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ON THE ASYMPTOTIC BEHAVIOR OF GENERALIZED
SOLUTION OF PARABOLIC SYSTEMS IN A
NEIGHBORHOOD OF CONIC POINT

NGUYEN MANH HUNG AND PHAM TRIEU DUONG

ABSTRACT. The purpose of this paper is to develop the well-known theory on
the elliptic, hyperbolic and parabolic equations in nonsmooth domains that
has been presented by such Russian mathematicians as V. A. Kondratiev,
V. G. Mazya, B. A. Plamenevsky and S. A. Nazarov. We will obtain an
asymptotic expansion of the generalized solutions of first initial boundary-
value problems for strongly parabolic systems near the conic point on the
boundary of the infinite cylinder.

1. INTRODUCTION

The boundary problems for elliptic equation in domains with smooth boundary
have been well studied. Agmon, Duglis and Nirenberg [6] established the normal
solvability of general boundary problem satisfying Sapiro-Lopatinsky condition,
and they proved that if the right-hand parts, the coefficients and the boundary
are infinitely differentiable so is the solution.

In the case where the boundary contains angle points (2-dimensional domain)
or conic points (higher dimensional domain), the indicated methods can not be
applied since it is impossible to straighten the boundary by a smooth transfor-
mation.

In this paper we consider the first boundary problem for strongly parabolic
systems in domains, the boundary of which contains a finite number of conic
points. We will obtain the asymptotic series for the solution, belonging to some
Sobolev space, in a neighborhood of a conic point. According to this expression,
the solution will expand to two terms. The first term has a polynomial form, and
the second term has a sufficient smoothness.

2. NOTATIONS

Let Q be a bounded domain in R™. The boundary 0f2 of € is assumed to be
an infinitely differentiable surface everywhere, except at the coordinate origin, in
the neighborhood of which 92 coincides with the cone

K = {x ‘ z € G},
|z
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where G is a smooth domain on unit sphere. Qpr = Q x (0,7), 0 < T < oo
St =00 x (0,T).

Let H%*(Q7) be the space consisting of all functions u = (uy, ..., u,) in Ly(Q7)
which have the generalized derivatives up to order £ by x and up to order k by ¢
belonging to Ly (7).

The norm in this space is defined as follows:

il = [ [ (2 rmumz\ut pazat] .
Qp |lol=0

HY(Q7) is the closure in H%*(Qr) of the set consisting of all infinitely differen-
tiable in Q7 functions which vanish near St.

H% (e77 Q) is the space consisting of all functions u(zx,t) satisfying

il o= [ (5 |mu|2+z|ut]| Jeaaat] " < oo

Qoo |al=0

In the same way as above we define H*(e™, Q).

Hé’k(e_%, Q) is the space consisting of all functions u(z,t) satisfying

¢
HuHHé,k(e,w’Qoo): [/( Z p2(8+l=0)| po |2

Qoo lel+i=0
k N 1/2
+ Z |ue g )ef thxdt] < 400,
—

H é(e*w, 0) is the space consisting of all functions u(z,t) satisfying

4
i o _ 1/2
ollgorngy = [ [ (32 #0150 ) e Htanat] < o
Qs l@l+5=0

We consider in 4, the first initial boundary value problem

Luz(—m[ f: DPayq(x,t)D%u +

Ipl;lq|=1
m
(2.1) + Z ap(x,t)DPu + a(m,t)u] —uy = f(w,t),
Ipl=1
M .
2.2 —‘ —0, j=0m—T,
(2.2) 907 |s j=0m

(2.3) u(e,0) =0,
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where a,q, ap, a are bounded measurable complex-value matrices s x s, apq =
(—1)|p|+‘q‘a2p. When [p| = |g| = m, suppose that a,, are uniformly continuous
with respect to t functions in Q.

Assume that apy, ap, a are infinitely differentiable functions in Qoo

We require that the considered system (2.1) - (2.3) is strongly parabolic, i.e,
for each £ € R™\ {0} and n € C’ \ {0}

Z apq(, t)EPENM = pol€™Inl* V(1) € Qe
Ip|=Iq|=0

where &P = &' -+ €07 g is a positive constant.

The function u(x,t) is called a generalized solution of the first initial boundary

value problem (2.1) - (2.3) in the space H™!(e7 7, Q) if u(z,0) = 0 and

m
/ [ e Z (_1)m—1+|p|aquqquu +
Qr Ipl,la|=1

(2.4) £ 3 (1) ay Dt + (1) | ded = / Frdudt
p|=1 Qr

for all T > 0 and all test functions n € H™!(Q7) satisfying n(z, T') = 0.

3. MAIN RESULTS

Denote the main part of the operator L at the origin 0 by Ly(0,t¢, D). First we
consider in K the Dirichlet problem for the system

(3.1) Lo(0,t, D)y = p~Aolt)=2m Z In®rf(w,t),
s=0

where w is a local coordinate system on S”~!.
Lemma 3.1. [3]| Let fs(w,t), s =0,...,M, be infinitely differentiable functions
of w. Then there exists a solution of (3.1) having the form

M+p

u(x’t) = 7“_’»\0 Z In® rfs(w,t),
5=0

where fs, s=0,...,M + pu, are the infinitely differentiable functions of w, p =1
if Ao is a simple eigenvalue of the problem

(3.2) Q(w,t,\, D, )v(w) =0, weQG,

(3.3) Divw)=0, wedG, j=0,....,m—1

if Lo(0,t, D) = r~?"Q(w,t,rD,, D,,), where D, = ;—8, and = 0 if Ay is not the
r

etgenvalue of this problem.
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Now we condider the Dirichlet problem for the system
(3.4) (=)™ 1Lo(0,t, D)u = F(z,t), =€ K.

Lemma 3.2. Letu(x,t) be the generalized solution of (3.4) for almost everywhere
t €[0,00) such that w =0 when |x| > R = const. Let

up € HY" 5 (e Koe),  Fpeo€ HyH (e ™, Koy)

for some vy, v, k < h, 8/ < <m+ L. In addition we suppose that the straight
lines

ImA:—ﬁ+2m+e—g and Im)\:—ﬁ’+2m+€—g

do not contain the points of the spectrum of the problem (3.2) - (3.3) for every
t € [0,00) and in the strip

—5+2m+€—g<1m)\<—5/+2m+€—g

there exists only one simple eigenvalue A(t). Then the following representation
holds

(3.5) u(w, t) = c(t)r~ 2 V(w, ) + i (, 1),
where ¢ is an infinitely differentiable function of (w,t) and does not depend on

the solution, ce™ " € Lo ,0(0,00) and (uq)u € HA Y (et K ) for k < h.

Proof. From Theorem 3.2 in [2] it follows that
(3.6) u(a,t) = c(t)r Do (w,t) + u (x, 1),

where ¢(w,t) is the eigenfunction of the problem (3.2)-(3.3) which corresponds
to the eigenvalue A(t), uy € HA2" ™ e Koo, and

c(t) =i / F(a, t)r=MOF2m=ny, 0 4y
K

where 1) is the eigenfunction of the problem conjugating to the problem (3.2)-(3.3)
and which corresponds to the eigenvalue A(t).

Since
ImA(t) > 3 —2m — £ + g and F € Hé’,l(efvt,Koo),
c(t) € L2(0,00) (see Theorem VIII.2.6 of [4]). Hence the assertion is proved for
h = 0.

Assume that assertion of the lemma is true for ~ — 1. Denote u;» by v. From
(3.4) we obtain

" (h
(3.7) (—1)m_1L0(0,t, D) =Fu + (_1)m Z <k‘> L (O,t,D)tthfk
k=1
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where

OFa,y(0,1)
Lo = Y ?TDPDCI.

Ip|=lgl=m

Put Sy(w,t) = r~ O p(w, 1).
Since ¢(w,t) € C®(w,t) [1], from (3.7) it follows that

é (Z) Lo (0,2, D) = kZi: (Z) Lo (0,2, D) [(eS0) -] +

1

+é (Z) Loy (0,¢, D) (u ).

Using the induction hypothesis we obtain

h

(3.8) Zh: <Z> Lo (0,4, DY = Fy = 5 (Z) e Lo(0, £, D)(So)

k=1 k=1
where F| € H;!(e7, Ko.). From (3.7)-(3.8) we see that

h

(39)  (~)™'Lo(0,t, D)v =F — (-1)™ > (Z) cepn—xLo(0, ¢, D)(S0) r.
k=1

where F, € Hg’/l(e_w, K). Hence by analogy to (3.6) we get

h

(3.10) Uph =V = Z <Z> cn—k(80) e + d(t)So + ua,
k=1

where d(t)e™ " € Lg 15.(0,00), ug € Héf”“(e*w, Ky).
From this equality it follows that
h

h
SO,l = Uth — Z <k‘) Cih—k (S())th — (h — 1)Cth71(50)t
k=2
(3.11) = cn-1(Sp) + dSp + ua.

Now differentiate the equality (3.6) (h — 1) times by t. As a result we obtain

h—1

(3.12) U1 =Y <h ; 1) (So)gk + (u1)pn1.

k=0
We rewrite (3.12) in the form

h—1

3.13 S02 = Uph—1 — h—1 Cthfkfl(so te = Cthflso + Uph—1.

) t k
k=1
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Then

h—1
h—1
(5072)25 = Uh — Z ( k ) |:Cth—k (So)tk + Cph—k—1 (So)tk+1]
k=1
h

h
= uth - Z (k) Cth*k(SO)tk + Cth—l (So)t

k=1

From this equality and (3.10) we obtain
(S0,2)t = cn—1(S0)¢ + dSo + ua.

Put Sy = Sy (u1)m-1, S = Sy tug — Sy %(So)¢(u1)m-1. Tt is easy to check that
56150,2 = ¢ + 51, (50715072)15 =d+ 59,
It follows that
t t
I(t) = epr () — e (0) — / d(r)dr = / So(w, 7)dr — S (2,1) + Si(x, 0).
0 0
. 2m+L,1, —~y ot 0,1/ —~p 1t
Since un-1, ug € Hp, (e7m=1" K), S1, So € Hn(e "1 K). Therefore
2
I(t) € H® . (K), i.e., I(t) = 0. Hence
2

cthefvht = de Mt e L5 16¢(0,00),
(uq)m = ug € HZTnJrZ’l(eiWht,Koo).
The proof is complete. O

Theorem 3.1. Let u(z,t) be the generalized solution of the problem (2.1)-(2.3)
such that u = 0 with |x| > R = const and let fix € L*°(0,00; Ly(K)), fur(2,0) =0
with k < h. Assume that the straight lines

n

Im)\zm—g and Im)\:2m—§

do not contain the points of the spectrum of (3.2)-(3.3) for every t € [0,00), and
in the strip

n n
— S <Im<2m——

there exists only one simple eigenvalue A(t) of the problem (3.2)-(3.3). Then the
following representation holds

m—1
(3.14) u(z,t) = Z cs(O)r O P (Inr) 4 uy(z, 1),

s=0
where Py,_15 is a polynomial with order less than m and its coefficients are
infinitely differentiable functions of (w,t), (cs)we "' € Lo jpe(0,00), (u1)m €
HY™ et Ko for k < h.
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Proof. First we will prove that if

m—g<1m)\(t)<m+mo—g, 1< mg <m,
then
mo—1
(3.15) u(@,t) = Y cs(®)r TP (Inr) + ua (x, 1),
s=0

where P, _1s is a polynomial with order less than mg and its coefficients are
infinitely differentiable functions of (w,t), (¢s)i € L2(0,00) and

(ur)w € Hilml (et Ky) for k< h.

We introduce the notation
Ly = (-1)""[Lo(0,¢,D) — L(x,t,D)].
From the system (2.1) we get
(3.16) (=1)™1Ly(0,t, D)u = F,

where F =u; + f+ Liu.
From Lemma 3.1 of [5] it follows that u € Ha™'(e™ K.). On the other
hand, u; € Ly(Ky), f € L0, 00; LQ( ). Therefore F € H2? (e Ky.).

Let m — g <ImA(t) <m+1-— 5 From Lemma 3.2 it follows that

(3.17) w(z,t) = c(t)r D pw, t) +uy (2, 1),

where ¢ is an infinitely differentiable function of (w,¢) which is independent of
the solution ¢;ne™ " € Lo 1o.(0,00), (u1), € H2™! (e % K.) when k < h. So
(3.15) is proved for mg = 1.

Assume that (3.15) holds for my < m — 1. We distinguish the following cases.

Case 1: m=g <Im)\(t)<m+m0—g.

Using the induction hypothesis we obtain (3.15). Put

mo—1

(3.18) Smo = (=1)™ > es(t)r PP (Inr).
s=0

Then

mo—1

(3.19) LS, = Fi(z,t) Z Z co(t)yr~M)=2mAstip L (Inr),

j+s<mo s=0

where (F1)u € H2® (et K) when 0 < k < h and ]Bmo_l,s,j is a poly-

m—mo—1
nomial with order less than mg and its coefficients are infinitely differentiable
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functions of (w,t). From (3.15), (3.16) and (3.19) we obtain
(3.20)

mo—1

(=1)""1Ly(0,t, D)uy = Fy(x,t) Z Z _Z)‘(t —2mtstip mo—1,s,5(In7),

Jj+s<mo s=0

where Fo =us + f + Liuy + Fy € HTOn0 mo— 1(6*“.[{0@).
By virtue of Lemma 3.1 there exists a function

mo—1

(3.21) Z Z pmAOtsHp ()

j+s<mo s=0
such that

mo—1

(322) (=)™ 'Lo(0,t, D)y = > D es(t)r O (),

j+s<mo s=0
Put v; = u; —w;. From (3.20) and (3.22) it follows that
(—=1)""1Ly(0,t, D)vy = F(a, t).
By means of Lemma 3.2 we obtain
(3.23) v1(z,t) = e(t)r D p(w, t) + uy(, t),

where ¢ is an infinitely differentiable function of (w,t) which is the independent
of the solution, cxe™ " € Lo j00(0,00), (u2), € HmmrlnO (e Koo) when 0 <
k < h.

From (3.21) and (3.22) it follows that

mo—1

w(@t) = c®r M Opw,t) 3 D (@O Py i) +us(e, ),

Jj+s<mo s=0

Hence from (3.15) we get

mo

(3.24) u(@,t) = &) MO P, (Inr) + ug(z, t),
s=0

where ]Smo,s is a polynomial with order less than mg + 1 and its coefficients are
infinitely differentiable functions of (w,t), (¢s)me ™" € Lo jpc(0,00), (u2), €
H2™ (et Ko) when 0 < k < h.

m—mo—1

Case 2: m+m0—g<1m)\<m+mo+1—g.

Since in the strip m — g < ImA, m+mgy— g there does not exist any eigenvalue
of problem (3.2)-(3.3), u € H*™'m — mo(e™, K& ).
On the other hand,

m+m0—g<1m)\(t)<m+mo+1—g-
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Therefore, from Lemma 3.2 it follows that
(3.25) w(x,t) = c(t)r - *Vop(w, t) 4 ui (1),

where ¢ is an infinitely differentiable function of (w,t) and does not depend on
the solution, ¢e™ "t € Ly oe(0,00), (u1)p € H2™!  (e7", Ko) when k < h.

—mo—1

Case 3: There exists to such that ImA(tg) = m + mg — g

One may assume that

n n
m+m0—,u—§<Im)\(t)<m+m0—u+1—§, 0<p<l.

Repeating the arguments of the proof for Case 2 we obtain (3.25) where (u)x €
anrf’;o_Hu(e*%t,Koo) when k < h. Hence we obtain (3.24). Using the above
arguments we get (3.15). When mg = m, we obtain (3.14) from (3.15).

The proof of the theorem is complete. O

Theorem 3.2. Let u(x,t) be a generalized solution of problem (2.1)-(2.2) such
that u = 0 when || > R = const and let fu € L®(0,00, H(K)), fu(x,0) =0
when k < 20+ h. We suppose that the straight lines

Im)\:m—g and Im)\:2m+€—g

do not contain the points of spectrum of problem (3.2)-(3.3) for every t € (0, 00)
and in the strip

m—g<1m)\<2m+€—g

there exists only one simple eigenvalue A(t) of (3.2)-(3.3). Then the next repre-
sentation is true

l+m—1
(3'26) u(x’ t) = Z Cs(t)’rii)\(t)JrsPBE—I—m—l,s (hl T) + ul(x’ t)’

s=0

where Pyyym—1s 15 a polynomial with order less than 3¢ +m and its coefficients
are infinitely differentiable functions of (w,t), (cs)me ™ € Laj0e(0,00), (u1)w €
HgmM’l(e*%t, Ko) when k < h+ (.

Proof. We will use induction on ¢. From Theorem 3.1 follows the assertion of the
theorem for ¢ = 0.

Assume that the theorem is true for j < ¢ — 2.

Case 1: m—g<1m)\(t)<2m+j—g.

From the induction hypothesis we obtain

Jj+m—1

(3.27) u(a,t) = > eo(tr O Py () 4w (2, 1),
s=0
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where P31, is a polynomial with order less than 3j + m and its coefficients
are infinitely differentiable functions of (w,t), (cs)me ™ € L j0c(0,00), (u1)w €
HY™ P et K ) when k < h 4+ 5.

From (3.16) and (3.27) we find that

(3.28) (=)™ ' Lo(0,t, D)uy = F3 + (—=1)™LS + Sy,
Jj+m—1 )
where Fy = (u1); + f + Liug and S = 3 co(t)r 2O Py ((Inr).
s=0

Since fu € L>(0,00; H(Ky)) and fu(2,0) = 0 with k < 2(j + 1) + h so
fur € L®(0,00, H (K)) and fu(x,0) =0 with k£ < 2j + (h + 2).
It follows that (cs)e™ %" € Lo 15.(0,00) and (uq) € Hgmﬂ’l(e_wt,Koo) with
k < h+j+2 Hence it follows that (F3)x € L°(0,00, H/T1(K)) when k <
h+j+1.
On the other hand,
j+m
(—D)™MLS + S = Fy+ Y _ &(t)yr 02 py (i),
s=0
where ]33j+m+17 s is a polynomial with order less than 3j+m+2 and its coeflicients
are infinitely differentiable functions of (w,t) with

(F4)t’c € LOO(Ov o eh HjJrl(K))v (Es)tk e Ml e L2,loc(07 OO)
when k < hj 4+ 1. Therefore, from (3.28) we obtain

Jj+m
(_1)m71L0(07 t, D)U1 = F5 + Z Es(t)?“il’\(t)72m+3P3j+m+1,s(ln 7”)7
5=0

where Fy = F3 + Fy € L>(0,00; H1(K)) C L>(0, 00; H (K)).
By virtue of Lemma 3.2 and by analogy to the proof of Theorem 3.1 we can
find that
Jjtm
(3.29) ur(z,t) = Y () MO Py o (Inr) + ug(a, ),
s=0

where ]33j+m+27 s is a polynomial with order less than 3j+m+3 and its coeflicients
are infinitely differentiable functions of (w,t), (ug)u € H>7! (et K) when
kE<h+j+1.
By virtue of Lemma 3.2 [5] we have (ug)y € Hy™7Hh(e= "t K) when

k < h+j+1. Hence and from (3.27) it follows that

Jj+m
(3.30) u(z,t) =Y es(®)r M Py J(Inr) + ug(a, 1),

s=0
where deg Psjimio < 3j + m + 3, (co)pwe ™ € Lgjpe(0,00) and (ug)p, €
HYMHITN (et Ko ) for 0< k< h+ 74 1.
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Case 2: 2m+j—g<lm)\(t)<2m+j+1—g.

By virtue of Lemma 3.1 and Theorem 3.1, from [5] it follows that
e € H2™ (e WKL),

On the other hand, in the strip m — g < ImA < 2m — % there does not exist

the eigenvalue of problem (3.2)-(3.3) for every ¢ € (0,00). Hence, from theorem
on smoothness of solution of elliptic problem in conic domain (see [3]) it follows
that us € HZ™' (e7 " Koo) for k < h + 20,

We will prove that if fux € L>(0,00; H/(K)) and fyx(2,0) =0 for k < 2j +h

then
Uk € Hgmﬂ’l(e*%t,Koo), kE<h+20—j.

This assertion was proved for j = 0. Assume that it is true for j — 1. Since
fie € L%(0,00; HH7Y(K)) and fu(2,0) = 0 for k < 2(j —1)+h+2, from inductive
hypothesis it follows that usx € Hngrjfl’l(e_Wt,Koo) for E < h+20 -3+ 3.
Therefore w2 € Hgmﬂ*l’l(e*”kt,[(oo) for k < h+2¢ — j. From the fact that
the strip

. n .n
2m+]—1—§<1m)\<2m+j—§

does not contain the eigenvalues of (3.2)-(3.3) for every ¢ € (0,00), we obtain
upe € HH B emwt K ), k< h+20— .

It follows that u € Hy" ! (e7 ! K..) when k < h 4 20 — j.
Due to Lemma 3.2, from the above arguments we obtain

(3:31) u(,t) = (M0 (w,8) + ua (1),
where ¢ is an infinitely differentiable function of (w,t) and independent of the
solution, ¢;xe™ ! € Lo 60(0,00), (u1)m € Hgmﬁ’l(e_w, Ky) for k< h+ 4.
Case 3: There exists tg such that ImA(tg) =2m +/£—-1— 5 -

Similarly to the proof of Theorem 3.1, this case can be easily managed.

The theorem is proved. O
Theorem 3.3. Let u(x,t) be a generalized solution of problem (2.1)-(2.3) such

that w = 0 when |z| > R = const and let fux € L>(0,00, H'(K)), fu(z,0) =
for k < 204 h. Assume that the straight lines

Im)\:m—g and Im)\:2m+€—g

do not contain the points of spectrum of problem (3.2)-(3.3) for every t € [0,00)
and in the strip

m—g<1m)\<2m+€—g
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exist only simple eigenvalues \i(t), Aa(t), ..., An,(t) of problem (3.2)-(3.3) such
that

Im)\l(t) << Im)\No(t),
Im\;(t) # ImAp(t) + N, j#kN€eZ;5,k=1,...,No.

Furthermore, assume that there exist T'> 0 and p; = const = 0 such that

m—g<Im)\1(t)<m—|—,u’{—g<1m)\2(t)<...

2 < ImAn, (t) < 2m+ £ — g Vit € [T, 00).

2

Then the following representation is true

<M+ Py —

No ¢+m—1i ]
(3.32) u(@,t) =Y > e i@r O Py () 4wz, 1),

=1 s=0
where Pypy 15 18 a polynomial with order less than 3¢ +m and its coefficients
are infinitely differentiable functions of (w,t), (csj)we 7" € La(0,00), (u1)p €

HngFZvl(e_’th’ Ko) when k < h+ 4.

Proof. For every tg € [0,00) there exists € > 0 such that
n n
m+ pj—1 — 5 <Im)\j(t) <m—+ pj— 9
fort € [to—e,to+¢], pj = const >0, j =0,1,..., Ny. By the compactness of the
interval [0, T, there exist the numbers Ty = 0, T1,...,Tas,, Tay = T such that
n
2
te [Tsfl,Ts], Hjs = const, j=1,...,Ng,s=0,..., M.
Without loss of generality we may assume that

m—+ j—1,s — < Im)\j(t) <m+ pjs —

n
2

m—g<Im)\1(t)<m+u1—g<Im)\2(t)<...
<m+uNO,1—g<Im)\No(t) <2m+€—g, te0,T].

To prove the theorem we will use induction on Ny. For Ny = 1 the statement
of theorem follows from Theorem 3.2. Let this statement be true for Ny — 1. For
simplicity we will consider that pn,—1 =€y < £, py, 1 = €5 < L.

From the induction hypothesis we obtain that when ¢t < T

No—14p+m—1
(3.33) u(m,t) = Z Z Cs,jT_Mj(t)+SP3€o+m—1,s,j(ln T) + ul(x’t)’
j=1 s=0

where P3y, 4,1, is a polynomial with order less than 3{y + m and its coeffi-
cients are infinitely differentiable functions of (w,t), (cs ) € L2[0,T], (u1); €

HgmMO’l(e*W, Kr7) when k < h+ £y and (3.33) is also true when ¢ > T with

() € H" O e Ko), k< h+ 06
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Repeating the arguments that are analoguos to the proof of (3.29) we have

(3.34)
No—14p+m

(1) ' Lo(0,t, Dyus = F+ Y 3 & (t)yr MO=2mEspy (),
j=1 s=0

when t < T, where F ¢ HgOH’l(KT), deg ﬁg[OJ’,mJ’,Ls’j < 3lo + 2, (Coj)x €
L2[0 T| and when ¢ > T this representation is also true if we substitute £y by £,
Fe HP T (e Ky), (Gs;) € Lo[T, 00). Hence it follows that if

2m + 01 — g < ImApn,(t) < 2m+ 0, —1—1—%
with £; > max({g, £;) then
No l1+m

(3.35) Z Z CS,J rm il t)+5f)351+m+275(1n7ﬂ) + ua(z,t),
7j=1 s=0

where deg ﬁ351+m+275 < 301 +m+ 3 and its coefficient are infinitely differentiable
functions of (w,t),

(ug)s € HI" PO (et K), k< h+4;.
Since in the strip

2m+€1+1—g<1m)\<2m+€—g
there do not exist eigenvalues of problem (3.2)-(3.3), from (3.33), (3.34) and
(3.35) we obtain (3.32).

If there exists tg such that
Im A(to) = 2m + €1 — g

then from Lemma 3.2 and by an arguments analogous to the proof of Case 3 of
Theorem 3.1 we obtain (3.32). The theorem is proved. O

Now we will formulate the theorem on the asymptotic behavior of generalized
solution of the first boundary value problem for the strongly parabolic systems
in a bounded domain with a conic point on the boundary.

Using arguments as in the proof of Theorem 3.4 [5], from Theorem 3.3 we
obtain the following theorem.

Theorem 3.4. Let u(z,t) be a generalized solution of problem (2.1)-(2.3) and let
for € L=(0,00, HY(Q)), k < 20 + 1. Assume that the straight lines

Im)\:m—g and Im)\:2m+€—g
do mot contain the points of the spectrum of problem (3.2)-(3.3) for every t €
[0,00), and in the strip

m—%<lm)\<2m+€—g
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do only the simple eigenvalues \(t), ..., An,(t) of problem (3.2)-(3.3) exist such
that

ImA; (t) < ImApn,(2),
ImA;(t) # ImAg(t) + N, j#k;NeN;j,k=1,...,No;t €[0,T].

Furthermore, assume that there exist T > 0 and u}f = const > 0 such that

m—g<Im>\1(t)<m+/f{—g<Im)\2(t)<...

<m A+ pin, 1 —g<lm)\NO(t) < 2m+€—g Vte T, o0).

Then the following representation is true in a neighborhood of a conic point
No l+m—1

u(@ ) =Y Y eI Py () (o t),
j=1 s=0

where Pygy 15 18 a polynomial with order less than 3¢ +m and its coefficients
are infinitely differentiable functions of (w,t), (cs;)ke™" € La(0,00) and

(ur)g € HY" O (e Q) when k< h+ L.
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