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SOME STRONG COMPARISON PRINCIPLES AND
CONVERGENCE THEOREMS IN THE CAPACITY AND THE

DIRICHLET PROBLEM IN THE CLASS Fp(h)

LE MAU HAI AND TANG VAN LONG

Abstract. The aim of this paper is to establish the strong comparison prin-
ciple of Xing type ([Xi1], [Xi2]) for the classes Ep and Fp. As an application
of the obtained results, we investigate the convergence in the capacity of the
complex Monge-Ampère operator for the class Fp as well as solve the Dirichlet
problem in the class Fp(h).

1. Introduction

After constructing the complex Monge-Ampère operator on the class of lo-
cally bounded plurisubharmonic functions Bedford and Taylor have proved the
comparison principle for the class of bounded plurisubharmonic functions on a
bounded domain Ω in lCn (see Theorem 4.1 in [Bed-Ta2]). Recently, after intro-
ducing and investigating many essential results for the classes Ep and Fp, Cegrell
(see [Ce2]) established this principle for the class Fp. However, in 1996 and 2000
Xing proved a stronger inequality than the comparison principle first for the class
of bounded psh functions and next for psh functions in the class B (see [Xi1], [Xi
2]). In this paper we first prove the inequality of Xing type for the classes Ep

and Fp. Next, we apply the obtained results to investigate the weak convergence
in the capacity for the complex Monge-Ampère operator on the class Fp and to
solve the Dirichlet problem in the class Fp(h).

2. Some notions

In this section we recall some definitions and results concerning the classes Ep

and Fp introduced and investigated by Cegrell (see [Ce2], [Ce3]).

2.1. Let Ω be a hyperconvex domain in lCn. By E0 = E0(Ω) we denote the class
of negative and bounded psh functions ϕ on Ω such that lim

z→ξ
ϕ(z) = 0 ∀ξ ∈ ∂Ω

and
∫
Ω

(ddcϕ)n < ∞.

For each p ≥ 1, by Ep = Ep(Ω) we denote the class of psh functions ϕ on Ω
such that there exists a sequence {ϕj} ⊂ E0 with ϕj ↓ ϕ, j → ∞, and

sup
j

∫
Ω

(−ϕj)p(ddcϕj)n < ∞.
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If also ϕj can be choosen so that sup
j

∫
Ω

(ddcϕj)n < ∞ then we say that ϕ ∈ Fp =

Fp(Ω).
In [Ce2] Cegrell showed that E0 ⊂ Fp ⊂ Ep and Fq ⊂ Fp if q > p.

2.2. By Theorem 3.5 in [Ce2] it follows that the operator (ddc)n is well-defined
on the class Ep. Moreover, Theorem 3.7 in [Ce2] says that if {uj} ⊂ Ep and uj ↑
u, j → ∞, then u ∈ Ep and (ddcuj)n converges weakly to (ddcu)n. Another result
of Pesson showed that if {uj}, u are in Ep and uj ↓ u then (ddcuj)n −→ (ddcu)n

weakly (see Corollary 3.8 in [Per]).

2.3. Next we deal with the comparison principle for the class Fp. As in [Ce2]
Cegrell proved that if u, v ∈ Fp and u ≤ v on Ω then∫

Ω

(ddcu)n ≥
∫
Ω

(ddcv)n.

Moreover, Lemma 4.4 in [Ce2] claims that if u, v ∈ Fp then∫
{u<v}

(ddcv)n ≤
∫

{u<v}
(ddcu)n.

From the above results it follows that the comparison principle is valid for the
Fp. Namely, if u, v ∈ Fp and (ddcu)n ≤ (ddcv)n then u ≥ v on Ω (see Theorem
4.5 [Ce2]).

2.4. Now we recall the notions about the convergence in Cn- capacity and the
uniform absolute continuity in Cn- capacity and the uniform absolute continuity
of a sequence of measures with respect to Cn in a domain Ω in lCn.

Let Cn be the inner capacity given by Bedford-Taylor in [Be-Ta2], as defined
by

Cn(E) = Cn(E,Ω) = sup




∫
E

(ddcu)n : u ∈ PSH(Ω), 0 < u < 1




for any Borel subset E of Ω. A sequence of functions {uj} is said to converge to
a function u in Cn- capacity on a set E ⊂ Ω if for each δ > 0 we have

lim
j→∞

Cn({z ∈ E : |uj(z) − u(z)| ≥ δ}) = 0.

A sequence of positive Borel measures {µj} is said to be uniformly absolutely
continuous with respect to Cn- capacity in Ω (briefly µj << Cn in Ω) if for each
ε > 0 there exists δ > 0 such that for each Borel set E ⊂ Ω with Cn(E) < δ
the inequality µj(E) < ε holds for all j > 1. For details concerning properties of
Cn- capacity and the convergence in Cn- capacity as well as the uniform absolute
continuity of a sequence of positive measures with respect to Cn- capacity we
refer to the papers of Bedford-Taylor [Be-Ta2] and Xing [Xi2].
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2.5. Now we deal with the classes Fp(h) and Ep(h) introduced and investigated
in [Ce2]. Let Ω be a bounded hyperconvex domain in lCn and h ∈ C(∂Ω). Put

U(0, h)(z) = sup
{

v(z) : v ∈ PSH(Ω) ∩ L∞
loc(Ω), lim

z→ξ
v(z) ≤ h(ξ),∀ξ ∈ ∂Ω

}
.

Then from [Ce-Ko] it follows that U(0, h) ∈ PSH ∩L∞
loc(Ω) and lim

z→ξ
U(0, h)(z) ≤

h(ξ), ∀ξ ∈ ∂Ω.
Now as in [Ce2] we consider functions h ∈ C(∂Ω) such that lim

z→ξ
U(0, h)(z) =

h(ξ), ∀ξ ∈ ∂Ω. For such functions we denote by Fp(h) (resp. Ep(h)), p ≥ 1, the
class of plurisubharmonic functions u such that there exists ϕ ∈ Fp (resp. Ep)
with U(0, h) ≥ u ≥ ϕ + U(0, h). By Theorem 7.2 in [Ce2] we know that (ddc.)n

is well-defined on Fp(h). A recent result of P.Ahag (see Theorem 4.11 in [Ah])
implies that (ddc.)n is well-defined on Ep(h).

2.6. Finally we recall the class E introduced and investigated by Cegrell (see
[Ce3]) recently. Let u be a negative psh function on a hyperconvex domain Ω.
We say that u ∈ E = E(Ω) if for every z0 ∈ Ω there exists a neighbourhood
ω of z0 in Ω and a decreasing sequence hj ∈ E0 such that hj ↓ u on ω and
sup

j

∫
Ω

(ddchj)n < ∞.

In [Ce3] Cegrell showed that if u ∈ E then (ddcu)n is well-defined and PSH− ∩
L∞

loc(Ω) ⊂ E (see Definition 4.2 and the remark after Theorem 4.5 in [Ce3]).

3. The strong comparison principle for the classes Ep and Fp

As we say in the introduction of this paper, one of the main purposes of this
paper is to establish the strong comparison principle for the classes Ep and Fp.
First, the following result shows that the strong comparison principle holds for
the class Ep.

Theorem 3.1. Let Ω be a bounded hyperconvex domain in lCn and u, v ∈ Ep, p ≥
1, with lim

z→ξ
(u(z) − v(z)) ≥ 0, ∀ξ ∈ ∂Ω. Then for all r ≥ 1 and wj ∈ PSH(Ω),

0 ≤ wj ≤ 1, 1 ≤ j ≤ n, the inequality

1
(n!)2

∫
{u<v}

(v−u)nddcw1∧...∧ddcwn+
∫

{u<v}
(r−w1)(ddcv)n ≤

∫
{u<v}

(r−w1)(ddcu)n

holds. Therefore, under the additional assumption (ddcv)n ≥ (ddcu)n in Ω we
obtain that u ≥ v in Ω.

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.1. Let Ω be a bounded hyperconvex domain in lCn and u ∈ Ep, p ≥ 1.
Then lim

c→+∞ cnCn

({u < −c},Ω)
= 0.
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Proof. Let E0 � uk ↓ u be as in the definition of Ep satisfying the condition

α = sup
k

∫
Ω

(−uk)p(ddcuk)n < ∞.

Then for c > 0 we have
{uk < −c} ↑ {u < −c}

and
{u < −c} =

⋃
k≥1

{uk < −c}.

Proposition 3.2 in [Be-Ta2] yields

Cn

({u < −c}, Ω
)

= lim
k→∞

Cn

({uk < −c},Ω)
.

Let w ∈ PSH(Ω), 0 ≤ w ≤ 1, be arbitrary. From Lemma 1 in [Xi1] we get
the following estimations∫

{uk<−c}

(ddcw)n ≤
∫

{uk<−c}

(−1 − 2uk

c
)n(ddcw)n

≤ 2n

cn

∫

{uk<−
c

2
}

(− c

2
− uk)n(ddcw)n

≤ (n!)2.2n

cn

∫

{uk<−
c

2
}

(1 − w)(ddcuk)n

≤ (n!)2.2n+p

cn+p

∫
Ω

(−uk)p(ddcuk)n

≤ (n!)2.2n+p.α

cn+p
.

Hence, for all k ≥ 1,

Cn

({uk < −c}) ≤ (n!)2.2n+p.α

cn+p

and, consequently,

Cn

({u < −c}) = lim
k→∞

Cn

({uk < −c}) ≤ (n!)2.2n+p.α

cn+p

and the desired conclusion follows.

Lemma 3.2. Let uj ∈ PSH(Ω) ∩ L∞(Ω), uj ↓ u on Ω, where u ∈ E. Assume
that lim

s→∞ snCn({u < −s}) = 0. Then (ddcuj)n is uniformly absolutely continuous
with respect to Cn- capacity.
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Proof. Without loss of generality we may assume that uj ≤ 0,∀j ≥ 1. By [Ce3]
for each j ≥ 1, ∃uk

j ∈ PSH ∩ C(Ω̄), uk
j ↓ uj as k → ∞ and uk

j |∂Ω= 0. As in [Ce
Ko Ze] for s > 0 put

Ωkj(s) = {uk
j < −s}, Ωj(s) = {uj < −s}, Ω(s) = {u < −s},

akj(s) = Cn(Ωkj(s)), aj(s) = Cn(Ωj(s)), a(s) = Cn(Ω(s)),

bkj(s) =
∫

Ωkj(s)

(ddcuk
j )

n, bj(s) =
∫

Ωj(s)

(ddcuj)n, b(s) =
∫

Ω(s)

(ddcu)n.

For 0 < s < t we have max(uk
j ,−t) = uk

j on {uk
j > −t}, an open neighbourhood

of ∂Ωkj(s). Then

akj(s) ≥ t−n

∫
Ωkj(s)

(ddc max(uk
j ,−t))n = t−n

∫
Ωkj(s)

(ddcuk
j )

n,

where the second equality follows from Lemma 4.1 in [Ce2]. Now if t tends to s,
we get

snakj(s) ≥
∫

Ωkj(s)

(ddcuk
j )

n, ∀ k, j ≥ 1, ∀s > 0.(1)

Given ε > 0. By the hypothesis there exists s0 > 0 such that

sn
0a(s0) < ε.(2)

Let E ⊂ Ω be a Borel set with Cn(E) <
ε

sn
0

. Take an open neighbourhood G of

E such that Cn(G) < ε
sn
0
. It follows that

∫
E

(ddcuj)n ≤
∫
G

(ddcuj)n ≤ lim
k

∫
G

(ddcuk
j )

n

≤ lim
k




∫
Ωkj(s0)

(ddcuk
j )

n +
∫

G\Ωkj(s0)

(ddcuk
j )

n




≤ lim
k

[sn
0akj(s0) + sn

0Cn(G)] ≤ sn
0a(s0) + ε < 2ε ∀j ≥ 1.

Hence, (ddcuj)n is uniformly absolutely continuous in Ω.

Lemma 3.3. Let u ∈ Ep and uj ∈ E0, uj ↓ u as in the definition of the class Ep.
Then for every bounded psh function ω on Ω the sequence {ω(ddcuj)n} converges
weakly to ω(ddcu)n.

Proof. Without loss of generality we may assume that −1 ≤ ω ≤ 0 on Ω. Given
ϕ ∈ C0(Ω). We can assume that sup{|ϕ(z)| : z ∈ Ω} ≤ 1. Since ω is quasi-
continuous (see [Bed-Ta2]), from Lemma 3.2 it follows that for each ε > 0 there
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exists an open subset G ⊂ Ω such that ω is continuous on F = Ω \ G and

sup
j

∫
G

(ddcuj)n < ε.(3)

Take a continuous function h on Ω such that h = ω on F . Since {(ddcuj)n}
converges weakly to (ddcu)n (see Theorem 3.5 in [Ce2]) it follows that there
exists j0 such that for j > j0 we have∣∣∣

∫
Ω

ϕh(ddcuj)n −
∫
Ω

ϕh(ddcu)n
∣∣∣ < ε.

On the other hand, since G is open, by (3) we have∣∣∣
∫
G

ϕω(ddcu)n
∣∣∣ ≤

∫
G

(ddcu)n ≤ lim
j

∫
G

(ddcuj)n < ε.

Similarly, ∣∣∣
∫
G

ϕh(ddcu)n
∣∣∣ ≤ M

∫
G

(ddcu)n ≤ M lim
j

∫
G

(ddcuj)n < Mε

where M = sup{∣∣h(z)
∣∣ : z ∈ supp ϕ}.

Because h = ω on F then for j > j0 we have∣∣∣
∫
Ω

ϕω(ddcuj)n −
∫
Ω

ϕω(ddcu)n
∣∣∣ ≤ ∣∣∣

∫
Ω

ϕh(ddcuj)n −
∫
Ω

ϕh(ddcu)n
∣∣∣ +

+
∣∣∣
∫
G

ϕω(ddcuj)n
∣∣∣ +

∣∣∣
∫
G

ϕω(ddcu)n
∣∣∣ +

∣∣∣
∫
G

ϕh(ddcuj)n
∣∣∣ +

∣∣∣
∫
G

ϕh(ddcu)n
∣∣∣

< (2M + 3)ε.

The lemma is proved.

The next lemma is an extension of Lemma 4.3 in [Ce2].

Lemma 3.4. Let ω ∈ Ep and E0 � uj ↓ ω as in the definition of Ep. If u, v ∈
PSH(Ω) and ϕ ∈ PSH(Ω), 0 ≤ ϕ ≤ 1 and r ≥ 1, then∫

{u<v}
(r − ϕ)(ddcω)n ≤ lim

j

∫
{u<v}

(r − ϕ)(ddcuj)n.(4)

Proof. Let ε > 0 be given. Because of the quasi- continuity of u and v, repeating
the arguments of Lemma 3.3 shows that there exist an open subset G ⊂ Ω and
two continuous functions ũ and ṽ on Ω such that

{u �= ũ} ∪ {v �= ṽ} ⊂ G and sup
j

∫
G

(ddcuj)n <
ε

r
.(5)
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Then {u < v} ⊂ {ũ < ṽ} ∪ G ⊂ {u < v} ∪ G. Hence, from Lemma 3.3 and (5) it
follows that ∫

{u<v}
(r − ϕ)(ddcω)n ≤

∫
{ũ<ṽ}∪G

(r − ϕ)(ddcω)n

≤ lim
j

∫
{ũ<ṽ}∪G

(r − ϕ)(ddcuj)n

≤ lim
j

∫
{u<v}∪G

(r − ϕ)(ddcuj)n

≤ lim
j

∫
{u<v}

(r − ϕ)(ddcuj)n + ε.

Now, if we let ε tend to zero and the desired conclusion follows.

Proof of Theorem 3.1. Instead of u we consider u + 2δ, δ > 0, and notice that
{u+2δ < v} ↑ {u < v} as δ ↓ 0. Then we may assume that lim

z→∂Ω
(u(z)−v(z)) ≥ 2δ

on ∂Ω. Thus {u < v+δ} � Ω. Let E0 � uk ↓ u and E0 � vj ↓ v as in the definition
of Ep. Using Lemma 1 in [Xi1] we have

1
(n!)2

∫
{uk<vj}

(vj − uk)nddcw1 ∧ ... ∧ ddcwn +
∫

{uk<vj}
(r − w1)(ddcvj)n

≤
∫

{uk<vj}
(r − w1)(ddcuk)n.

Since {uk < vj}j≥1 decreases to
∞⋂

j=1
{uk < vj} ⊃ {uk < v}, by Fatou lemma and

Lemma 3.4 it follows that

1
(n!)2

∫
{uk<v}

(v − uk)nddcw1 ∧ ... ∧ ddcwn +
∫

{uk<v}
(r − w1)(ddcv)n

≤ lim
j

[ 1
(n!)2

∫
{uk<vj}

(vj − uk)nddcw1 ∧ ... ∧ ddcwn +
∫

{uk<vj}
(r − w1)(ddcvj)n

]

≤ lim
j

∫
{uk<vj}

(r − w1)(ddcuk)n

=
∫

{uk≤v}

(r − w1)(ddcuk)n
(6)
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for all k ≥ 1. By applying the Lebesgue monotone convergence theorem to the
two sides of (6) we obtain the inequality

1
(n!)2

∫
{u<v}

(v − u)nddcw1 ∧ ... ∧ ddcwn +
∫

{u<v}

(r − w1)(ddcv)n

≤ lim
k

∫
{uk≤v}

(r − w1)(ddcuk)n

≤ lim
k

∫
{u≤v}

(r − w1)(ddcuk)n.

(7)

Now let ε > 0 be given. Take an open subset G ⊂ Ω with sup
k

∫
G

(ddcuk)n < ε

and u, v continuous on F = Ω \G as in Lemma 3.4. From the weak convergence
of {(r − w1)(ddcuk)n} to (r − w1)(ddcu)n and the compactness of {u ≤ v} ∩ F it
follows that

1
(n!)2

∫
{u<v}

(v − u)nddcw1 ∧ ... ∧ ddcwn +
∫

{u<v}

(r − w1)(ddcv)n

≤ lim
k

∫
{u≤v}∩F

(r − w1)(ddcuk)n + rε

≤
∫

{u≤v}
(r − w1)(ddcu)n + rε.

(8)

Then the inequality

1
(n!)2

∫
{u<v}

(v − u)nddcw1 ∧ ... ∧ ddcwn +
∫

{u<v}

(r − w1)(ddcv)n

≤
∫

{u≤v}
(r − w1)(ddcu)n

(9)

holds if in (8) ε tends to 0. Theorem 3.1 follows if we apply (9) to λv, λ > 1 and
notice that {u < λv} ↑ {u < v} and {u ≤ λv} ↑ {u < v} as λ ↓ 1.

Similarly we get the following.

Theorem 3.2. Let u ∈ Ep, p ≥ 1 and v ∈ PSH−(Ω)∩L∞(Ω) satisfying lim
z→∂Ω

(u(z)−
v(z)) ≥ 0. Then the inequality

1
(n!)2

∫
{u<v}

(v−u)nddcw1∧...∧ddcwn+
∫

{u<v}
(r−w1)(ddcv)n ≤

∫
{u<v}

(r−w1)(ddcu)n
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holds for all r ≥ 1 and w1, ..., wn ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, n.

Next we present the strong comparison principle for the class Fp, p ≥ 1. Note
that in Theorems 3.1 and 3.2 the strong comparison principle holds for the class
Ep, p ≥ 1, when u and v have to satisfy the condition lim

z→∂Ω
(u(z) − v(z)) ≥ 0.

However, in contrast to the class Ep the above condition is superfluous for the
class Fp. Namely we prove the following result.

Theorem 3.3. Let Ω be a bounded hyperconvex domain in lCn and u, v ∈
Fp, p ≥ 1. Then for all r ≥ 1 and wj ∈ PSH(Ω), 0 ≤ wj ≤ 1, 1 ≤ j ≤ n, the
inequality

1
(n!)2

∫
{u<v}

(v−u)nddcw1∧...∧ddcwn+
∫

{u<v}
(r−w1)(ddcv)n ≤

∫
{u<v}

(r−w1)(ddcu)n

holds.

Proof. In the same notations as in the proof of Theorem 3.1 we get the inequality

1
(n!)2

∫
{u<v}

(v − u)nddcw1 ∧ ... ∧ ddcwn +
∫

{u<v}

(r − w1)(ddcv)n

≤ lim
k

∫
{u≤v}

(r − w1)(ddcuk)n(10)

and there exists an open subset G ⊂ Ω such that sup
k

∫
G

(ddcuk)n < ε and u, v are

continuous on F = Ω\G where ε > 0 is given. Assume that g is any non-negative
and continuous function which is bounded by 1 on Ω and there exists a domain
Ω0 � Ω such that g = 1 on Ω \ Ω0. Then we infer that

lim
k

∫
{u≤v}

(r − w1)(ddcuk)n

= lim
k

( ∫
{u≤v}∩F

(r − w1)(ddcuk)n +
∫

{u≤v}∩G

(r − w1)(ddcuk)n
)

≤ lim
k

∫
{u≤v}∩F

(r − w1)(ddcuk)n + rε

≤ lim
k

( ∫
{u≤v}∩F

(1 − g)(r − w1)(ddcuk)n +
∫

{u≤v}∩F

g(r − w1)(ddcuk)n
)

+ rε

≤ lim
k

∫

{u≤v}∩F∩Ω0

(r − w1)(ddcuk)n
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+ lim
k

(
r

∫
Ω

(g − 1)(ddcuk)n + r

∫
Ω

(ddcuk)n
)

+ rε.

(11)

However, since uk ≥ u on Ω and uk, u ∈ Fp, from Lemma 4.2 in [Ce1] it follows
that for all k ≥ 1, ∫

Ω

(ddcuk)n ≤
∫
Ω

(ddcu)n.(12)

Combining (12) with (11), from the compactness of {u ≤ v} ∩ F ∩ Ω0, Lemma
3.3 and g − 1 ∈ C0(Ω) it follows that the right-side of (10) does not exceed∫

{u≤v}

(r − w1)(ddcu)n + r

∫
Ω

(g − 1)(ddcu)n + r

∫
Ω

(ddcu)n + rε

=
∫

{u≤v}

(r − w1)(ddcu)n + r

∫
Ω

g(ddcu)n + rε.

(13)

From (13) and (10) we get the inequality

1
(n!)2

∫
{u<v}

(v − u)nddcw1 ∧ ... ∧ ddcwn +
∫

{u<v}
(r − w1)(ddcv)n

≤
∫

{u≤v}
(r − w1)(ddcu)n + r

∫
Ω

g(ddcu)n + rε.

To complete the proof of the Theorem 3.3 we let g and ε tend to 0 and use the
same argument as in the proof of Theorem 3.1.

Repeating the proof of Theorem 3.3 we obtain the following result.

Theorem 3.4. Let u ∈ Fp and v ∈ PSH−(Ω) ∩L∞(Ω). Then for all r ≥ 1 and
w1, ..., wn ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, n, the inequality

1
(n!)2

∫
{u<v}

(v−u)nddcw1∧...∧ddcwn+
∫

{u<v}
(r−w1)(ddcv)n ≤

∫
{u<v}

(r−w1)(ddcu)n

holds.

4. The weak continuity of the complex Monge-Ampère operator in

the class Fp

The aim of this section is to apply the results of the above section to the
investigation of the weak continuity of the complex Monge-Ampère operator in
the class Fp. Namely we prove the following.
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Theorem 4.1. Let {uj}, u be in Fp, p ≥ 1 and uj −→ u in the Cn-capacity on
every compact set of Ω. Assume that

lim
j→∞

Cn

(
{z ∈ Ω :

∣∣∣uj(z) − u(z)
∣∣∣ ≥ α}

)
= 0

for some α > 0 and (ddcuj)n is uniformly absolutely continuous with respect to the
Cn- capacity in Ω. Then (ddcuj)n converges weakly to (ddcu)n and (ddcu)n � Cn

in Ω.

Proof. Given Φ ∈ C0(Ω), we may assume that

‖Φ‖ = sup{|Φ(z)| : z ∈ Ω} ≤ 1.

To see that (ddcuj)n converges weakly to (ddcu)n we need to show that

A =
∫

Ω
Φ

[
(ddcuj)n − (ddcu)n

] −→ 0 as j → ∞.

Given ε > 0. By the hypothesis there exists δ > 0 such that

∫
E

(ddcuj)n <
ε

1 + 2n(n!)2
(14)

for all E ⊂ Ω with Cn(E) < δ and j ≥ 1.
For each c > 0 as in [Xi2] we write A = A1 + A2 + A3 where

A1 =
∫

Ω
Φ

[
(ddcuj)n − (ddc max(uj ,−c))n

]
,

A2 =
∫

Ω
Φ

[
(ddc max(uj ,−c))n − (ddc max(u,−c))n

]
,

A3 =
∫

Ω
Φ

[
(ddc max(u,−c))n − (ddcu)n

]
.

Since max(u,−c) ∈ Fp and max(u,−c) ↓ u as c → +∞, by Corollary 3.8 in [Per]
we can find c0 > 0 such that |A3| < ε for c > c0.

Consider A1. By Lemma 5.4 in [Ce2] we infer that

|A1| ≤
∫

{uj≤−c}

(ddcuj)n +
∫

{uj≤−c}

(ddc max(uj ,−c))n.
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Applying Theorem 3.4 we get∫
{uj≤−c}

(ddc max(uj ,−c))n ≤
∫

{uj≤−c}
(−1 − 2uj

c
)n(ddc max(uj ,−c))n

≤ 2n

∫

{uj<−
c

2
}

(− c

2
− uj)n(ddc max(

uj

2
,−1))n

≤ 2n(n!)2
∫

{uj<−
c

2
}

(ddcuj)n.

Hence,

|A1| <
(
1 + 2n(n!)2

) ∫

{uj<−
c

2
}

(ddcuj)n.

From Lemma 3.1 it follows that lim
c→+∞Cn

({u < − c

4
}) = 0, hence we may assume

that for c > c0,

Cn({u < − c

4
}) <

δ

2
.

Since lim
j→∞

Cn

({|uj − u| ≥ α}) = 0, there exists j0 such that for j > j0 we have

Cn

({|uj − u| ≥ α}) <
δ

2
.

Take c1 > 4(c0 + α). Then

{|uj − u| >
c1

4
} ⊂ {|uj − u| ≥ α}

and, consequently, for j > j0 we have

Cn

({|uj − u| >
c1

4
}) <

δ

2
.

Hence, for j > j0 we get

Cn({uj < −c1

2
}) < δ.(15)

From the hypothesis on the uniformly absolute continuity of (ddcuj)n with
respect to Cn-capacity and (14), (15) it follows that |A1| < ε for j > j0. But
since the inclusion{∣∣∣ max(uj ,−c) − max(u,−c)

∣∣∣ > β
}
⊂ {|uj − u| > β}

holds for all β > 0, max(uj ,−c) −→ max(u,−c) in the Cn-capacity on every
compact set of Ω. Hence, by [Xi1] |A2| < ε for j > j1 > j0 and, consequently,
|A| < 3ε for j > j0. It remains to show that (ddcu)n � Cn in Ω.
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Given ε > 0. By the hypothesis there exists δ > 0 such that for all E ⊂ Ω,
Cn(E) < δ and all j ≥ 1,

∫
E

(ddcuj)n < ε.

Assume that E is a Borel subset of Ω with Cn(E) < δ. Take an open set
G ⊂ Ω, E ⊂ G with Cn(G) < δ. Then∫

E

(ddcu)n ≤
∫
G

(ddcu)n ≤ lim
j

∫
G

(ddcuj)n < ε

and hence, (ddcu)n � Cn in Ω. Theorem 4.1 is proved.

5. The Dirichlet problem for the class Fp(h)

In this section we are interested in the following Dirichlet problem in the class
Fp(h). Suppose that Ω is a bounded hyperconvex domain in lCn, h ∈ C(∂Ω) and
µ is a positive Borel measure on Ω. Find a psh function u on Ω such that


(ddcu)n = µ

lim
z→ξ

u(z) = h(ξ), ∀ξ ∈ ∂Ω.
(*)

In the case Ω is a strictly pseudoconvex domain, Bedford and Taylor (see [Be-
Ta1]) showed that if µ = fdλ, 0 ≤ f ∈ C(Ω̄), dλ is the Lebesgue measure in
lCn, then (*) has an unique solution u ∈ PSH(Ω) ∩ C(Ω̄). This was extended
in [Ce1] as follows. If µ = fdλ, 0 ≤ f ∈ L∞(Ω), then (*) has an unique
solution u ∈ PSH(Ω) ∩ L∞(Ω). Next in [Ce-Sa] they have shown that if µ =
fdλ, 0 ≤ f ∈ L∞

loc(Ω) and there exists a function w ∈ PSH(Ω) ∩ L∞(Ω) such
that fdλ ≤ (ddcw)n, then (*) has a solution u ∈ PSH(Ω) ∩ L∞(Ω). Here, by
relying on some recent results concerning with the class Fp(h) in [Ce3] and [Ah]
we solve (*) in the class Fp(h). More precisely we prove the following

Theorem 5.1. Let Ω be a strictly pseudoconvex domain in lCn, n ≥ 2, f ∈ L1(Ω)
and h ∈ C(∂Ω) such that lim

z→ξ
U(0, h)(z) = h(ξ) for all ξ ∈ ∂Ω. Assume that

fdλ ≤ (ddcv)n for some v ∈ Fp(h), p ≥ 1. Then there exists u ∈ Fp(h) such that
(ddcu)n = fdλ.

Proof. Without loss of generality we may assume that h ≤ 0. Take an increasing
sequence of simple functions fk ↑ f . By [Ce1], for each k ≥ 1 there exists
uk ∈ PSH(Ω) ∩ L∞(Ω) such that (ddcuk)n = fkdλ and lim

z→ξ
uk(z) = h(ξ) for all

ξ ∈ ∂Ω. By the comparison principle in [Be-Ta2] it follows that uk ≥ uk+1 on Ω
for k ≥ 1. Set u(z) = lim

k→∞
uk(z), z ∈ Ω. First we show that u ∈ Fp(h). Since

v ∈ Fp(h), it follows that there exists ϕ ∈ Fp such that U(0, h) ≥ v ≥ ϕ+U(0, h).
On the other hand, since ϕ ∈ Fp, there exists a sequence of continuous psh

functions ϕj ∈ E0, ϕj ↓ ϕ. Let p(z) =
||z||2

4
, z ∈ lCn. Then (ddcp)n = n!dλ.

Choose ε > 0 and δ > 0 such that vεδ < v on Ω̄, where vεδ = v + εp − δ. Next,
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for j ≥ 1 put

vj = max(v, ϕj + U(0, h)) + εp − δ ∈ PSH ∩ L∞(Ω)

and vj ↓ vεδ. We prove that lim
s→∞ snCn({vεδ < −s}) = 0. Indeed, let M =

sup
z∈Ω̄

p(z). Then

{vεδ < −s} = {v + εp < δ − s} ⊂ {v < δ − s − εM}.
Hence, it remains to show that

lim
s→∞ snCn({v < −s}) = 0.

Since ϕ + U(0, h) ≤ v we get

{v < −s} ⊂ {ϕ + U(0, h) < −s}.
Therefore,

snCn({ϕ + U(0, h) < −s}) ≤ snCn{ϕ < −s

2
} + snCn{U(0, h) < −s

2
}.

Since ϕ ∈ Ep and Lemma 3.1 implies that

lim
s→∞ snCn({ϕ < −s

2
}) = 0.

Notice that because h ∈ C(∂Ω), U(0, h) ∈ C(Ω̄) by [Wa]. Hence for sufficiently
large s > 0 the set {U(0, h) < −s} = ∅. Thus

lim
s→∞ snCn({U(0, h) < −s}) = 0.

Now by Lemma 3.2 we have
(
ddcvj

)n
<< Cn in Ω uniformly for j ≥ 1. Since

lim
z→∂Ω

(uk(z)−vεδ(z)) ≥ 0 ( we choose ε and δ sufficiently small so that εM−δ ≤ 0),

using the arguments of the proof of the comparison principle (see Theorem 4.1
in [Be -Ta2]) we get∫

{uk<vεδ}
(ddcv)n ≤

∫
{uk<vεδ}

(ddcv)n +
∫

{uk<vεδ}
(ddc(εp − δ))n

≤
∫

{uk<vεδ}
(ddcvεδ)n ≤

∫
{uk<vεδ}

(ddcuk)n ≤
∫

{uk<vεδ}
(ddcv).

Hence
∫

{uk<vεδ}
(ddcp)n = 0. This shows that vεδ ≤ uk for all k ≥ 1. Letting

k → +∞ and ε, δ ↓ 0 we obtain that ϕ+U(0, h) ≤ u ≤ U(0, h). Thus u ∈ Fp(h).
Since Fp(h) ⊂ Ep(h) and h ≤ 0, Lemma 4.9 in [Ah] implies that u ∈ E . On
the other hand, 0 ≥ uk ∈ PSH ∩ L∞(Ω), uk ↓ u, u ∈ E . Hence Theorem 4.5 in
[Ce3] implies that (ddcuk)n converges weakly to (ddcu)n. Hence (ddcu)n = fdλ.
Theorem 5.1 is completely proved.
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Remark 5.1. There exists f ∈ L1(Ω) such that fdλ is not a complex Monge-
Ampère measure (ddcu)n for any u ∈ E1. Indeed, take a sequence {zj} of distin-
guished points in Ω converging to ξ ∈ ∂Ω. Then we can find rj ↓ 0 such that
lB(zj , rj) are pairwise disjoint and j2(n+1)Cn(lB(zj , rj)) −→ 0 as j → ∞. Consider
the intergrable function f on Ω given by

f =
∞∑

j=1

1
dnr2n

j j2
χlB(zj ,rj)

,

where dn is the volume of the unit ball in lCn. Assume that there exists u ∈ E1

such that fdλ = (ddcu)n. Take a sequence E0 � uk ↓ u as the definition of E1.
By Lemma 3.3, {−ϕ(ddcuk)n} −→ (−ϕ)(ddcu)n weakly for ϕ ∈ E0(Ω). Theorem
4.2 in [Ce2] implies that∫

(−ϕ)(ddcu)n ≤ lim
k

∫
(−ϕ)(ddcuk)n ≤ A

( ∫
(−ϕ)(ddcϕ)n

) 1
n+1

,(16)

where

A = D0,1 sup
k

( ∫
(−uk)(ddcuk)n

) 1
n+1

< ∞.

Applying (16) to ϕ = hlB(zj ,rj)
, where hlB(zj ,rj)

is the relatively extremal function

with respect to lB(zj , rj), we get the following inequalities

1
j2

=
∫

lB(zj ,rj)

fdλ =
∫

lB(zj ,rj)

−hlB(zj ,rj)
fdλ ≤

∫
Ω

−hlB(zj ,rj)
fdλ

≤ A
( ∫

Ω

−hlB(zj ,rj)
(ddchlB(zj ,rj)

)n
) 1

n+1

≤ A
( ∫

lB(zj ,rj)

(ddchlB(zj ,rj)
)n

) 1
n+1 = ACn(lB(zj , rj)

) 1
n+1

.

Hence
lim

j
j2Cn(lB(zj , rj))

1
n+1 ≥ 1

A
> 0.

We reach a contradiction because j2(n+1)Cn(lB(zj , rj)) → 0.
Remark 5.2. In [Ce2, Theorem 7.7], under the assumption that Ω is a smoothly
bounded, strictly pseudoconvex domain in lCn, n ≥ 2, p ≥ 1, µ is a positive
measure on Ω with finite mass and h ∈ C∞(∂Ω), Cegrell has shown that µ =
(ddcu)n for some u ∈ Fp(h) if and only if there is a constant A such that∫

Ω

(−ϕ)pdµ ≤ A
( ∫

Ω

(−ϕ)p(ddcϕ)n
) p

n+p , ∀ ϕ ∈ E0.

In the proof of the above result of Cegrell the hypothesis h ∈ C∞(∂Ω) is an essen-
tial condition because under this hypothesis the function U(0,−h)+U(0, h) ∈ E0
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and the arguments in the proof of the author is suitable. However, in Theorem
5.1 above we give a weaker hypothesis that h ∈ C(∂Ω) and hence we obtain a
weaker result than Theorem 7.7 in [Ce2].

References

[Ah] P. Ahag, The complex Monge-Ampère operator on bounded hyperconvex domains, Doc-
toral thesis, University of Umea, 2002.

[Be-Ta1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge- Ampere
equation, Invent. Math. 37 (1976), 1-44.

[Be-Ta2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta
Math. 149 (1982), 1-40.

[Ce1] U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z.
185 (1984), 247-251.

[Ce 2] U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187-217.
[Ce3] U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst.

Fourier, Grenoble 54 (2004), 159-179.
[Ce-Sa] U. Cegrell and A. Sadulaev, Approximation of plurisubharmonic functions and the

Dirichlet problem for the complex Monge-Ampère operator, Math. Scand. 71 (1982),
62- 68.

[Ce-Ko] U. Cegrell and S. Kolodziej, The Dirichlet problem for the complex Monge-Ampère
operator: Perron classes and rotation- invariant measures, Michigan Math. J. 41 (1994),
563-569.

[Ce-Ko-Ze] U. Cegrell, S. Kolodziej and A. Zeriahi, Subextension of plurisubharmonic functions
with weak singularities, Preprint at Laboratoire Emile Picard, Toulouse University, 2004.

[Ko] S. Kolodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117.
[Kli] M. Klimek, Pluripotential theory, Oxford Science Publications, 1991.
[Per] L. Persson, A Dirichlet principle for the complex Monge-Ampère operator, Ark Math.

37 (1999), 345-356.
[Xi1] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc.

124 (1996), 457- 467.
[Xi2] Y. Xing, Complex Monge-Ampère Measures of plurisubharmonic functions with bounded

values near the boundary, Canad. J. Math. 52 (5) (2000), 1085-1100.
[Wa] J. B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech. 18

(1968), 143 - 148.

Department of Mathematics

Hanoi University of Education

136 Xuan Thuy, Cau Giay

Hanoi, Vietnam

E-mail address: mauhai@fpt.vn


