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ON THE ROBUSTNESS OF ASYMPTOTIC STABILITY FOR A
CLASS OF SINGULARLY PERTURBED SYSTEMS WITH

MULTIPLE DELAYS

VU HOANG LINH

Abstract. This paper is concerned with the stability robustness of a class of
singularly perturbed systems of linear functional differential equations. First,
the stability radius for the reduced systems is proposed. Then, asymptotic
behavior of the structured complex stability radius for the singularly perturbed
systems is established as the small parameter tends to zero.

1. Introduction

In this paper we consider the singularly perturbed system (SPS) of functional
differential equations (FDE-s)

ẋ(t) = L11xt + L12yt

εẏ(t) = L21xt + L22yt
(1.1)

where x ∈ C
n1 , y ∈ C

n2 , ε > 0 is a small parameter;

Lj1xt =
l∑

i=0

Ai
j1x(t − τi) +

0∫
−τl

Dj1(θ)x(t + θ)dθ(1.2)

Lj2yt =
m∑

k=0

Ak
j2y(t − εµk) +

0∫
−µm

Dj2(θ)y(t + εθ)dθ

j = 1, 2, Ai
jk are constant matrices of appropriate dimensions, Djk(.) are inte-

grable matrix-valued functions, and 0 ≤ τ0 ≤ τ1 ≤ ... ≤ τp, 0 ≤ µ0 ≤ µ1 ≤ ... ≤
µm.

A lot of problems arising in various fields of science and engineering can be
modelled by SPS-s of differential equations with or without delay, e.g., see [8] and
the references cited therein. The system (1.1) was analyzed by Dragan and Ionita
in [2]. By extending the classical results of Klimusev and Krasovskii, e.g., see
[14], the authors gave a parameter-independent sufficient condition ensuring the
exponential-asymptotic stability of the zero solution of (1.1) for all sufficiently
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small ε. For characterizing the robustness of asymptotic stability for linear sys-
tems, appropriate measure is the so-called stability radii introduced by Hinrichsen
and Pritchard [10, 11, 12]. A formula of the complex structured stability radius
for linear systems was obtained in [11]. The result was extended to linear func-
tional systems by Son and Ngoc [17]. The real stability radius for linear systems,
which is a more difficult issue, was investigated in a remarkable paper of Qiu
et.al. [15]. Recently, this result was extended to linear time-delay systems [13].
See also a fairly complete list of references on the topic in [1]. In this paper, we
focus on the complex stability radius.

Let us assume that the system (1.1),(1.2) is asymptotically stable for all suffi-
ciently small ε. We consider the system (1.1) with the coefficients subjected to
structured perturbations as follows:

L̃j1xt =
l∑

i=0

(Ai
j1 + Bj∆i

1C
i
1)x(t − τi) +(1.3)

0∫
−τl

(Dj1(θ) + Bjδ1(θ)C l+1
1 )x(t + θ)dθ

L̃j2yt =
m∑

k=0

(Ak
j2 + Bj∆k

2C
k
2 )y(t − εµk) +

0∫
−µm

(Dj2(θ) + Bjδ2(θ)Cm+1
2 )y(t + εθ)dθ,

where
{∆i

1}l
i=0 ∈ C

p1×q1i , {∆k
2}m

k=0 ∈ C
p2×q2k ,

δ1(θ) ∈ C
p1×q1(l+1) , δ2(θ) ∈ C

p2×q2(m+1)

are uncertain perturbations, δ1(.), δ2(.) are integrable matrix-valued functions on
the indicated intervals; Bj ∈ C

nj×pj , j = 1, 2; Ci
1 ∈ C

q1i×n1 , i = 0, 1, ..., l+1;Ck
2 ∈

C
q2k×n2 , k = 0, 1, ...,m + 1 are sets of matrices determining the perturbation

structure. For brevity, let us denote

A =
{
{Ai

j1}l
i=0, {Ak

j2}m
k=0, {Dij(.)}2

i,j=1

}
,

B = {B1, B2} ,
C =

{{Ci
1}l

i=0, {Ck
2 }m

k=0

}
,

∆ =
{{∆i

1}l
i=0, {∆k

2}m
k=0, δ1(.), δ2(.)

}
.

Following the notion introduced in [17], measure of the robustness of asymp-
totic stability for (1.1),(1.2) can be defined as follows.
Definition 1. Let the system (1.1),(1.2) be asymptotically stable. The complex
structured stability radius for (1.1),(1.2) with respect to perturbation of the form
(1.3) is defined by

rε(A,B,C) := inf{‖∆‖, the system (1.1),(1.3) is not asym. stable},(1.4)
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where

‖∆‖ :=
l∑

i=0

‖∆i
1‖ +

m∑
k=0

‖∆k
2‖ +

0∫
−τl

‖δ1(θ)‖dθ +

0∫
−µm

‖δ2(θ)‖dθ,

and ‖.‖ is a matrix norm induced by vector norms.
By multiplying both sides of the second equation in (1.1) with ε−1, one obtains

a regular explicit system of FDE-s. By applying [17, Theorem 3.3], a formula of
the stability radius rε(A,B,C) can easily be formulated. However, its practical
computation uses to be very difficult because of the appearance of ε−1. There-
fore, we are interested in the asymptotic behavior of the stability radius as the
parameter tends to zero. Such a robust stability analysis was done for the clas-
sical SPS of ordinary differential equations by Dragan in [3]. Recently, by using
the implicit-system approach, Du and Linh have extended the result of [3] to a
more general class of singularly perturbed differential equations [4] and to index-1
DAE-s containing a small parameter [5]. In this paper, a result similar to those
in [3, 4] is obtained for the singularly perturbed system with multiple delays
(1.1),(1.2). That is, the stability radius of the SPS is shown to converge to the
minimum of the stability radii of the “reduced slow” system and of the “boundary
layer fast” system as the parameter tends to zero.

The paper is organized as follows. In the next section, we recall the suffi-
cient condition obtained in [2] for the exponential-asymptotic stability of system
(1.1),(1.2). The main results come in Section 3 and 4. In Section 3, we formulate
the complex stability radius for the reduced slow system, which is a semi-explicit
index-1 system of functional differential-algebraic equations (FDAE-s). Then, in
Section 4, the asymptotic behavior of the stability radius for the SPS is char-
acterized as the parameter tends to zero. Finally, a conclusion will close the
paper.

2. Parameter-independent stability condition

It is well-known that a linear system of functional differential equations is
asymptotically stable if and only if all the roots of the associated characteristic
equation are located in the open half plane C

−, see [9]. However, in the case of
the SPS (1.1),(1.2) it is not easy to check this condition. As we mentioned above,
we should multiply both sides of the second equation with ε−1 in order to get a
regular explicit system. Hence, the characteristic equation should contain ε−1,
too, which makes the computation of roots become difficult.

Taking ε = 0 in (1.1), we obtain

ẋ(t) = L11xt + L̄12y(t)
0 = L21xt + L̄22y(t)(2.1)
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where

L̄j2 =
m∑

k=0

Ak
j2 +

0∫
−µm

Dj2(θ)dθ, j = 1, 2.(2.2)

That is, the second equation becomes an algebraic equation. Let us assume that
L̄22 is invertible. The reduced slow system (2.1),(2.2) is called an index-1 FDAE
of semi-explicit form, see [6]. By substituting y(t) = L̄−1

22 L21xt into the first
equation, we obtain a linear functional differential equation

ẋ(t) = LSxt,(2.3)

with

LSxt =
l∑

i=0

Ai
Sx(t − τi) +

0∫
−τl

DS(θ)x(t + θ)dθ,(2.4)

where

Ai
S = Ai

11 − L̄12L̄
−1
22 Ai

21, i = 0, 1, ..., l,

DS(θ) = D11(θ) − L̄12L̄
−1
22 D21(θ).

We also consider the fast boundary layer system

ż(ζ) = LF zζ ,(2.5)

where

LF zζ =
m∑

k=0

Ak
22z(ζ − µk) +

0∫
−µm

D22(θ)y(ζ + θ)dθ

and ζ = ε−1t is the scaled time. We assume the following
Assumption A1. All the roots of the equation

det (λIn2 −
m∑

k=0

Ai
22e

−λµk −
0∫

−µm

D22(θ)eλθdθ) = 0

are located in the open left half plane C
− and

Assumption A2. Matrix L̄22 defined by (2.2) is nonsingular and all the roots
of the equation

det (λIn1 −
l∑

i=0

Ai
Se−λτi −

0∫
−τl

DS(θ)eλθdθ) = 0

are located in the open left half plane C
−.

Note that these equations are the characteristic equations associated with the
systems (2.5) and (2.3), respectively. Furthermore, they are independent of the
small parameter ε.
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Theorem 1 (Dragan and Ionita [2]). Let Assumptions A1-2 be satisfied. There
exists ε̄0 > 0 such that for arbitrary ε ∈ (0, ε̄0), the zero solution of the system
(1.1),(1.2) is exponential-asymptotically stable.

We remark that Assumption A1 implies the nonsingularity of L̄22. Further-
more, it is possible to replace the open interval (0, ε̄0) by a closed one [0, ε0] (the
case of ε = 0 is discussed in details in the next section).

3. The stability radius for index-1 FDAE-s

Now let us consider the reduced slow system (2.1) again. This system of FDAE-
s has index-1 if and only if L̄22 defined in (2.2) is nonsingular [6]. In this case, as
we can see in the previous section, (2.1) can be reduced to a regular linear FDE
by eliminating y(t). Hence, we have

Proposition 1. Suppose that L̄22 is nonsingular. There exists the unique solu-
tion of the initial value problem for the FDAE (2.1), t ≥ 0, with initial condition

x(t) = ϕ(t), t ∈ [−τl, 0],(3.1)

where ϕ(.) ∈ C([−τl, 0], Cn1) is arbitrarily given.

Note that the initial condition should be assigned to the differential compo-
nent x(.), only. The algebraic component y(.) can be determined uniquely and
explicitly by x(.).
Definition 2. Suppose that L̄22 is nonsingular. The zero solution of system (2.1)
is said to be (exponential-) asymptotically stable if for any ϕ(.) ∈ C([−τl, 0], Cn1),
there exist positive constants c and α such that

‖(x(t)T , y(t)T )T ‖ ≤ c|ϕ|e−αt

holds ∀t ≥ 0, where (x(t)T , y(t)T )T is the unique solution of (2.1),(3.1) and
|ϕ| = sup

−τl≤t≤0
‖ϕ(t)‖. Then, we also say that system (2.1) is asymptotically

stable.
It is easy to check the following statement.

Proposition 2. Suppose that L̄22 is nonsingular. The system (2.1) is asymptot-
ically stable if and only if all the roots of the characteristic equation

det

λ

(
In1 0
0 0

)
−


l∑

i=0
Ai

11e
−τiλ +

0∫
−τl

D11(θ)eθλdθ L̄12

l∑
i=0

Ai
21e

−τiλ +
0∫

−τl

D21(θ)eθλdθ L̄22


 = 0(3.2)

are located in C
−.

Clearly, equation (3.2) is equivalent to that in Assumption A2. Accordingly to
(1.3), we consider system (2.1) subjected to structured perturbations described
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as follows

L̃j1xt =
l∑

i=0

(Ai
j1 + Bj∆i

1C
i
1)x(t − τi) +

0∫
−τl

(Dj1(θ) + Bjδ1(θ)C l+1
1 )x(t + θ)dθ,

(3.3)

˜̄Lj2y(t) =

 m∑
k=0

(Ak
j2 + Bj∆k

2C
k
2 ) +

0∫
−µm

(Dj2(θ) + Bjδ2(θ)Cm+1
2 )dθ

 y(t),

where j = 1, 2. The definition of the stability radius for system (2.1) is slightly
modified as follows.
Definition 3. Let Assumption A2 be satisfied. The complex stability radius of
(2.1) with respect to perturbation of the form (3.3) is defined by

r0(A,B,C) :=
inf{‖∆‖, the system (2.1),(3.3) is not asym. stable or ˜̄L22 is singular}.(3.4)

First, we look for the so-called index-1 preserving radius of (2.1) defined by

rind := inf{
m∑

k=0

‖∆k
2‖ +

0∫
−µm

‖δ2(θ)‖dθ, ˜̄L22 is singular}.

Due to Definition 3, it is obvious that

r0(A,B,C) ≤ rind.

The singularity of ˜̄L22 means exactly that at least one eigenvalue of this matrix
moves to zero under the effect of perturbation. The problem of finding rind is in
fact a special “robust stability” problem, where the stable and unstable regions
are set Cg = C \ {0} and Cb = {0}, respectively. Using the same techniques in
[11, 12, 17], it is easy to prove

Proposition 3. Suppose that L̄22 is nonsingular. Then

rind = { max
k=0,1,...,m+1

‖Ck
2 L̄−1

22 B2‖}−1.

Furthermore, there exists a minimal norm perturbation under which ˜̄L22 is sin-
gular.

We introduce the following auxiliary functions

HS(s) = s

(
In1 0
0 0

)
−


l∑

i=0
Ai

11e
−τis +

0∫
−τl

D11(θ)eθsdθ L̄12

l∑
i=0

Ai
21e

−τis +
0∫

−τl

D21(θ)eθsdθ L̄22


and

Gi
S1(s) =

(
Ci

1 0
)
HS(s)−1

(
B1

B2

)
, i = 0, 1, ..., l + 1;
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Gk
S2(s) =

(
0 Ck

2

)
HS(s)−1

(
B1

B2

)
, k = 0, 1, ...,m + 1;

with s ∈ C, �s ≥ 0.
For computing the inverse matrix, we use a well-known factorization of block

matrices, e.g., see [7]. By some matrix calculations, these functions can be refor-
mulated as follows

Gi
S1(s) = Ci

1

(
sI − L̄11(s) + L̄12L̄

−1
22 L̄21(s)

)−1 (B1 − L̄12L̄
−1
22 B2),

Gk
S2(s) = −Ck

2 L̄−1
22 B2 − Ck

2 L̄−1
22 L̄21(s)

(
sI − L̄11(s) + L̄12L̄

−1
22 L̄21(s)

)−1

×(B1 − L̄12L̄
−1
22 B2),

(3.5)

where

L̄11(s) =
l∑

i=0

Ai
11e

−τis +

0∫
−τl

D11(θ)eθsdθ,

L̄21(s) =
l∑

i=0

Ai
21e

−τis +

0∫
−τl

D21(θ)eθsdθ.

Let us denote

rstab =
(

max{ max
0≤i≤l+1

sup
s∈iR

‖Gi
S1(s)‖, max

0≤k≤m+1
sup
s∈iR

‖Gk
S2(s)‖}

)−1

.

Lemma 1. Let Assumption A2 be satisfied. Then

rind ≥ rstab.

Proof. Taking into consideration the boundedness of functions L̄11(.), L̄21(.) in
iR and

lim
|s|→+∞

‖ (sIn1 − L̄11(s) + L̄12L̄
−1
22 L̄21(s)

)−1 ‖ = 0,

one easily obtains the inequality

max
0≤k≤m+1

sup
s∈iR

‖Gk
S2(s)‖ ≥ max

0≤k≤m+1
lim

|s|→+∞
‖Gk

S2(s)‖ = max
k=0,1,...,m+1

‖Ck
2 L̄−1

22 B2‖.

Due to the formulae of rind and rstab, the proof is complete.

Theorem 2. Let Assumption A2 be satisfied, that is, L̄22 is nonsingular and the
reduced slow system (2.1) is asymptotically stable. Then

r0(A,B,C) = min{rstab, rind} = rstab.

Proof. For simplicity, we denote

Ci =
(

Ci
1 0

)
, i = 0, 1, ..., l + 1; Cl+2+k =

(
0 Ck

2

)
, k = 0, 1, ...m,

Gi
S(s) = Gi

S1(s), i = 0, 1, ..., l + 1; Gl+2+k
S (s) = Gk

S2(s), k = 0, 1, ...m,

Due to Lemma 1, one of the following two cases holds.
Case A. rstab < rind.
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First, we prove that

r0(A,B,C) ≤ rstab.(3.6)

To this end, we construct a destabilizing perturbation which has the norm arbi-
trarily close to rstab. Suppose that ε > 0 is an arbitrary, but sufficiently small
number such that rstab + ε < rind. Then, there exist an index M, 0 ≤ M ≤
l + m + 2, and s1 ∈ iR such that

‖GM
S (s1)‖−1 ≤

(
max

0≤i≤l+m+2
sup
s∈iR

‖Gi
S(s)‖

)−1

+ ε < rind.

Let the size of GM
S (s1) be q × p. There exists a vector u ∈ C

p, ‖u‖ = 1 such that

‖GM
S (s1)u‖ = ‖GM

S (s1)‖.

Invoking a corollary of the Hahn-Banach theorem, there exists a functional v∗ ∈
C

q, ‖v∗‖ = 1 such that

‖v∗GM
S (s1)u‖ = ‖GM

S (s1)u‖.

Let us define

∆b := ‖GM
S (s1)‖−1uv∗ ∈ C

p×q.

It is easy to see that ‖∆b‖ = ‖GM
S (s1)‖−1. We construct a destabilizing per-

turbation ∆ as follows:
- If M ≤ l, set ∆M

1 := ∆be
τis1, and all the other perturbations are zero;

- If M = l + 1, set δ1(θ) := τ−1
l ∆be

−θs1, and all the others are zero;

- If l + 2 ≤ M ≤ l + m + 1, set ∆M
2 := ∆b, and all the others are zero;

- If M = l + m + 2, set δ2(θ) := µ−1
m ∆b, and all the others are zero.

It is clear that, in any case, ‖∆‖ = ‖∆b‖ holds. After some elementary calcu-
lations, one can easily verify that

∆bGM
S (s1)u = u ⇒ ∆bBHS(s1)−1CMu = u ⇒ CM∆bBw = HS(s1)w,

where w := HS(s1)−1CMu �= 0. With ∆ defined as above, the characteristic
equation associated with the perturbed system has the root s1 ∈ iR. On the
other hand, by construction, ‖∆‖ < rind, hence the perturbed system remains
index-1. By Proposition 2, the perturbed system is not asymptotically stable.
Since ε is arbitrarily chosen, we obtain (3.6).

Now, we prove the inverse inequality of (3.6). Take an arbitrary perturbation
set ∆ such that ‖∆‖ < rind and the perturbed system is not asymptotically
stable. Since the perturbed system remains index-1, it follows that the associated
characteristic equation has a root outside C

−. Hence, there exist s0, �s0 ≥ 0
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and a nonzero vector x0 ∈ C
n such that

HS(s0)x0 =
(

B1

B2

)
{

l∑
i=0

∆i
1e

−τis0
(

Ci
1 0

)

+

0∫
−τl

δ1(θ)eθs0dθ
(

C l+1
1 0

)
+

m∑
k=0

∆k
2

(
0 Ck

2

)

+

0∫
−µm

δ2(θ)dθ
(

0 Cm+1
2

)}x0.

(3.7)

Multiplying both sides of (3.7) with HS(s0)−1 from the left, we have

x0 = HS(s0)−1

(
B1

B2

){
l∑

i=0
∆i

1e
−τis0

(
Ci

1 0
)
+

+
0∫

−τl

δ1(θ)eθs0dθ
(

C l+1
1 0

)
+

m∑
k=0

∆k
2

(
0 Ck

2

)
+

+
0∫

−µm

δ2(θ)dθ
(

0 Cm+1
2

)}
x0.

(3.8)

Let N be the index such that 0 ≤ N ≤ l + m + 2 and

‖CNx0‖ = max
0≤i≤l+m+2

‖Cix0‖.

It is clear that CNx0 �= 0. Multiplying both sides of equality (3.8) with Cn from
the left and taking norm, we obtain

‖CNx0‖ ≤ ‖GN
S (s0)‖‖∆‖‖CNx0‖.

To verify this inequality, we use the estimates

‖∆i
1e

−τis0‖ ≤ ‖∆i
1‖ and ‖

0∫
−τl

δ1(θ)eθs0dθ‖ ≤ ‖δ1(.)‖

and the definition of ‖∆‖. It follows that

‖∆‖ ≥ ‖GN
S (s0)‖−1 ≥

(
max

1≤i≤l+m+2
sup
�s≥0

‖Gi
S(s)‖

)−1

.

Since each function Gi
S(s), i = 0, 1, ..., l + m + 2, is analytic in C \ C

−, due to
the the maximum principle, their least upper bound is attained in iR (at a finite
point or at infinity). Hence,

r0(A,B,C) ≥
(

max
1≤i≤l+m+2

sup
s∈iR

‖Gi
S(s)‖

)−1

= rstab.(3.9)

Inequalities (3.6),(3.9) imply r0(A,B,C) = rstab.
Case B. rstab = rind.
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Take an arbitrary perturbation set ∆ such that ‖∆‖ < rind. It is clear that
∆ cannot be a destabilizing perturbation. Otherwise, by repeating the above
arguments, we would have ‖∆‖ ≥ rstab = rind which yields a contradiction. It
means that the perturbed system remains index-1 and asymptotically stable. By
Definition 3, we have r0(A,B,C) = rind = rstab.

Theorem 2 extends the result for index-1 DAE-s (without time-delay and per-
turbation structure) proposed in [16] to semi-explicit index-1 systems of FDAE-s.
We also note that the index-1 preserving property is essential in the existence and
the uniqueness of the solution for initial value problem (2.1),(3.1). For more de-
tails on delay DAE-s and their stability theory, e.g., see [6, 18] and the references
therein.

4. Asymptotic behavior of the stability radius for the SPS

Now, we turn to the main point of the paper, the asymptotic behavior of the
stability radius for the SPS (1.1),(1.3).

First, we introduce the following auxiliary functions:

L̄12(ε, s) =
m∑

k=0

Ak
12e

−εµks +

0∫
−µm

D12(θ)eεθsdθ,

L̄22(ε, s) =
m∑

k=0

Ak
22e

−εµks +

0∫
−µm

D22(θ)eεθsdθ,

Hε(s) =s

(
In1 0
0 εIn2

)
−
(

L̄11(s) L̄12(ε, s)
L̄21(s) L̄22(ε, s)

)
with s ∈ C, �s ≥ 0, ε ∈ (0, ε0], where ε0 is provided by Theorem 1. The
functions L̄11(s), L̄21(s) were previously introduced in (3.5). Furthermore,

Gi
ε1(s) =

(
Ci

1 0
)
Hε(s)−1

(
B1

B2

)
, i = 0, 1, ..., l + 1;

Gk
ε2(s) =

(
0 Ck

2

)
Hε(s)−1

(
B1

B2

)
, k = 0, 1, ...,m + 1;

Let us fix a closed interval [0, ε0] provided by Theorem 1.

Proposition 4. Let Assumptions A1-A2 be satisfied. Then

rε(A,B,C) =
(

max{ max
0≤i≤l+1

sup
s∈iR

‖Gi
ε1(s)‖, max

0≤k≤m+1
sup
s∈iR

‖Gk
ε2(s)‖}

)−1

.

for all ε ∈ (0, ε0].

Proof. To prove this formula, the techniques used in the proof of [17, Theorem
3.3] can be applied without any difficulty. Thus, we omit the details.
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By some matrix calculations, similarly to (3.5), the latter functions can be
reformulated as follows

Gi
ε1(s) =Ci

1

[
sIn1 − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))−1L̄21(s)

]−1(4.1)

× (B1 + L̄12(ε, s)(εsIn2 − L̄22(ε, s))−1B2),

Gk
ε2(s) =Ck

2 (εsIn2 − L̄22(ε, s))−1B2 + Ck
2 (εsIn2 − L̄22(ε, s))−1L̄21(s)

× [sIn1 − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))−1L̄21(s)
]−1

× (B1 + L̄12(ε, s)(εsIn2 − L̄22)−1B2).

The following auxiliary result is easy to prove, too.

Lemma 2. Let Assumptions A1-A2 be satisfied. Then the matrix functions

L̄j1(.), L̄j2(ε, .), j = 1, 2, and (.εIn2 − L̄22(ε, .))−1

are bounded in iR and their bounds are independent of ε ∈ (0, ε0].

Proof. The uniform boundedness of L̄j1(s), L̄j2(ε, s), j = 1, 2, is obvious. To
verify the uniform boundedness of (.εIn2 − L̄22(ε, .))−1, we observe that

sup
s∈iR

‖(εsIn2 − L̄22(ε, s))−1‖ = sup
s∈iR

‖(sIn2 − L̂22(s))−1‖,

where

L̂22(s) =
m∑

k=0

Ak
22e

−µks +

0∫
−µm

D22(θ)eθsdθ.

Furthermore,
lim

|s|→+∞
‖(sIn2 − L̂22(s))−1‖ = 0.

Hence, the function in question is bounded in iR and its bound does not depend
on ε.

Let the fast boundary layer system (2.5) introduced in Section 2 be asymptot-
ically stable. We associate to this system the auxiliary functions

Gk
F (s) = Ck

2 (sIn2 − L̂22(s))−1B2, k = 0, 1, ...,m + 1; �s ≥ 0.(4.2)

By applying [17, Theorem 3.3] to system (2.5) subjected to the corresponding
structured perturbation, we have

r(A22, B2,C2) =
(

max
0≤k≤m+1

sup
s∈iR

‖Gk
F (s)‖

)−1

,(4.3)

where A22 =
{{Ak

22}m
k=0,D22(.)

}
, C2 = {Ck

2 }m+1
k=0 and r(A22, B2,C2) denotes

the complex structured stability radius for (2.5).
Our main result is the following

Theorem 3. Let Assumptions A1-A2 be satisfied. Then,

lim
ε→+0

rε(A,B,C) = min{r0(A,B,C), r(A22, B2,C2)}.
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Proof. The key point of the proof is the uniform convergence∥∥∥[sIn1 − L̄11(s) − L̄12(ε, s)(εsIn2 − L̄22(ε, s))−1L̄21(s)
]−1
∥∥∥⇒ 0(4.4)

as |s| → +∞ with respect to ε ∈ [0, ε0]. We recall that, throughout the proof,
the variable s is varying strictly in the line iR, only. Due to Lemma 2, (4.4) is
evident.

By using the formula in Theorem 2, Proposition 4, and (4.3), it is sufficient to
prove first,

lim
ε→+0

sup
s∈iR

‖Gi
ε1(s)‖ = sup

s∈iR
‖Gi

S1(s)‖, i = 0, 1, ..., l + 1,(4.5)

and secondly,

lim
ε→+0

sup
s∈iR

‖Gk
ε2(s)‖ = max{sup

s∈iR
‖Gk

S2(s)‖, sup
s∈iR

‖Gk
F (s)‖}, k = 0, 1, ...,m + 1.

(4.6)

Fix an arbitrary index i, 0 ≤ i ≤ l + 1 and an arbitrarily small number ρ > 0.
From (4.4), it is easy to see that ‖Gi

ε1(s)‖ converges uniformly to zero as |s| tends
to infinity. Therefore, there exists a bound T1 independent of ε such that

‖Gi
ε1(s)‖ ≤ ρ, ∀ |s| ≥ T1.

On the other hand, in the compact domain {(s, ε), |s| ≤ T1, 0 ≤ ε ≤ ε0},∥∥Gi
ε1(s)

∥∥ is continuous as a two-variable function, hence uniformly continuous,
too. Therefore, there exists a sufficiently small ε1 = ε1(ρ) such that for ε ≤ ε1,
we have

sup
|s|≤T1

∥∥Gi
ε1(s)

∥∥ ≤ sup
|s|≤T1

∥∥Gi
S1(s)

∥∥ + ρ ≤ sup
s∈iR

∥∥Gi
S1(s)

∥∥+ ρ.

Thus, for ε ≤ ε1, we obtain

sup
s∈iR

∥∥Gi
ε1(s)

∥∥ ≤ sup
s∈iR

∥∥Gi
S1(s)

∥∥+ ρ.

Since sups∈iR
∥∥Gi

S1(s)
∥∥ is finite, there exists a number s1 = s1(ρ) ∈ iR such that∥∥Gi

S1(s1)
∥∥ ≥ sup

s∈iR

∥∥Gi
S1(s)

∥∥− ρ.

Furthermore, because of the continuity of
∥∥Gi

ε1(s1)
∥∥ as a function of ε, there

exists a sufficiently small ε2 = ε2(ρ) such that for ε ≤ ε2, we obtain

sup
s∈iR

∥∥Gi
ε1(s)

∥∥ ≥ ∥∥Gi
ε1(s1)

∥∥ ≥ ∥∥Gi
S1(s1)

∥∥− ρ ≥ sup
s∈iR

∥∥Gi
S1(s)

∥∥− 2ρ.

Therefore, for ε ≤ min{ε1, ε2}, the estimate

sup
s∈iR

∥∥Gi
S1(s)

∥∥− 2ρ ≤ sup
s∈iR

∥∥Gi
ε1(s)

∥∥ ≤ sup
s∈iR

∥∥Gi
S1(s)

∥∥+ ρ

holds. This proves (4.5).
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To prove (4.6), we proceed as in [4] and [5]. Analogously to above, fix an index
k, 0 ≤ k ≤ m + 1 and an arbitrarily small � > 0. We show that the inequalities

max
{
sups∈iR

∥∥Gk
S2(s)

∥∥ , sups∈iR
∥∥Gk

F (s)
∥∥}− 2� ≤ sups∈iR

∥∥Gk
ε2(s)

∥∥
≤ max

{
sups∈iR

∥∥Gk
S2(s)

∥∥ , sups∈iR
∥∥Gk

F (s)
∥∥}+ �

(4.7)

hold for all sufficiently small ε.
First, we prove the second inequality in (4.7). By a similar argument as when

proving (4.5), there exists a sufficiently large number T2 = T2(�), T2 is indepen-
dent of ε, such that∥∥∥∥Ck

2

(
εsIn2 − L̄22(ε, s)

)−1
L̄21(s).

×
[
sI − L̄11(s) − L̄12(ε, s)

(
εsIn2 − L̄22(ε, s)

)−1
L̄21(s)

]−1

×
(
B1 + L̄12(ε, s)

(
εsIn2 − L̄22(ε, s)

)−1
B2

) ∥∥∥∥ ≤ �, |s| ≥ T2.

Therefore, for s with |s| ≥ T2, we have∥∥∥Gk
ε2(s)

∥∥∥ ≤
∥∥∥Ck

2 (εsIn2 − L̄22(ε, s))−1B2

∥∥∥+ �.

Hence, we obtain

sup
|s|≥T2

∥∥∥Gk
ε2(s)

∥∥∥ ≤ sup
|s|≥T2

∥∥∥Ck
2 (εsIn2 − L̂22(εs))−1B2

∥∥∥+ � =(4.8)

= sup
|s|≥εT2

∥∥∥Gk
F (s)

∥∥∥+ � ≤ sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥+ �.

On the other hand, in the compact domain {(s, ε), |s| ≤ T2, 0 ≤ ε ≤ ε0},∥∥Gk
ε2(s)

∥∥ is continuous as a two-variable function, hence uniformly continuous,
too. Therefore, there exists a sufficiently small ε3 = ε3(�) such that for ε ≤ ε3,
we have

sup
|s|≤T2

∥∥∥Gk
ε2(s)

∥∥∥ ≤ sup
|s|≤T2

∥∥∥Gk
S2(s)

∥∥∥ + � ≤ sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥+ �.

Thus, for ε ≤ ε3, we obtain

sup
s∈iR

∥∥∥Gk
ε2(s)

∥∥∥ ≤ max
{

sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥ , sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥}+ �.

Now, we prove the first inequality in (4.7). Analogously to (4.8), we have

sup
|s|≥T2

∥∥∥Gk
ε2(s)

∥∥∥ ≥ sup
|s|≥εT2

∥∥∥Gk
F (s)

∥∥∥− �.

Since
∥∥Gk

F (s)
∥∥ is continuous, s ∈ iR, there exists a sufficiently small ε4 = ε4(�)

such that for ε ≤ ε4 and the inequality

sup
|s|≥εT2

∥∥∥Gk
F (s)

∥∥∥ ≥ sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥− �
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holds. Hence, we obtain

sup
|s|≥T2

∥∥∥Gk
ε2(s)

∥∥∥ ≥ sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥− 2�.

On the other hand, since sups∈iR
∥∥Gk

S2(s)
∥∥ is finite, there exists a number

s2 = s2(�) ∈ iR such that∥∥∥Gk
S2(s2)

∥∥∥ ≥ sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥− �.

Furthermore, because of the continuity of
∥∥Gk

ε2(s2)
∥∥ as a function of ε, there

exists a sufficiently small ε5 = ε5(�) such that for ε ≤ ε5 we obtain

sup
s∈iR

∥∥∥Gk
ε2(s)

∥∥∥ ≥
∥∥∥Gk

ε2(s2)
∥∥∥ ≥

∥∥∥Gk
S2(s2)

∥∥∥− � ≥ sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥− 2�.

Therefore, for ε ≤ min{ε4, ε5} the inequality

sup
s∈iR

∥∥∥Gk
ε2(s)

∥∥∥ ≥ max
{

sup
s∈iR

∥∥∥Gk
S2(s)

∥∥∥ , sup
s∈iR

∥∥∥Gk
F (s)

∥∥∥}− 2�

holds.
Then, for ε ≤ min{ε3, ε4, ε5}, the inequalities in (4.7) hold. The proof of (4.6)

is complete.
Since (4.5),(4.6) hold for all i = 0, 1, ..., l + 1 and k = 0, 1, ...,m + 1, the proof

of Theorem 3 is complete.

5. Conclusion

In this paper, a class of SPS-s of differential equations with multiple delays has
been considered. Motivated by and considered as a continuation of the stability
analysis given in [2], the stability robustness of the SPS-s has been launched. The
notion of the structured stability radius is extended to the reduced systems which
are index-1 FDAE-s. By using the implicit-system approach, asymptotic behavior
of the stability radius for the SPS-s is characterized as the parameter tends to
zero. It is known that the complex stability radius for explicit linear systems
depends continuously on data [12]. Here, we have shown that this property does
not hold for the SPS-s, namely, the stability radius may be discontinuous in
parameter. The SPS analyzed here includes that investigated in [3] as a special
case. An extension of the results to more general systems of FDAE-s containing
a small parameter would be of interest.
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