ and u, v continuous on $F = \Omega \setminus G$ as in Lemma 3.4. From the weak convergence of $\{(r - w_1)(dd^c u_k)^n\}$ to $(r - w_1)(dd^c u)^n$ and the compactness of $\{u \le v\} \cap F$ it follows that

$$(8) \qquad \frac{1}{(n!)^2} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1) (dd^c v)^n$$
$$\leq \overline{\lim}_k \int_{\{u \le v\} \cap F} (r - w_1) (dd^c u_k)^n + r\varepsilon$$
$$\leq \int_{\{u \le v\}} (r - w_1) (dd^c u)^n + r\varepsilon.$$

Then the inequality

(9)
$$\frac{\frac{1}{(n!)^2} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1) (dd^c v)^n}{\leq \int_{\{u \le v\}} (r - w_1) (dd^c u)^n}$$

holds if in (8) ε tends to 0. Theorem 3.1 follows if we apply (9) to λv , $\lambda > 1$ and notice that $\{u < \lambda v\} \uparrow \{u < v\}$ and $\{u \le \lambda v\} \uparrow \{u < v\}$ as $\lambda \downarrow 1$.

Similarly we get the following.

Theorem 3.2. Let $u \in \mathcal{E}_p, p \ge 1$ and $v \in PSH^-(\Omega) \cap L^{\infty}(\Omega)$ satisfying $\lim_{z \to \partial \Omega} (u(z) - v(z)) \ge 0$. Then the inequality $\frac{1}{(n!)^2} \int_{\{u < v\}} (v-u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int_{\{u < v\}} (r-w_1)(dd^c v)^n \le \int_{\{u < v\}} (r-w_1)(dd^c u)^n$ holds for all $r \ge 1$ and $w_1, ..., w_n \in PSH(\Omega), \ 0 \le w_j \le 1, \ j = \overline{1, n}$.

Next we present the strong comparison principle for the class \mathcal{F}_p , $p \geq 1$. Note that in Theorems 3.1 and 3.2 the strong comparison principle holds for the class \mathcal{E}_p , $p \geq 1$, when u and v have to satisfy the condition $\lim_{z \to \partial \Omega} (u(z) - v(z)) \geq 0$. However, in contrast to the class \mathcal{E}_p the above condition is superfluous for the class \mathcal{F}_p . Namely we prove the following result.

Theorem 3.3. Let Ω be a bounded hyperconvex domain in \mathbb{C}^n and $u, v \in \mathcal{F}_p$, $p \geq 1$. Then for all $r \geq 1$ and $w_j \in PSH(\Omega)$, $0 \leq w_j \leq 1$, $1 \leq j \leq n$, the inequality

$$\frac{1}{(n!)^2} \int_{\{u < v\}} (v-u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int_{\{u < v\}} (r-w_1) (dd^c v)^n \leq \int_{\{u < v\}} (r-w_1) (dd^c u)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n du^n +$$

holds.

Proof. In the same notations as in the proof of Theorem 3.1 we get the inequality

(10)
$$\frac{1}{(n!)^2} \int_{\{u < v\}} (v - u)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u < v\}} (r - w_1) (dd^c v)^n \\ \leq \overline{\lim}_k \int_{\{u \le v\}} (r - w_1) (dd^c u_k)^n$$

and there exists an open subset $G \subset \Omega$ such that $\sup_k \int_G (dd^c u_k)^n < \varepsilon$ and u, v are continuous on $F = \Omega \setminus G$ where $\varepsilon > 0$ is given. Assume that g is any non-negative and continuous function which is bounded by 1 on Ω and there exists a domain $\Omega_0 \Subset \Omega$ such that g = 1 on $\Omega \setminus \overline{\Omega_0}$. Then we infer that

$$\begin{split} & \overline{\lim_{k}} \int\limits_{\{u \leq v\}} (r - w_{1}) (dd^{c}u_{k})^{n} \\ &= \overline{\lim_{k}} \left(\int\limits_{\{u \leq v\} \cap F} (r - w_{1}) (dd^{c}u_{k})^{n} + \int\limits_{\{u \leq v\} \cap G} (r - w_{1}) (dd^{c}u_{k})^{n} \right) \\ &\leq \overline{\lim_{k}} \int\limits_{\{u \leq v\} \cap F} (r - w_{1}) (dd^{c}u_{k})^{n} + r\varepsilon \\ &\leq \overline{\lim_{k}} \left(\int\limits_{\{u \leq v\} \cap F} (1 - g) (r - w_{1}) (dd^{c}u_{k})^{n} + \int\limits_{\{u \leq v\} \cap F} g(r - w_{1}) (dd^{c}u_{k})^{n} \right) + r\varepsilon \\ &\leq \overline{\lim_{k}} \int\limits_{\{u \leq v\} \cap F \cap \overline{\Omega_{0}}} (r - w_{1}) (dd^{c}u_{k})^{n} \end{split}$$

(11)
+
$$\overline{\lim_{k}} \left(r \int_{\Omega} (g-1) (dd^{c}u_{k})^{n} + r \int_{\Omega} (dd^{c}u_{k})^{n} \right) + r\varepsilon.$$

However, since $u_k \ge u$ on Ω and u_k , $u \in \mathcal{F}_p$, from Lemma 4.2 in [Ce1] it follows that for all $k \ge 1$,

(12)
$$\int_{\Omega} (dd^c u_k)^n \le \int_{\Omega} (dd^c u)^n.$$

Combining (12) with (11), from the compactness of $\{u \leq v\} \cap F \cap \overline{\Omega_0}$, Lemma 3.3 and $g-1 \in C_0(\Omega)$ it follows that the right-side of (10) does not exceed

(13)
$$\int_{\{u \le v\}} (r - w_1) (dd^c u)^n + r \int_{\Omega} (g - 1) (dd^c u)^n + r \int_{\Omega} (dd^c u)^n + r\varepsilon$$
$$= \int_{\{u \le v\}} (r - w_1) (dd^c u)^n + r \int_{\Omega} g (dd^c u)^n + r\varepsilon.$$

From (13) and (10) we get the inequality

$$\begin{aligned} &\frac{1}{(n!)^2} \int\limits_{\{u < v\}} (v-u)^n dd^c w_1 \wedge \ldots \wedge dd^c w_n + \int\limits_{\{u < v\}} (r-w_1) (dd^c v)^n \\ &\leq \int\limits_{\{u \le v\}} (r-w_1) (dd^c u)^n + r \int\limits_{\Omega} g (dd^c u)^n + r\varepsilon. \end{aligned}$$

To complete the proof of the Theorem 3.3 we let g and ε tend to 0 and use the same argument as in the proof of Theorem 3.1.

Repeating the proof of Theorem 3.3 we obtain the following result.

Theorem 3.4. Let $u \in \mathcal{F}_p$ and $v \in PSH^-(\Omega) \cap L^{\infty}(\Omega)$. Then for all $r \geq 1$ and $w_1, ..., w_n \in PSH(\Omega), 0 \leq w_j \leq 1, j = \overline{1, n}$, the inequality

$$\frac{1}{(n!)^2} \int_{\{u < v\}} (v-u)^n dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{\{u < v\}} (r-w_1) (dd^c v)^n \le \int_{\{u < v\}} (r-w_1) (dd^c u)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n dd^c u^n + \int_{\{u < v\}} (r-w_1) (dd^c u^n)^n du^n + \int_{\{u < v\}}$$

holds.

4. The weak continuity of the complex Monge-Ampère operator in the class \mathcal{F}_p

The aim of this section is to apply the results of the above section to the investigation of the weak continuity of the complex Monge-Ampère operator in the class \mathcal{F}_p . Namely we prove the following.

Theorem 4.1. Let $\{u_j\}$, u be in \mathcal{F}_p , $p \ge 1$ and $u_j \longrightarrow u$ in the C_n -capacity on every compact set of Ω . Assume that

$$\lim_{j \to \infty} C_n \Big(\{ z \in \Omega : \Big| u_j(z) - u(z) \Big| \ge \alpha \} \Big) = 0$$

for some $\alpha > 0$ and $(dd^c u_j)^n$ is uniformly absolutely continuous with respect to the C_n - capacity in Ω . Then $(dd^c u_j)^n$ converges weakly to $(dd^c u)^n$ and $(dd^c u)^n \ll C_n$ in Ω .

Proof. Given $\Phi \in C_0(\Omega)$, we may assume that

$$\|\Phi\| = \sup\{|\Phi(z)| : z \in \Omega\} \le 1.$$

To see that $(dd^{c}u_{i})^{n}$ converges weakly to $(dd^{c}u)^{n}$ we need to show that

$$A = \int_{\Omega} \Phi\left[(dd^{c}u_{j})^{n} - (dd^{c}u)^{n} \right] \longrightarrow 0 \text{ as } j \to \infty.$$

Given $\varepsilon > 0$. By the hypothesis there exists $\delta > 0$ such that

(14)
$$\int_{E} (dd^{c}u_{j})^{n} < \frac{\varepsilon}{1+2^{n}(n!)^{2}}$$

for all $E \subset \Omega$ with $C_n(E) < \delta$ and $j \ge 1$.

For each c > 0 as in [Xi2] we write $A = A_1 + A_2 + A_3$ where

$$A_{1} = \int_{\Omega} \Phi[(dd^{c}u_{j})^{n} - (dd^{c}\max(u_{j}, -c))^{n}],$$

$$A_{2} = \int_{\Omega} \Phi[(dd^{c}\max(u_{j}, -c))^{n} - (dd^{c}\max(u, -c))^{n}],$$

$$A_{3} = \int_{\Omega} \Phi[(dd^{c}\max(u, -c))^{n} - (dd^{c}u)^{n}].$$

Since $\max(u, -c) \in \mathcal{F}_p$ and $\max(u, -c) \downarrow u$ as $c \to +\infty$, by Corollary 3.8 in [Per] we can find $c_0 > 0$ such that $|A_3| < \varepsilon$ for $c > c_0$.

Consider A_1 . By Lemma 5.4 in [Ce2] we infer that

$$|A_1| \le \int_{\{u_j \le -c\}} (dd^c u_j)^n + \int_{\{u_j \le -c\}} (dd^c \max(u_j, -c))^n.$$

Applying Theorem 3.4 we get

$$\int_{\{u_j \le -c\}} (dd^c \max(u_j, -c))^n \le \int_{\{u_j \le -c\}} (-1 - \frac{2u_j}{c})^n (dd^c \max(u_j, -c))^n$$
$$\le 2^n \int_{\{u_j < -\frac{c}{2}\}} (-\frac{c}{2} - u_j)^n (dd^c \max(\frac{u_j}{2}, -1))^n$$
$$\le 2^n (n!)^2 \int_{\{u_j < -\frac{c}{2}\}} (dd^c u_j)^n.$$

Hence,

$$|A_1| < \left(1 + 2^n (n!)^2\right) \int_{\{u_j < -\frac{c}{2}\}} (dd^c u_j)^n$$

From Lemma 3.1 it follows that $\lim_{c \to +\infty} C_n(\{u < -\frac{c}{4}\}) = 0$, hence we may assume that for $c > c_0$,

$$C_n(\{u < -\frac{c}{4}\}) < \frac{\delta}{2}$$

Since $\lim_{j\to\infty} C_n(\{|u_j-u|\geq \alpha\}) = 0$, there exists j_0 such that for $j > j_0$ we have

$$C_n(\{|u_j - u| \ge \alpha\}) < \frac{\delta}{2}.$$

Take $c_1 > 4(c_0 + \alpha)$. Then

$$\{|u_j - u| > \frac{c_1}{4}\} \subset \{|u_j - u| \ge \alpha\}$$

and, consequently, for $j > j_0$ we have

$$C_n\big(\{|u_j-u|>\frac{c_1}{4}\}\big)<\frac{\delta}{2}.$$

Hence, for $j > j_0$ we get

(15)
$$C_n(\{u_j < -\frac{c_1}{2}\}) < \delta.$$

From the hypothesis on the uniformly absolute continuity of $(dd^c u_j)^n$ with respect to C_n -capacity and (14), (15) it follows that $|A_1| < \varepsilon$ for $j > j_0$. But since the inclusion

$$\left\{ \left| \max(u_j, -c) - \max(u, -c) \right| > \beta \right\} \subset \{ |u_j - u| > \beta \}$$

holds for all $\beta > 0$, $\max(u_j, -c) \longrightarrow \max(u, -c)$ in the C_n -capacity on every compact set of Ω . Hence, by [Xi1] $|A_2| < \varepsilon$ for $j > j_1 > j_0$ and, consequently, $|A| < 3\varepsilon$ for $j > j_0$. It remains to show that $(dd^c u)^n \ll C_n$ in Ω . Given $\varepsilon > 0$. By the hypothesis there exists $\delta > 0$ such that for all $E \subset \Omega$, $C_n(E) < \delta$ and all $j \ge 1$, $\int_E (dd^c u_j)^n < \varepsilon$.

Assume that E is a Borel subset of Ω with $C_n(E) < \delta$. Take an open set $G \subset \Omega$, $E \subset G$ with $C_n(G) < \delta$. Then

$$\int_{E} (dd^{c}u)^{n} \leq \int_{G} (dd^{c}u)^{n} \leq \underline{\lim}_{j} \int_{G} (dd^{c}u_{j})^{n} < \varepsilon$$

and hence, $(dd^c u)^n \ll C_n$ in Ω . Theorem 4.1 is proved.

5. The Dirichlet problem for the class $\mathcal{F}_p(h)$

In this section we are interested in the following Dirichlet problem in the class $\mathcal{F}_p(h)$. Suppose that Ω is a bounded hyperconvex domain in \mathbb{C}^n , $h \in C(\partial\Omega)$ and μ is a positive Borel measure on Ω . Find a psh function u on Ω such that

(*)
$$\begin{cases} \frac{(dd^c u)^n = \mu}{\lim_{z \to \xi} u(z) = h(\xi), \ \forall \xi \in \partial \Omega. \end{cases}$$

In the case Ω is a strictly pseudoconvex domain, Bedford and Taylor (see [Be-Ta1]) showed that if $\mu = fd\lambda$, $0 \leq f \in C(\overline{\Omega})$, $d\lambda$ is the Lebesgue measure in \mathbb{C}^n , then (*) has an unique solution $u \in PSH(\Omega) \cap C(\overline{\Omega})$. This was extended in [Ce1] as follows. If $\mu = fd\lambda$, $0 \leq f \in L^{\infty}(\Omega)$, then (*) has an unique solution $u \in PSH(\Omega) \cap L^{\infty}(\Omega)$. Next in [Ce-Sa] they have shown that if $\mu = fd\lambda$, $0 \leq f \in L^{\infty}_{loc}(\Omega)$ and there exists a function $w \in PSH(\Omega) \cap L^{\infty}(\Omega)$ such that $fd\lambda \leq (dd^cw)^n$, then (*) has a solution $u \in PSH(\Omega) \cap L^{\infty}(\Omega)$. Here, by relying on some recent results concerning with the class $\mathcal{F}_p(h)$ in [Ce3] and [Ah] we solve (*) in the class $\mathcal{F}_p(h)$. More precisely we prove the following

Theorem 5.1. Let Ω be a strictly pseudoconvex domain in \mathbb{C}^n , $n \geq 2$, $f \in L^1(\Omega)$ and $h \in C(\partial\Omega)$ such that $\lim_{z \to \xi} U(0,h)(z) = h(\xi)$ for all $\xi \in \partial\Omega$. Assume that $fd\lambda \leq (dd^cv)^n$ for some $v \in \mathcal{F}_p(h)$, $p \geq 1$. Then there exists $u \in \mathcal{F}_p(h)$ such that $(dd^cu)^n = fd\lambda$.

Proof. Without loss of generality we may assume that $h \leq 0$. Take an increasing sequence of simple functions $f_k \uparrow f$. By [Ce1], for each $k \geq 1$ there exists $u_k \in PSH(\Omega) \cap L^{\infty}(\Omega)$ such that $(dd^c u_k)^n = f_k d\lambda$ and $\lim_{z \to \xi} u_k(z) = h(\xi)$ for all $\xi \in \partial \Omega$. By the comparison principle in [Be-Ta2] it follows that $u_k \geq u_{k+1}$ on Ω for $k \geq 1$. Set $u(z) = \lim_{k \to \infty} u_k(z)$, $z \in \Omega$. First we show that $u \in \mathcal{F}_p(h)$. Since $v \in \mathcal{F}_p(h)$, it follows that there exists $\varphi \in \mathcal{F}_p$ such that $U(0,h) \geq v \geq \varphi + U(0,h)$.

On the other hand, since $\varphi \in \mathcal{F}_p$, there exists a sequence of continuous psh functions $\varphi_j \in \mathcal{E}_0, \ \varphi_j \downarrow \varphi$. Let $p(z) = \frac{||z||^2}{4}, \ z \in \mathbb{C}^n$. Then $(dd^c p)^n = n! d\lambda$. Choose $\varepsilon > 0$ and $\delta > 0$ such that $v_{\varepsilon\delta} < v$ on $\overline{\Omega}$, where $v_{\varepsilon\delta} = v + \varepsilon p - \delta$. Next,

for $j \ge 1$ put

$$v_j = \max(v, \varphi_j + U(0, h)) + \varepsilon p - \delta \in \text{PSH} \cap L^{\infty}(\Omega)$$

and $v_j \downarrow v_{\varepsilon\delta}$. We prove that $\lim_{s\to\infty} s^n C_n(\{v_{\varepsilon\delta} < -s\}) = 0$. Indeed, let $M = \sup_{s\to\infty} p(z)$. Then

 $z{\in}\bar{\Omega}$

$$\{v_{\varepsilon\delta} < -s\} = \{v + \varepsilon p < \delta - s\} \subset \{v < \delta - s - \varepsilon M\}.$$

Hence, it remains to show that

$$\lim_{s \to \infty} s^n C_n(\{v < -s\}) = 0.$$

Since $\varphi + U(0,h) \leq v$ we get

$$\{v<-s\}\subset\{\varphi+U(0,h)<-s\}$$

Therefore,

$$s^{n}C_{n}(\{\varphi + U(0,h) < -s\}) \leq s^{n}C_{n}\{\varphi < -\frac{s}{2}\} + s^{n}C_{n}\{U(0,h) < -\frac{s}{2}\}$$

Since $\varphi \in \mathcal{E}_p$ and Lemma 3.1 implies that

$$\lim_{s \to \infty} s^n C_n(\{\varphi < -\frac{s}{2}\}) = 0.$$

Notice that because $h \in C(\partial\Omega)$, $U(0,h) \in C(\overline{\Omega})$ by [Wa]. Hence for sufficiently large s > 0 the set $\{U(0,h) < -s\} = \emptyset$. Thus

$$\lim_{s \to \infty} s^n C_n(\{U(0,h) < -s\}) = 0.$$

Now by Lemma 3.2 we have $(dd^c v_j)^n << C_n$ in Ω uniformly for $j \ge 1$. Since $\lim_{z \to \partial \Omega} (u_k(z) - v_{\varepsilon \delta}(z)) \ge 0$ (we choose ε and δ sufficiently small so that $\varepsilon M - \delta \le 0$), using the arguments of the proof of the comparison principle (see Theorem 4.1 in [Be -Ta2]) we get

$$\int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c v)^n \leq \int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c v)^n + \int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c (\varepsilon p - \delta))^n \\
\leq \int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c v_{\varepsilon\delta})^n \leq \int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c u_k)^n \leq \int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c v).$$

Hence $\int_{\{u_k < v_{\varepsilon\delta}\}} (dd^c p)^n = 0$. This shows that $v_{\varepsilon\delta} \leq u_k$ for all $k \geq 1$. Letting

 $k \to +\infty$ and ε , $\delta \downarrow 0$ we obtain that $\varphi + U(0,h) \leq u \leq U(0,h)$. Thus $u \in \mathcal{F}_p(h)$. Since $\mathcal{F}_p(h) \subset \mathcal{E}_p(h)$ and $h \leq 0$, Lemma 4.9 in [Ah] implies that $u \in \mathcal{E}$. On the other hand, $0 \geq u_k \in \text{PSH} \cap L^{\infty}(\Omega)$, $u_k \downarrow u$, $u \in \mathcal{E}$. Hence Theorem 4.5 in [Ce3] implies that $(dd^c u_k)^n$ converges weakly to $(dd^c u)^n$. Hence $(dd^c u)^n = f d\lambda$. Theorem 5.1 is completely proved.

Remark 5.1. There exists $f \in L^1(\Omega)$ such that $fd\lambda$ is not a complex Monge-Ampère measure $(dd^c u)^n$ for any $u \in \mathcal{E}_1$. Indeed, take a sequence $\{z_j\}$ of distinguished points in Ω converging to $\xi \in \partial \Omega$. Then we can find $r_j \downarrow 0$ such that $\mathbb{B}(z_j, r_j)$ are pairwise disjoint and $j^{2(n+1)}C_n(\mathbb{B}(z_j, r_j)) \longrightarrow 0$ as $j \to \infty$. Consider the integrable function f on Ω given by

$$f = \sum_{j=1}^{\infty} \frac{1}{d_n r_j^{2n} j^2} \chi_{\mathbb{B}(z_j, r_j)},$$

where d_n is the volume of the unit ball in \mathbb{C}^n . Assume that there exists $u \in \mathcal{E}_1$ such that $fd\lambda = (dd^c u)^n$. Take a sequence $\mathcal{E}_0 \ni u_k \downarrow u$ as the definition of \mathcal{E}_1 . By Lemma 3.3, $\{-\varphi(dd^c u_k)^n\} \longrightarrow (-\varphi)(dd^c u)^n$ weakly for $\varphi \in \mathcal{E}_0(\Omega)$. Theorem 4.2 in [Ce2] implies that

(16)
$$\int (-\varphi)(dd^c u)^n \leq \underline{\lim}_k \int (-\varphi)(dd^c u_k)^n \leq A \Big(\int (-\varphi)(dd^c \varphi)^n \Big)^{\frac{1}{n+1}},$$

where

$$A = D_{0,1} \sup_{k} \left(\int (-u_k) (dd^c u_k)^n \right)^{\frac{1}{n+1}} < \infty$$

Applying (16) to $\varphi = h_{\overline{\mathbb{B}}(z_j,r_j)}$, where $h_{\overline{\mathbb{B}}(z_j,r_j)}$ is the relatively extremal function with respect to $\overline{\mathbb{B}}(z_j,r_j)$, we get the following inequalities

$$\frac{1}{j^2} = \int\limits_{\overline{\mathbb{B}}(z_j, r_j)} fd\lambda = \int\limits_{\overline{\mathbb{B}}(z_j, r_j)} -h_{\overline{\mathbb{B}}(z_j, r_j)} fd\lambda \le \int\limits_{\Omega} -h_{\overline{\mathbb{B}}(z_j, r_j)} fd\lambda \\
\le A \Big(\int\limits_{\Omega} -h_{\overline{\mathbb{B}}(z_j, r_j)} (dd^c h_{\overline{\mathbb{B}}(z_j, r_j)})^n \Big)^{\frac{1}{n+1}} \\
\le A \Big(\int\limits_{\overline{\mathbb{B}}(z_j, r_j)} (dd^c h_{\overline{\mathbb{B}}(z_j, r_j)})^n \Big)^{\frac{1}{n+1}} = AC_n (\overline{\mathbb{B}}(z_j, r_j))^{\frac{1}{n+1}}.$$

Hence

$$\underline{\lim_{j} j^2 C_n(\overline{\mathbb{B}}(z_j, r_j))}^{\frac{1}{n+1}} \ge \frac{1}{A} > 0.$$

We reach a contradiction because $j^{2(n+1)}C_n(\overline{\mathbb{B}}(z_j, r_j)) \to 0.$

Remark 5.2. In [Ce2, Theorem 7.7], under the assumption that Ω is a smoothly bounded, strictly pseudoconvex domain in \mathbb{C}^n , $n \geq 2$, $p \geq 1$, μ is a positive measure on Ω with finite mass and $h \in \mathbb{C}^{\infty}(\partial\Omega)$, Cegrell has shown that $\mu = (dd^c u)^n$ for some $u \in \mathcal{F}_p(h)$ if and only if there is a constant A such that

$$\int_{\Omega} (-\varphi)^p d\mu \le A \Big(\int_{\Omega} (-\varphi)^p (dd^c \varphi)^n \Big)^{\frac{p}{n+p}}, \quad \forall \quad \varphi \in \mathcal{E}_0.$$

In the proof of the above result of Cegrell the hypothesis $h \in C^{\infty}(\partial\Omega)$ is an essential condition because under this hypothesis the function $U(0, -h) + U(0, h) \in \mathcal{E}_0$

and the arguments in the proof of the author is suitable. However, in Theorem 5.1 above we give a weaker hypothesis that $h \in C(\partial\Omega)$ and hence we obtain a weaker result than Theorem 7.7 in [Ce2].

References

- [Ah] P. Ahag, The complex Monge-Ampère operator on bounded hyperconvex domains, Doctoral thesis, University of Umea, 2002.
- [Be-Ta1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge- Ampere equation, Invent. Math. 37 (1976), 1-44.
- [Be-Ta2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40.
- [Ce1] U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185 (1984), 247-251.
- [Ce 2] U. Cegrell, *Pluricomplex energy*, Acta Math. 180 (1998), 187-217.
- [Ce3] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier, Grenoble 54 (2004), 159-179.
- [Ce-Sa] U. Cegrell and A. Sadulaev, Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge-Ampère operator, Math. Scand. 71 (1982), 62-68.
- [Ce-Ko] U. Cegrell and S. Kolodziej, The Dirichlet problem for the complex Monge-Ampère operator: Perron classes and rotation- invariant measures, Michigan Math. J. 41 (1994), 563-569.
- [Ce-Ko-Ze] U. Cegrell, S. Kolodziej and A. Zeriahi, Subextension of plurisubharmonic functions with weak singularities, Preprint at Laboratoire Emile Picard, Toulouse University, 2004.
 - [Ko] S. Kolodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117.
 - [Kli] M. Klimek, *Pluripotential theory*, Oxford Science Publications, 1991.
 - [Per] L. Persson, A Dirichlet principle for the complex Monge-Ampère operator, Ark Math. 37 (1999), 345-356.
 - [Xi1] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457- 467.
 - [Xi2] Y. Xing, Complex Monge-Ampère Measures of plurisubharmonic functions with bounded values near the boundary, Canad. J. Math. 52 (5) (2000), 1085-1100.
 - [Wa] J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18 (1968), 143 - 148.

DEPARTMENT OF MATHEMATICS HANOI UNIVERSITY OF EDUCATION 136 XUAN THUY, CAU GIAY HANOI, VIETNAM

E-mail address: mauhai@fpt.vn