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ON THE ASYMPTOTIC BEHAVIOR OF GENERALIZED
SOLUTION OF PARABOLIC SYSTEMS IN A

NEIGHBORHOOD OF CONIC POINT

NGUYEN MANH HUNG AND PHAM TRIEU DUONG

Abstract. The purpose of this paper is to develop the well-known theory on
the elliptic, hyperbolic and parabolic equations in nonsmooth domains that
has been presented by such Russian mathematicians as V. A. Kondratiev,
V. G. Mazya, B. A. Plamenevsky and S. A. Nazarov. We will obtain an
asymptotic expansion of the generalized solutions of first initial boundary-
value problems for strongly parabolic systems near the conic point on the
boundary of the infinite cylinder.

1. Introduction

The boundary problems for elliptic equation in domains with smooth boundary
have been well studied. Agmon, Duglis and Nirenberg [6] established the normal
solvability of general boundary problem satisfying Sapiro-Lopatinsky condition,
and they proved that if the right-hand parts, the coefficients and the boundary
are infinitely differentiable so is the solution.

In the case where the boundary contains angle points (2-dimensional domain)
or conic points (higher dimensional domain), the indicated methods can not be
applied since it is impossible to straighten the boundary by a smooth transfor-
mation.

In this paper we consider the first boundary problem for strongly parabolic
systems in domains, the boundary of which contains a finite number of conic
points. We will obtain the asymptotic series for the solution, belonging to some
Sobolev space, in a neighborhood of a conic point. According to this expression,
the solution will expand to two terms. The first term has a polynomial form, and
the second term has a sufficient smoothness.

2. Notations

Let Ω be a bounded domain in R
n. The boundary ∂Ω of Ω is assumed to be

an infinitely differentiable surface everywhere, except at the coordinate origin, in
the neighborhood of which ∂Ω coincides with the cone

K =
{
x

∣∣∣ x

|x| ∈ G
}
,
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where G is a smooth domain on unit sphere. ΩT = Ω × (0, T ), 0 < T � ∞,
ST = ∂Ω × (0, T ).

Let H�,k(ΩT ) be the space consisting of all functions u = (u1, . . . , us) in L2(ΩT )
which have the generalized derivatives up to order � by x and up to order k by t
belonging to L2(ΩT ).

The norm in this space is defined as follows:

∥∥u∥∥
H�,k(ΩT )

=
[ ∫
ΩT

( �∑
|α|=0

|Dαu|2 +
k∑

j=1

|utj |2dxdt
]1/2

,

◦
H�,k(ΩT ) is the closure in H�,k(ΩT ) of the set consisting of all infinitely differen-
tiable in ΩT functions which vanish near ST .
H�,k(e−γt,Ω∞) is the space consisting of all functions u(x, t) satisfying

∥∥u∥∥
H�,k(e−γt,Ω∞)

=
[ ∫
Ω∞

( �∑
|α|=0

|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γtdxdt

]1/2
<∞.

In the same way as above we define
◦
H�,k(e−γt,Ω∞).

H�,k
β (e−γt,Ω∞) is the space consisting of all functions u(x, t) satisfying

∥∥u∥∥
H�,k

β (e−γt,Ω∞)
=

[ ∫
Ω∞

( �∑
|α|+j=0

r2(β+|α|−�)|Dαu|2

+
k∑

j=0

|utj|2
)
e−2γtdxdt

]1/2
< +∞,

H�
β(e−γt,Ω∞) is the space consisting of all functions u(x, t) satisfying

∥∥u∥∥
H�

β(e−γt,Ω∞)
=

[ ∫
Ω∞

( �∑
|α|+j=0

r2(β+|α|+j−�)|Dαutj |2
)
e−2γtdxdt

]1/2
<∞.

We consider in Ω∞ the first initial boundary value problem

Lu ≡ (−1)m
[ m∑
|p|,|q|=1

Dpapq(x, t)Dqu+

+
m∑

|p|=1

ap(x, t)Dpu+ a(x, t)u
]
− ut = f(x, t),(2.1)

∂ju

∂tj

∣∣∣
S∞

= 0, j = 0,m− 1,(2.2)

u(x, 0) = 0,(2.3)
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where apq, ap, a are bounded measurable complex-value matrices s × s, apq =
(−1)|p|+|q|a∗qp. When |p| = |q| = m, suppose that apq are uniformly continuous
with respect to t functions in Ω∞.

Assume that apq, ap, a are infinitely differentiable functions in Ω∞.
We require that the considered system (2.1) - (2.3) is strongly parabolic, i.e,

for each ξ ∈ R
n \ {0} and η ∈ C

j \ {0}∑
|p|=|q|=0

apq(x, t)ξpξqηη � µ0|ξ|2m|η|2 ∀(x, t) ∈ Ω∞,

where ξp = ξp1
1 · · · ξpn

n , µ0 is a positive constant.
The function u(x, t) is called a generalized solution of the first initial boundary

value problem (2.1) - (2.3) in the space
◦
Hm,1(e−γt,Ω∞) if u(x, 0) = 0 and∫

ΩT

[
− utη +

m∑
|p|,|q|=1

(−1)m−1+|p|apqD
quDpu+

+
m∑

|p|=1

(−1)m−1apD
quη + (−1)m−1auη

]
dxdt =

∫
ΩT

fηdxdt(2.4)

for all T > 0 and all test functions η ∈
◦
Hm,1(ΩT ) satisfying η(x, T ) = 0.

3. Main results

Denote the main part of the operator L at the origin 0 by L0(0, t,D). First we
consider in K the Dirichlet problem for the system

L0(0, t,D)u = r−iλ0(t)−2m
m∑

s=0

lns rfs(ω, t),(3.1)

where ω is a local coordinate system on Sn−1.

Lemma 3.1. [3] Let fs(ω, t), s = 0, . . . ,M , be infinitely differentiable functions
of ω. Then there exists a solution of (3.1) having the form

u(x, t) = r−iλ0

M+µ∑
s=0

lns rf̃s(ω, t),

where f̃s, s = 0, . . . ,M + µ, are the infinitely differentiable functions of ω, µ = 1
if λ0 is a simple eigenvalue of the problem

Q(ω, t, λ,Dω)v(ω) = 0, ω ∈ G,(3.2)

Dj
ωv(ω) = 0, ω ∈ ∂G, j = 0, . . . ,m− 1(3.3)

if L0(0, t,D) = r−2mQ(ω, t, rDr,Dω), where Dr =
i∂

∂r
, and µ = 0 if λ0 is not the

eigenvalue of this problem.
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Now we condider the Dirichlet problem for the system

(−1)m−1L0(0, t,D)u = F (x, t), x ∈ K.(3.4)

Lemma 3.2. Let u(x, t) be the generalized solution of (3.4) for almost everywhere
t ∈ [0,∞) such that u ≡ 0 when |x| > R = const. Let

utk ∈ H2m+�,1
β (e−γkt,K∞), Ftk ∈ H�,1

β′ (e−γkt,K∞)

for some γ, γk, k � h, β′ < β < m+ �. In addition we suppose that the straight
lines

Imλ = −β + 2m+ �− n

2
and Imλ = −β′ + 2m+ �− n

2
do not contain the points of the spectrum of the problem (3.2) - (3.3) for every
t ∈ [0,∞) and in the strip

−β + 2m+ �− n

2
< Imλ < −β′ + 2m+ �− n

2
there exists only one simple eigenvalue λ(t). Then the following representation
holds

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t),(3.5)

where φ is an infinitely differentiable function of (ω, t) and does not depend on
the solution, ctke

−γkt ∈ L2,loc(0,∞) and (u1)tk ∈ H2m+�,1
β′ (e−γkt,K∞) for k � h.

Proof. From Theorem 3.2 in [2] it follows that

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t),(3.6)

where φ(ω, t) is the eigenfunction of the problem (3.2)-(3.3) which corresponds
to the eigenvalue λ(t), u1 ∈ H2m+�,1

β′ (e−γt,K∞), and

c(t) = i

∫
K

F (x, t)r−iλ(t)+2m−nψ(x, t)dx,

where ψ is the eigenfunction of the problem conjugating to the problem (3.2)-(3.3)
and which corresponds to the eigenvalue λ(t).

Since

Imλ(t) > β′ − 2m− �+
n

2
and F ∈ H�,1

β′ (e−γt,K∞),

c(t) ∈ L2(0,∞) (see Theorem VIII.2.6 of [4]). Hence the assertion is proved for
h = 0.

Assume that assertion of the lemma is true for h− 1. Denote uth by v. From
(3.4) we obtain

(−1)m−1L0(0, t,D) = Ftk + (−1)m
h∑

k=1

(
h
k

)
L0tk(0, t,D)tth−k(3.7)
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where

L0tk =
∑

|p|=|q|=m

∂kapq(0, t)
∂tk

DpDq.

Put S0(ω, t) = r−iλ(t)φ(ω, t).
Since φ(ω, t) ∈ C∞(ω, t) [1], from (3.7) it follows that

h∑
k=1

(
h
k

)
L0tk(0, t,D) =

h∑
k=1

(
h
k

)
L0tk(0, t,D)

[
(cS0)th−k

]
+

+
h∑

k=1

(
h
k

)
L0tk(0, t,D)(u1)th−k .

Using the induction hypothesis we obtain

h∑
k=1

(
h
k

)
L0tk(0, t,D)uth−k = F1 −

h∑
k=1

(
h
k

)
cth−kL0(0, t,D)(S0)tk ,(3.8)

where F1 ∈ H�,1
β′ (e−γt,K∞). From (3.7)-(3.8) we see that

(−1)m−1L0(0, t,D)v = F2 − (−1)m
h∑

k=1

(
h
k

)
cth−kL0(0, t,D)(S0)tk ,(3.9)

where F2 ∈ H�,1
β′ (e−γt,K∞). Hence by analogy to (3.6) we get

uth = v =
h∑

k=1

(
h
k

)
cth−k(S0)tk + d(t)S0 + u2,(3.10)

where d(t)e−γt ∈ L2,loc(0,∞), u2 ∈ H2m+�
β′ (e−γt,K∞).

From this equality it follows that

S0,1 = uth −
h∑

k=2

(
h
k

)
cth−k(S0)th − (h− 1)cth−1(S0)t

= cth−1(S0)t + dS0 + u2.(3.11)

Now differentiate the equality (3.6) (h− 1) times by t. As a result we obtain

uth−1 =
h−1∑
k=0

(
h− 1
k

)
(S0)tk + (u1)th−1 .(3.12)

We rewrite (3.12) in the form

S0,2 = uth−1 −
h−1∑
k=1

(
h− 1
k

)
cth−k−1(S0)tk = cth−1S0 + uth−1 .(3.13)
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Then

(S0,2)t = uth −
h−1∑
k=1

(
h− 1
k

) [
cth−k (S0)tk + cth−k−1(S0)tk+1

]

= uth −
h∑

k=1

(
h
k

)
cth−k(S0)tk + cth−1(S0)t.

From this equality and (3.10) we obtain

(S0,2)t = cth−1(S0)t + dS0 + u2.

Put S1 = S−1
0 (u1)th−1 , S2 = S−1

0 u2 −S−2
0 (S0)t(u1)th−1 . It is easy to check that

S−1
0 S0,2 = cth−1 + S1, (S−1

0 S0,2)t = d+ S2,

It follows that

I(t) = cth−1(t) − cth−1(0) −
t∫

0

d(τ)dτ =

t∫
0

S2(x, τ)dτ − S1(x, t) + S1(x, 0).

Since uth−1 , u2 ∈ H2m+�,1
β′ (e−γh−1t,K∞), S1, S2 ∈ H0,1

−n
2
(e−γh−1t,K∞). Therefore

I(t) ∈ H0
−n

2
(K), i.e., I(t) ≡ 0. Hence

cthe
−γht = de−γht ∈ L2,loc(0,∞),

(u1)th = u2 ∈ H2m+�,1
β′ (e−γht,K∞).

The proof is complete.

Theorem 3.1. Let u(x, t) be the generalized solution of the problem (2.1)-(2.3)
such that u ≡ 0 with |x| > R = const and let ftk ∈ L∞(0,∞;L2(K)), ftk(x, 0) = 0
with k � h. Assume that the straight lines

Imλ = m− n

2
and Imλ = 2m− n

2
do not contain the points of the spectrum of (3.2)-(3.3) for every t ∈ [0,∞), and
in the strip

m− n

2
< Im < 2m− n

2
there exists only one simple eigenvalue λ(t) of the problem (3.2)-(3.3). Then the
following representation holds

u(x, t) =
m−1∑
s=0

cs(t)r−iλ(t)+sPm−1,s(ln r) + u1(x, t),(3.14)

where Pm−1,s is a polynomial with order less than m and its coefficients are
infinitely differentiable functions of (ω, t), (cs)tke−γkt ∈ L2,loc(0,∞), (u1)tk ∈
H2m,1

0 (e−γkt,K∞) for k � h.
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Proof. First we will prove that if

m− n

2
< Imλ(t) < m+m0 − n

2
, 1 � m0 � m,

then

u(x, t) =
m0−1∑
s=0

cs(t)r−iλ(t)+sPm0−1,s(ln r) + u1(x, t),(3.15)

where Pm0−1,s is a polynomial with order less than m0 and its coefficients are
infinitely differentiable functions of (ω, t), (cs)tk ∈ L2(0,∞) and

(u1)tk ∈ H2m,1
m−m0

(e−γkt,K∞) for k � h.

We introduce the notation

L1 = (−1)m−1
[
L0(0, t,D) − L(x, t,D)

]
.

From the system (2.1) we get

(−1)m−1L0(0, t,D)u = F,(3.16)

where F = ut + f + L1u.
From Lemma 3.1 of [5] it follows that u ∈ H2m,1

m (e−γt,K∞). On the other
hand, ut ∈ L2(K∞), f ∈ L∞(0,∞;L2(K)). Therefore F ∈ H0,0

m−1(e
−γt,K∞).

Let m− n

2
< Imλ(t) < m+ 1 − n

2
. From Lemma 3.2 it follows that

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t),(3.17)

where φ is an infinitely differentiable function of (ω, t) which is independent of
the solution cthe

−γht ∈ L2,loc(0,∞), (u1)tk ∈ H2m,1
m−1 (e−γkt,K∞) when k � h. So

(3.15) is proved for m0 = 1.
Assume that (3.15) holds for m0 � m− 1. We distinguish the following cases.

Case 1: m− n

2
< Imλ(t) < m+m0 − n

2
.

Using the induction hypothesis we obtain (3.15). Put

Sm0 = (−1)m
m0−1∑
s=0

cs(t)r−iλ(t)+sPm0−1,s(ln r).(3.18)

Then

LSm0 = F1(x, t) +
∑

j+s m0

m0−1∑
s=0

cs(t)r−iλ(t)−2m+s+j P̃m0−1.s,j(ln r),(3.19)

where (F1)tk ∈ H0,0
m−m0−1(e

−γkt,K∞) when 0 � k � h and P̃m0−1,s,j is a poly-
nomial with order less than m0 and its coefficients are infinitely differentiable
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functions of (ω, t). From (3.15), (3.16) and (3.19) we obtain

(−1)m−1L0(0, t,D)u1 = F2(x, t) +
∑

j+s m0

m0−1∑
s=0

cs(t)r−iλ(t)−2m+s+jPm0−1,s,j(ln r),

(3.20)

where F2 = ut + f + L1u1 + F1 ∈ H0,0
m−m0−1(e

−γt.K∞).
By virtue of Lemma 3.1 there exists a function

ω1 =
∑

j+s m0

m0−1∑
s=0

cs(t)r−iλ(t)+s+jPm0,s,j(ln r)(3.21)

such that

(−1)m−1L0(0, t,D)ω1 =
∑

j+s m0

m0−1∑
s=0

cs(t)r−iλ(t)−2m+s+jPm0−1,s,j(ln r).(3.22)

Put v1 = u1 − ω1. From (3.20) and (3.22) it follows that

(−1)m−1L0(0, t,D)v1 = F2(x, t).

By means of Lemma 3.2 we obtain

v1(x, t) = c(t)r−iλ(t)ϕ(ω, t) + u2(x, t),(3.23)

where ϕ is an infinitely differentiable function of (ω, t) which is the independent
of the solution, ctke−γkt ∈ L2,loc(0,∞), (u2)tk ∈ H2m,1

m−m0−1(e
−γkt,K∞) when 0 �

k � h.
From (3.21) and (3.22) it follows that

u1(x, t) = c(t)r−iλ(t)ϕ(ω, t)
∑

j+s m0

m0−1∑
s=0

(
cs(t)r−iλ(t)+s+jPm0,s,j(ln r)

)
+ u2(x, t).

Hence from (3.15) we get

u(x, t) =
m0∑
s=0

c̃s(t)r−iλ(t)+sP̃m0,s(ln r) + u2(x, t),(3.24)

where P̃m0,s is a polynomial with order less than m0 + 1 and its coefficients are
infinitely differentiable functions of (ω, t), (c̃s)tke−γkt ∈ L2,loc(0,∞), (u2)tk ∈
H2m,1

m−m0−1(e
−γkt,K∞) when 0 � k � h.

Case 2: m+m0 − n

2
< Imλ < m+m0 + 1 − n

2
.

Since in the strip m− n

2
� Imλ,m+m0− n

2
there does not exist any eigenvalue

of problem (3.2)-(3.3), u ∈ H2m,1m−m0(e−γt,K∞).
On the other hand,

m+m0 − n

2
< Imλ(t) < m+m0 + 1 − n

2
·
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Therefore, from Lemma 3.2 it follows that

u(x, t) = c(t)r−iλ(t)ϕ(ω, t) + u1(x, t),(3.25)

where ϕ is an infinitely differentiable function of (ω, t) and does not depend on
the solution, ctke−γkt ∈ L2,loc(0,∞), (u1)tk ∈ H2m,1

m−m0−1(e
−γt,K∞) when k � h.

Case 3: There exists t0 such that Imλ(t0) = m+m0 − n

2
.

One may assume that

m+m0 − µ− n

2
< Imλ(t) < m+m0 − µ+ 1 − n

2
, 0 < µ < 1.

Repeating the arguments of the proof for Case 2 we obtain (3.25) where (u1)tk ∈
H2m,1

m−m0−1+µ(e−γkt,K∞) when k � h. Hence we obtain (3.24). Using the above
arguments we get (3.15). When m0 = m, we obtain (3.14) from (3.15).

The proof of the theorem is complete.

Theorem 3.2. Let u(x, t) be a generalized solution of problem (2.1)-(2.2) such
that u ≡ 0 when |x| > R = const and let ftk ∈ L∞(0,∞,H�(K)), ftk(x, 0) = 0
when k � 2�+ h. We suppose that the straight lines

Imλ = m− n

2
and Imλ = 2m+ �− n

2
do not contain the points of spectrum of problem (3.2)-(3.3) for every t ∈ (0,∞)
and in the strip

m− n

2
< Imλ < 2m+ �− n

2
there exists only one simple eigenvalue λ(t) of (3.2)-(3.3). Then the next repre-
sentation is true

u(x, t) =
�+m−1∑

s=0

cs(t)r−iλ(t)+sP3�+m−1,s(ln r) + u1(x, t),(3.26)

where P3�+m−1,s is a polynomial with order less than 3� +m and its coefficients
are infinitely differentiable functions of (ω, t), (cs)tke−γkt ∈ L2,loc(0,∞), (u1)tk ∈
H2m+�,1

0 (e−γkt,K∞) when k � h+ �.

Proof. We will use induction on �. From Theorem 3.1 follows the assertion of the
theorem for � = 0.

Assume that the theorem is true for j � �− 2.

Case 1: m− n

2
< Imλ(t) < 2m+ j − n

2
.

From the induction hypothesis we obtain

u(x, t) =
j+m−1∑

s=0

cs(t)r−iλ(t)+sP3j+m−1,s(ln r) + u1(x, t),(3.27)
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where P3j+m−1,s is a polynomial with order less than 3j +m and its coefficients
are infinitely differentiable functions of (ω, t), (cs)tke−γkt ∈ L2,loc(0,∞), (u1)tk ∈
H2m+j,1

0 (e−γkt,K∞) when k � h+ j.
From (3.16) and (3.27) we find that

(−1)m−1L0(0, t,D)u1 = F3 + (−1)mLS + St,(3.28)

where F3 = (u1)t + f + L1u1 and S =
j+m−1∑

s=0
cs(t)r−iλ(t)+sP3j+m−1,s(ln r).

Since ftk ∈ L∞(0,∞;Hj+1(K∞)) and ftk(x, 0) = 0 with k � 2(j + 1) + h so
ftk ∈ L∞(0,∞,Hj(K∞)) and ftk(x, 0) = 0 with k � 2j + (h+ 2).

It follows that (cs)tke−γkt ∈ L2,loc(0,∞) and (u1)tk ∈ H2m+j,1
0 (e−γkt,K∞) with

k � h + j + 2. Hence it follows that (F3)tk ∈ L∞(0,∞,Hj+1(K)) when k �
h+ j + 1.

On the other hand,

(−1)mLS + Sk = F4 +
j+m∑
s=0

c̃s(t)r−iλ(t)−2m−1P̃3j+m+1,s(ln r),

where P̃3j+m+1,s is a polynomial with order less than 3j+m+2 and its coefficients
are infinitely differentiable functions of (ω, t) with

(F4)tk ∈ L∞(0,∞;Hj+1(K)), (c̃s)tke
−γkt ∈ L2,loc(0,∞)

when k � hj + 1. Therefore, from (3.28) we obtain

(−1)m−1L0(0, t,D)u1 = F5 +
j+m∑
s=0

c̃s(t)r−iλ(t)−2m+sP̃3j+m+1,s(ln r),

where F5 = F3 + F4 ∈ L∞(0,∞;Hj+1(K)) ⊆ L∞(0,∞;Hj(K)).
By virtue of Lemma 3.2 and by analogy to the proof of Theorem 3.1 we can

find that

u1(x, t) =
j+m∑
s=0

c̃s(t)r−iλ(t)+sP̃3j+m+2,s(ln r) + u2(x, t),(3.29)

where P̃3j+m+2,s is a polynomial with order less than 3j+m+3 and its coefficients
are infinitely differentiable functions of (ω, t), (u2)tk ∈ H2m+j,1

−1 (e−γkt,K∞) when
k � h+ j + 1.

By virtue of Lemma 3.2 [5] we have (u2)tk ∈ H2m+j+1,1
0 (e−γkt,K∞) when

k � h+ j + 1. Hence and from (3.27) it follows that

u(x, t) =
j+m∑
s=0

cs(t)r−iλ(t)+sP3j+m+2,s(ln r) + u2(x, t),(3.30)

where deg P3j+m+2 < 3j + m + 3, (cs)tke−γkt ∈ L2,loc(0,∞) and (u2)tk ∈
H2m+j+1,1

0 (e−γkt,K∞) for 0 � k � h+ j + 1.
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Case 2: 2m+ j − n

2
< Imλ(t) < 2m+ j + 1 − n

2
.

By virtue of Lemma 3.1 and Theorem 3.1, from [5] it follows that

utk ∈ H2m,1
m (e−γkt,K∞).

On the other hand, in the strip m − n

2
� Imλ � 2m − m

2
there does not exist

the eigenvalue of problem (3.2)-(3.3) for every t ∈ (0,∞). Hence, from theorem
on smoothness of solution of elliptic problem in conic domain (see [3]) it follows
that utk ∈ H2m,1

0 (e−γkt,K∞) for k � h+ 2�.
We will prove that if ftk ∈ L∞(0,∞;Hj(K)) and ftk(x, 0) = 0 for k � 2j + h

then
utk ∈ H2m+j,1

0 (e−γkt,K∞), k � h+ 2l − j.

This assertion was proved for j = 0. Assume that it is true for j − 1. Since
ftk ∈ L∞(0,∞;Hj−1(K)) and ftk(x, 0) = 0 for k � 2(j−1)+h+2, from inductive
hypothesis it follows that utk ∈ H2m+j−1,1

0 (e−γkt,K∞) for k � h + 2� − j + 3.
Therefore utk+2 ∈ H2m+j−1,1

0 (e−γkt,K∞) for k � h + 2� − j. From the fact that
the strip

2m+ j − 1 − n

2
� Imλ � 2m+ j − n

2
does not contain the eigenvalues of (3.2)-(3.3) for every t ∈ (0,∞), we obtain

utk ∈ H2m+j−1,1
−1 (e−γkt,K∞), k � h+ 2�− j.

It follows that utk ∈ H2m+j,1
0 (e−γkt,K∞) when k � h+ 2�− j.

Due to Lemma 3.2, from the above arguments we obtain

u(x, t) = c(t)r−iλ(t)ϕ(ω, t) + u1(x, t),(3.31)

where ϕ is an infinitely differentiable function of (ω, t) and independent of the
solution, ctke−γkt ∈ L2,loc(0,∞), (u1)tk ∈ H2m+�,1

0 (e−γkt,K∞) for k � h+ �.

Case 3: There exists t0 such that Imλ(t0) = 2m+ �− 1 − n
2 ·

Similarly to the proof of Theorem 3.1, this case can be easily managed.
The theorem is proved.

Theorem 3.3. Let u(x, t) be a generalized solution of problem (2.1)-(2.3) such
that u ≡ 0 when |x| > R = const and let ftk ∈ L∞(0,∞,H�(K)), ftk(x, 0) = 0
for k � 2�+ h. Assume that the straight lines

Imλ = m− n

2
and Imλ = 2m+ �− n

2
do not contain the points of spectrum of problem (3.2)-(3.3) for every t ∈ [0,∞)
and in the strip

m− n

2
< Imλ < 2m+ �− n

2
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exist only simple eigenvalues λ1(t), λ2(t), . . . , λN0(t) of problem (3.2)-(3.3) such
that

Imλ1(t) < · · · < ImλN0(t),

Imλj(t) �= Imλk(t) +N, j �= k;N ∈ Z
+; j, k = 1, . . . , N0.

Furthermore, assume that there exist T > 0 and µ∗j = const � 0 such that

m− n

2
< Imλ1(t) < m+ µ∗1 −

n

2
< Imλ2(t) < . . .

< m+ µ∗N0−1 −
n

2
< ImλN0(t) < 2m+ �− n

2
∀ t ∈ [T,∞).

Then the following representation is true

u(x, t) =
N0∑
j=1

�+m−i∑
s=0

cs,j(t)r−iλj(t)+sP3�+m−1,s,j(ln r) + u1(x, t),(3.32)

where P3�+m−1,s,j is a polynomial with order less than 3�+m and its coefficients
are infinitely differentiable functions of (ω, t), (cs,j)tke−γkt ∈ L2(0,∞), (u1)tk ∈
H2m+�,1

0 (e−γkt,K∞) when k � h+ �.

Proof. For every t0 ∈ [0,∞) there exists ε > 0 such that

m+ µj−1 − n

2
< Imλj(t) < m+ µj − n

2
,

for t ∈ [t0−ε, t0 +ε], µj = const � 0, j = 0, 1, . . . , N0. By the compactness of the
interval [0, T ], there exist the numbers T0 = 0, T1, . . . , TM1 , TM = T such that

m+ µj−1,s − n

2
< Imλj(t) < m+ µj,s − n

2
t ∈ [Ts−1, Ts], µj,s = const, j = 1, . . . , N0, s = 0, . . . ,M .

Without loss of generality we may assume that

m− n

2
< Imλ1(t) < m+ µ1 − n

2
< Imλ2(t) < . . .

< m+ µN0−1 − n

2
< ImλN0(t) < 2m+ �− n

2
, t ∈ [0, T ].

To prove the theorem we will use induction on N0. For N0 = 1 the statement
of theorem follows from Theorem 3.2. Let this statement be true for N0 − 1. For
simplicity we will consider that µN0−1 = �0 < �, µ∗N0−1 = �∗0 < �.

From the induction hypothesis we obtain that when t < T

u(x, t) =
N0−1∑
j=1

�0+m−1∑
s=0

cs,jr
−iλj(t)+sP3�0+m−1,s,j(ln r) + u1(x, t),(3.33)

where P3�0+m−1,s,j is a polynomial with order less than 3�0 + m and its coeffi-
cients are infinitely differentiable functions of (ω, t), (cs,j)tk ∈ L2[0, T ], (u1)tk ∈
H2m+�0,1

0 (e−γkt,KT ) when k � h+ �0 and (3.33) is also true when t > T with

(u1)tk ∈ H
2m+�∗0 ,1
0 (e−γkt,K∞), k � h+ �∗0.
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Repeating the arguments that are analoguos to the proof of (3.29) we have

(−1)m−1L0(0, t,D)u1 = F̃ +
N0−1∑
j=1

�0+m∑
s=0

c̃s,j(t)r−iλj(t)−2m+sP̃3�0+m+1,s,j(ln r),

(3.34)

when t � T , where F̃ ∈ H�0+1,1
0 (KT ), deg P̃3�0+m+1,s,j < 3�0 + 2, (c̃s,j)tk ∈

L2[0, T ] and when t > T this representation is also true if we substitute �0 by �∗0,
F̃ ∈ H

�∗0+1,1
0 (e−γt,K∞), (c̃s,j) ∈ L2[T,∞). Hence it follows that if

2m+ �1 − n

2
< ImλN0(t) < 2m+ �1 + 1 − n

2
with �1 � max(�0, �∗0) then

u1(x, t) =
N0∑
j=1

�1+m∑
s=0

c̃s,j(t)r−iλj(t)+sP̃3�1+m+2,s(ln r) + u2(x, t),(3.35)

where deg P̃3�1+m+2,s < 3�1 +m+3 and its coefficient are infinitely differentiable
functions of (ω, t),

(u2)tk ∈ H2m+�1+1,1
0 (e−γkt,K∞), k � h+ �1.

Since in the strip

2m+ �1 + 1 − n

2
� Imλ � 2m+ �− n

2
there do not exist eigenvalues of problem (3.2)-(3.3), from (3.33), (3.34) and
(3.35) we obtain (3.32).

If there exists t0 such that

Imλ(t0) = 2m+ �1 − n

2
,

then from Lemma 3.2 and by an arguments analogous to the proof of Case 3 of
Theorem 3.1 we obtain (3.32). The theorem is proved.

Now we will formulate the theorem on the asymptotic behavior of generalized
solution of the first boundary value problem for the strongly parabolic systems
in a bounded domain with a conic point on the boundary.

Using arguments as in the proof of Theorem 3.4 [5], from Theorem 3.3 we
obtain the following theorem.

Theorem 3.4. Let u(x, t) be a generalized solution of problem (2.1)-(2.3) and let
ftk ∈ L∞(0,∞,H�(Ω)), k � 2�+ 1. Assume that the straight lines

Imλ = m− n

2
and Imλ = 2m+ �− n

2
do not contain the points of the spectrum of problem (3.2)-(3.3) for every t ∈
[0,∞), and in the strip

m− m

2
< Imλ < 2m+ �− n

2
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do only the simple eigenvalues λ1(t), . . . , λN0(t) of problem (3.2)-(3.3) exist such
that

Imλ1(t) < ImλN0(t),

Imλj(t) �= Imλk(t) +N, j �= k;N ∈ N; j, k = 1, . . . , N0; t ∈ [0, T ].

Furthermore, assume that there exist T > 0 and µ∗j = const � 0 such that

m− n

2
< Imλ1(t) < m+ µ∗1 −

n

2
< Imλ2(t) < . . .

< m+ µ∗N0−1 −
n

2
< ImλN0(t) < 2m+ �− n

2
∀ t ∈ [T,∞).

Then the following representation is true in a neighborhood of a conic point

u(x, t) =
N0∑
j=1

�+m−1∑
s=0

cs,j(t)r−iλj(t)+sP3�+m−1,s,j(ln r) + u1(x, t),

where P3�+m−1,s,j is a polynomial with order less than 3�+m and its coefficients
are infinitely differentiable functions of (ω, t), (cs,j)tkeγkt ∈ L2(0,∞) and

(u1)tk ∈ H2m+�,1
0 (e−γkt,Ω∞) when k � h+ �.
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