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STOCHASTIC PROCESSES INDEXED BY URBANIK

CONVOLUTION ALGEBRAS

NGUYEN VAN THU AND CAO VAN NUOI

Abstract. The aim of the present paper is to study a class of second or-
der stochastic processes indexed by Urbanik convolution algebras. We prove
their spectral representation which stands for an analogue of that of processes
indexed by hypergroups. Moreover, we show that they can be reduced to
∗α-correlated processes.

1. Notation and preliminaries

In [1, 2, 5, 6] Lasser, Hösel and Leitner introduced and studied stochastic
processes indexed by hypergroups. In particular, they proved spectral repre-
sentation and considered prediction problems for such processes. For processes
indexed by orthogonal polynomial hypergroups their results stand for somewhat
distinguishing from those for classical weakly stationary processes.

In what follows we will introduce and study similar stochastic processes which
are indexed by Urbanik convolution algebras.

Recall some definitions of Urbanik convolutions. Let P denote the set of all
probability measures (p.m’s) on the positive half-line R+ = [0,∞) endowed with
the weak convergence. We write δx for the unit mass at point x and write Tx for
the map given by

Txµ(B) = µ({x−1y : y ∈ B})
for x > 0, µ ∈ P and B ∈ B(R+), the σ-field of Borel subsets of R+. Note that
if x = 0 then T0µ = δ0. Let Cb denote the Banach space of all real bounded
continuous functions on R+ with the supremum norm ‖.‖.

A commutative and associative P-valued binary operation ◦ on P with δ0 as
the unit element is called a Urbanik convolution (cf. Urbanik [7, 8]), if it is
continuous in each variable separately and distributive with respect to convex
combinations and maps Tx and if it satisfies the following law of large numbers
(LLN): There exists a sequence of positive numbers cn such that the sequence
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Tcn
δ◦n1 converges to a limit other than δ0. Here, for µ ∈ P, µ◦n denotes the n-th

power of µ under the operation ◦.
The pair (P, ◦) is called a Urbanik convolution algebra. This notion was intro-

duced by K. Urbanik in the standard paper [7] and studied by many researchers.

We assume throughout the paper that the algebra (P, ◦) is regular, i.e., it
admits a characteristic function µ̂ ∈ Cb defined by the following properties: The
correspondence P 3 µ ←→ µ̂ is one-to-one, µ̂ is distributive with respect to

convex combinations, (µ ◦ γ)∧ = µ̂γ̂, T̂xµ(t) = µ̂(tx) and the uniform convergence
of µ̂n to µ̂ on every compact interval is equivalent to the weak convergence of µn

to µ. The characteristic function is represented as

µ̂(t) =

∞∫

0

Ω(tx)µ(dx),(1.1)

where Ω is a continuous kernel which stands for the characteristic function of δ1.

The limiting measure in (LLN) denoted by σκ is called the characteristic mea-
sure of (P, ◦) and (with cn multiplied by a positive constant if necessary) has the
following characteristic function

σ̂κ(t) = exp(−tκ),(1.2)

where t > 0 and κ is a positive constant called the characteristic exponent of the
Urbanik convolution ◦.

Now we quote some examples of regular Urbanik convolutions which will be
given in terms of the kernel Ω and the characteristic measure σκ or its density
gκ.

Example 1.1. α-convolution ∗α (0 < α <∞):

Ω(t) = exp(−tα), κ = α, σκ = δ1.

For α = 1 we get the ordinary convolution i.e. ∗1 = ∗

Example 1.2. Symmetric convolution ∗1,1

Ω(t) = cos t, κ = 2, gκ(x) =
1√
π

exp
(
− x2

4

)
.

Example 1.3. Kingman convolution ∗1,β (β = 2(s + 1) > 1). We have

κ = 2 and Ω(t) = Λs(t) = Γ(s + 1)Js(t)/
(1

2
t
)s

,

where Js is the Bessel function and

gκ(x) = 2−2s−1x2s+1 exp(−4−1x2)/Γ(s + 1)

The limiting case s = −1
2 reduces to the symmetric convolution.

Let {Xt}, t ∈ R+, be a second-order stochastic process defined on a proba-
bility space (X ,F , P ). Let L2(P ) denote the real Hilbert space of all r.v.’s with
finite second moments. In the sequel, the elements in L2(P ) will be regarded
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as equivalence classes such that each class is consisted of r.v.’s which are equal
with probability one. Thus, the variables of such a second-order process {Xt}
can be thought of as elements in L2(P ). Let us denote mt = EXt, t ∈ R+.
As usual, the correlation function R(t, s), t, s ∈ R+, of {Xt} is defined as
R(t, s) = E(Xt −mt)(Xs −ms), t, s ∈ R+. Further, let R0(t) = R(0, t), t ∈ R+.

Given a regular Urbanik convolution ◦ we say that {Xt} is (P, ◦)-correlated if
R0(t) ∈ Cb and for any t, s ∈ R+

R(t, s) =

∞∫

0

R0(u)δt ◦ δs(du).(1.3)

It should be noted that the definition (1.3) of (P, ◦)-correlatedness is analogous
to that of K-stationary processes, K being a hypergroup (cf. [1, 2]). Moreover,
our concept of (P, ◦)-correlated processes is a slight generalization of the concept
of additively correlated r.v.’s which was introduced and studied in [3, 4].

2. Spectral representation of (P, ◦)-correlated processes

Given a Urbanik convolution algebra (P, ◦) the generalized translation opera-
tors (g.t.o) τx, x ∈ R+, are defined on f ∈ Cb and x, y ∈ R+ by the formula

τxf(y) =

∞∫

0

f(u)δx ◦ δy(du).

Definition. A real function ϕ on R+ is said to be ◦-positive definite, if for any
x1, x2, . . . , xn ∈ R+ and λ1, λ2, . . . , λn ∈ R,

n∑

i,j=1

λiλjτ
xiϕ(xj) > 0.

Since every regular Urbanik convolution is a strong regular stochastic convo-
lution in the sense of Vol’kovich [9] it follows from Theorem 1 in [9] the following
theorem.

Theorem 2.1. Let ◦ be a regular Urbanik convolution with the kernel Ω. Then,

a continous function f , f(0) = 1, is ◦-positive definite if and only if

f(t) = µ̂(t), t ∈ R+

where µ ∈ P.

As a simple consequence of Theorem 2.1 we have

Theorem 2.2. Suppose that f is a continuous function on R+. Then it is a

correlation function corresponding to a (P, ◦)-correlated process {Xt} if and only

if f is ◦-positive definite. Consequently, there exists a unique finite measure ν on
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R+ such that

f(t) =

∞∫

0

Ω(tx)ν(dx), t ∈ R+.(2.2)

In the sequel, ν in (2.2) is named as a spectral measure of {Xt}. Next, for the
simplicity of notation, we will assume in what follows that the mean function mt,
t ∈ R+, is identically zero.

Given a (P, ◦)-correlated process {Xt}, t ∈ R+, let H denote a closed subspace
of L2(P ) spanned by r.v.’s Xt, t ∈ R+. Let ν be the spectral measure associated
with {Xt}. Then we have the following.

Lemma 2.1. Let K denote the closed subspace of L2(R+, ν) spanned by functions

Ωt(x) = Ω(tx), t, x ∈ R+. Then, for any µ, γ ∈ P we have µ̂, γ̂ ∈ K and

µ̂γ̂(·) ∈ K. Therefore, µ̂n(·) ∈ K for every n = 1, 2, . . .

Proof. Since for each µ ∈ P there exits a sequence {µn} ⊂ P such that each µn

is supported by a finite number of points in R+ and µn weakly converges to µ,
we infer, by (1.1), that

µ̂(t) = lim
n→∞

∞∫

0

Ω(tx)µn(dx),(2.3)

where the limit is uniform on every bounded interval.

Observe that each function of the right-hand side of (2.3) belongs to K and for
every ε > 0 there exists A > 0 such that ν([A,∞)) < ε. Hence and by (2.3), it
follows that for n = 1, 2, . . .

∞∫

0

|µ̂(t)− µ̂n(t)|2ν(dt) =

A∫

0

|µ̂(t)− µ̂n(t)|2ν(dt) +

∞∫

A

|µ̂(t)− µ̂n(t)|2ν(dt)

6

A∫

0

|µ̂(t)− µ̂n(t)|2ν(dt) + 4ε.

Letting n→∞ we get

lim
n→∞

∞∫

0

|µ̂(t)− µ̂n(t)|2ν(dt) 6 4ε,

Since ε is arbitrary the last inequality implies that µ̂n(·) converges to µ̂ ∈ K and,
consequently, µ̂ ∈ K.

The last statement is obvious. Thus the lemma is proved.

The following lemma seems well-known in literature but for an easy reference
we quote its proof here.
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Lemma 2.2. For each finite measure η on R+ the set of funtions γx(t) = exp(−tκxκ)
where t, x ∈ R+ is linearly dense in L2(R+, η).

Proof. It suffices to prove that if f ∈ L2(R+, η) and f is orthogonal to all functions
γx(·), x ∈ R+, then f(t) = 0 η-everywhere. Indeed, let us denote

τ(dt) = f(t)η(dt).

Then, for each x ∈ R+,

∞∫

0

exp(−xκtκ)τ(dt) = 0

which, by changing variables xκ 7→ u and by the uniqueness of Laplace trans-
form for signed measures, implies that τ = 0 and, consequently, f(t) = 0 η-
everywhere.

Lemma 2.3. K = L2(R+, ν).

Proof. By virtue of LLN it follows that there exists positive numbers cn such that
for every x ≥ 0 the sequence Txcn

δon
1 weakly converges to Txσκ.

By Lemma 2.1, for every n = 1, 2, . . . (Txcn
δon
1 )(t) belongs to K which, by

virtue of (1.2) and by similar arguments in the proof of Lemma 2.1, implies that,
in L2(R+, ν),

lim
n→∞

(Txcn
δon
1 )(t) = exp(−xκtκ).

Hence all functions exp(−xκtκ), t, x ∈ R+ belong to K, which together with
Lemma 2.2 implies that the set K is linearly dense in L2(R+, ν). But K is a
closed subspace of L2(R+, ν), which shows that K = L2(R+, ν).

Lemma 2.4. The Hilbert spaces H and L2(R+, ν) are isometrically isomorphic

and the isomorphism, denoted by J, is determined by the relation

H 3 Xu
J7−→ Ωu(·) ∈ L2(R+, ν), u ∈ R+.(2.4)

Proof. We first show that the map

J : Xu 7−→ Ωu(·)

u ∈ R+, can be extended to a continuous map on the whole space H.

Accordingly, if u1, . . . , uk ∈ R+ and λ1, . . . , λk ∈ R we put

J
( k∑

j=1

λjXuj

)
=

k∑

j=1

λjΩuj
(·).
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By (1.3), (2.2) and by Fubini’s Theorem we get

E
( k∑

j=1

λjXuj

)2
=

k∑

i,j=1

λiλjR(ui, uj)

=
k∑

i,j=1

λiλj

∞∫

0

Ro(t)δui
◦δuj

(dt)

=

k∑

i,j=1

λiλj

∞∫

0

∞∫

0

Ω(tx)ν(dx)δui
◦δuj

(dt)

=

∞∫

0

k∑

i,j=1

λiλjΩ(uix)Ω(ujx)ν(dx)

=

∞∫

0

∣∣∣
k∑

j=1

λjΩ(ujx)
∣∣∣
2
ν(dx)

which together with Lemma 2.3 implies that the map J is well-defined on the set
H1 of linear combinations of Xu, u ∈ R+. Let K1 denote a linear subspace of
L2(R+, ν) spanned by functions Ωt(x) = Ω(tx), t, x ∈ R+. Then, by the above
equalities, the map J stands for an isomorphism between linear spaces H1 and
K1. Moreover, J can be extended to an isometric isomorphism between H and
L2(R+, ν). Indeed, suppose that V is an element of H such that V = lim

n→∞

Vn,

where Vn ∈ H1. By virtue of the last equalities it follows that

lim
n,m→∞

(Vn − Vm) = lim
n,m→∞

(JVn − JVm) = 0,

where the limits are taken inH and in L2(R+, ν), respectively. Thus, the sequence
JVn, n = 1, 2, . . . , is a Cauchy sequence. Consequently, there is a function
ξ ∈  L2(R+, ν) such that

lim
n→∞

JVn = ξ.

Now, putting JV = ξ and taking into an account the fact that if Wn is another
sequence in H1 converging to V then, by the foregoing arguments, it follows that
the sequence JWn converges in L2(R+, ν). But, since V = lim

n→∞

Vn = lim
n→∞

Wn

and the map J is an isomorphism between H1 and K1, the sequences {JVn} and
{JWn} must converge to the same limit. Therefore, the map J is well defined.
Hence and by the fact that H1 and K1 are dense in H and K (see Lemma 2.3),
respectively the proof is complete.

Let G denote a real Hilbert space with the inner product < ·, · > and the norm
‖ · ‖. A set function

N : B(R+) −→ G
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is called an orthogonal vector-valued measure (o.v.m) if N(∅) = 0, and for any
disjoint sets An, n = 1, 2, . . . in B(R+) the elements N(An) are orthogonal and

N
( ∞⋃

n=1

An

)
=

∞∑

n=1

N(An),

where the right-hand side is convergent in G.

It should be noted that for every o.v.m N on B(R+) the control measure µ is
defined by

µ(E) = ‖N(E)‖2,
E ∈ B(R+), is a finite measure on R+. Moreover, by the usual procedure one
can define the following integral with values in G:

∞∫

0

f(u)N(du)

for every f ∈ L2(R+, µ).

The following simple lemma seems well-known in literature, but, for our usage,
we prove it here.

Lemma 2.5. Let N be an o.v.m on B(R+) with a control measure µ. Then, for

any ϕ, f ∈ L2(R+, µ)

< ϕ, f >L2(R+,µ)=

∞∫

0

∞∫

0

ϕ(x)f(y) < N(dx), N(dy) >(2.5)

and

‖f‖2L2(R+,µ) =

∞∫

0

∞∫

0

f(x)f(y) < N(dx), N(dy) > .(2.5’)

Proof. First, let us note that for any A,B ∈ B(R+)

< N(A), N(B) >= ‖N(A ∩B)‖2

which implies that for any simple functions fn and ϕn in L2(R+, µ) of the form

fn =
kn∑

j=1

λjnχAjn
and ϕn =

kn∑

j=1

γjnχAjn

where Ajn are disjoint sets in B(R+) and λjn, γjn are real numbers, n, kn =
1, 2, . . . , j = 1, 2, . . . , kn the following formula holds:

< fn, ϕn > =

∞∫

0

∞∫

0

fn(x)ϕn(x) < N(dx), N(dy) > .
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Thus, the formula (2.5) is true for simple funtions. Let f and ϕ be arbitrary
functions in L2(R+, µ). Taking fn → f , ϕn → ϕ, where fn, ϕn are simple funtions,
we get

< fn, ϕn >=

∞∫

0

∞∫

0

fn(x)ϕn(x) < N(dx), N(dy) > .

Letting n → ∞ the above formula implies the formula (2.5). In particular, the
formula (2.5’) holds.

Now, suppose that G = L2(R+, ν), ν being a spectral measure of the (P, ◦)-
correlated process {Xt}. Putting, for B ∈ B(R+),

Γ(B) = χB,(2.6)

where χB is the indicator of B. It is evident that Γ is an o.v.m with the control
measure ν.

Lemma 2.6. For each f ∈ L2(R+, ν)

∞∫

0

f(x)Γ(dx) = f.(2.7)

Proof. By (2.6), it is evident that (2.7) holds for a simple function f in L2(R+, ν).
For general f ∈ L2(R+, ν), take a sequence of simple funtions converging to f .
Then, we get (2.7) for every f ∈ L2(R+, ν).

Proceeding sucessively, suppose that G = H. Since, by Lemma 2.4, H and
L2(R+, ν) are isometrically isomorphic with the isomorphism J given by (2.4),
it follows that the set function M : B(R+)→H defined by

M(B) = J−1Γ(B) = J−1(χB)(2.8)

is also an o.v.m with values in L2(P ). In the sequel, we will call M(·) an orthog-

onal stochastic measure (o.s.m). In general, a set function M : B(R+) → L2(P )
is called an orthogonal stochastic measure (o.s.m), if it is an orthogonal vector-
valued measure (o.v.m) with values in L2(P ).

Now we are ready to prove the following representation theorem:

Theorem 2.3. Let {Xt} be a (P, ◦)-correlated process. Then, there exists a

unique o.s.m M on B(R+) such that for each t > 0

Xt =

∞∫

0

Ω(tx)M(dx).(2.9)

Conversely, for every o.s.m M the integral (2.9) defines a (P, ◦)-correlated
process.
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Proof. Suppose that {Xt} is a (P, ◦)-correlated process with the spectral measure
ν and the correlation function R(t, s) given by (1.3).

Let M be an o.s.m defined by formulas (2.6) and (2.8). Putting,

Yt =

∞∫

0

Ω(tx)M(dx)(2.10)

and taking into account (2.4), (2.6) and (2.8) we get, for each t ∈ R+,

J (Yt) =

∞∫

0

Ω(tx)Γ(dx),

which, by Lemma (2.6), implies that

J (Yt) = Ωt(·), t ∈ R+.

Hence and by (2.4) it follows that, for every t ∈ R+,

J (Yt) = J (Xt) = Ωt(·)(2.11)

Consequently, Yt = Xt, t ∈ R+, which together with (2.10) implies the reprenta-
tion (2.9) of {Xt}. Our further aim is to prove that the representation (2.9) is
unique.

Accordingly, suppose that there is another o.s.m V such that

Xt =

∞∫

0

Ω(tx)V (dx), t ∈ R+.(2.12)

Let Z be a r.v. in L2(P ). Then,

EZXt =

∞∫

0

Ω(tx)τ(dx) =

∞∫

0

Ω(tx)γ(dx)(2.13)

(t ∈ R+), where τ and γ are signed measures on B(R+) defined by

τ(dx) = EZM(dx),

γ(dx) = EZV (dx).

From (2.13) it follows that for each t ∈ R+ we get

∞∫

0

∞∫

0

Ω(txu)τ(dx)σκ(du) =

∞∫

0

∞∫

0

Ω(txu)γ(dx)σκ(du)

where σκ is the characteristic measure of (P, ◦).
Using the Fubini’s Theorem for signed measures we have

∞∫

0

∞∫

0

Ω(txu)σκ(du)τ(dx) =

∞∫

0

∞∫

0

Ω(txu)σκ(du)γ(dx)
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and, by (1.2), it follows that

∞∫

0

exp(−tκxκ)τ(dx) =

∞∫

0

exp(−tκxκ)γ(dx)

(t ∈ R+), which, by the uniqueness of the Laplace transform for signed measures,
implies that τ = γ. Since Z is arbitrary we conclude that M = V .

Conversely, suppose that M is an o.s.m with the control measure ν(·) =
E|M(·)|2. Let {Xt} be defined by (2.9). Then, for any t, s ∈ R+,

R(t, s) = EXtXs

= E
[( ∞∫

0

Ω(tx)M(dx)
)( ∞∫

0

Ω(ty)M(dy)
)]

=

∞∫

0

∞∫

0

Ω(tx)Ω(ty)E[M(dx)M(dy)],

=

∞∫

0

Ω(tx)Ω(sx)ν(dx).

which shows that the functions R(t, s) and R(t, 0), t, s ∈ R+, are bounded and
continuous. Moreover, by virtue of (1.1), Lemma 2.5 and by Fubini’s theorem, it
follows that

R(t, s) =

∞∫

0

[ ∞∫

0

Ω(ux)δt ◦ δs(du)
]
ν(dx)

=

∞∫

0

[ ∞∫

0

Ω(ux)ν(dx)
]
δt ◦ δs(du)

=

∞∫

0

R(u, 0)δt ◦ δs(du).

Consequently, {Xt} is a (P, ◦)-correlated process. Thus, the proof is complete.

The following theorem shows that every (P, ◦)-correlated process can be re-
duced to a (P, ∗κ)-correlated process, where κ denotes the characteristic exponent
of the convolution ◦.
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Theorem 2.4. For every regular Urbanik convolution ◦ with the characteristic

measure σκ and for every (P, ◦)-correlated process {Xt} the integral

Yt =

∞∫

0

Xtsσκ(ds)(2.14)

(t > 0) exists in L2(P ) and stands for a (P, ∗κ)-correlated process.

Proof. The existence in L2(P ) of the right-hand side of (2.14) follows from the
fact that R(t, 0) is bounded and continuous. Next, by (1.3), we have

EYtYs =

∞∫

0

∞∫

0

EXtxXtyσκ(dx)σκ(dy)

=

∞∫

0

∞∫

0

[ ∞∫

0

R(u, 0)δtx ◦ δsy(du)
]
σκ(dx)σκ(dy).

Hence and by (1.2), (2.2) and by Fubini’s Theorem

EYtYs =

∞∫

0

∞∫

0

[ ∞∫

0

( ∞∫

0

Ω(uv)ν(dv)
)
δtx ◦ δsy(du)

]
σκ(dx)σκ(dy)

=

∞∫

0

[ ∞∫

0

∞∫

0

Ω(txv)Ω(syv)σκ(dx)σκ(dy)
]
ν(dv)

=

∞∫

0

e−(tκ+sκ)vκ

ν(dv)

=

∞∫

0

[ ∞∫

0

e−λκvκ

δt ∗κ δs(dλ)
]
ν(dv)

=

∞∫

0

[ ∞∫

0

e−λκvκ

ν(dv)
]
δt ∗κ δs(dλ)

which shows that {Yt} is a (P, ∗κ)-correlated. Thus, the proof is complete.

Let {Xt} be a (P, ◦)-correlated process. We say that {Xt} has a finite spectrum

if its o.s.m M in Theorem 2.3 (or, equivalently, the control measure ν(·) =
E |M(·)|2) is concentrated on a finite interval.

The following interpolation theorem stands for an analogue of the classical
Müntz theorem (compare Thu [3]).
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Theorem 2.5. Let {Xt} be a (P, ∗α)-correlated process with finite spectrum. Let

0 < t1 < t2 < · · · be numbers such that

∞∑

k=1

1

tk
=∞.(2.15)

Then r.v.’s X0,Xt1 ,Xt2 , ... are linearly dense in H.

Proof. By Example 1.1 we have Ω(t) = exp(−tα). Let A > 0. By Müntz theorem,
functions 1, exp(−xαtα1 ), exp(−xαtα1 ), ... are linearly dense in C([0, A]) which
together with (2.4) implies that r.v.’s X0,Xt1 ,Xt2 , ... are linearly dense in H.

3. Examples of (P, ◦)-correlated processes

Example 3.1. The simplest example of (P, ◦)-correlated processes is an addi-
tively correlated process ξt, t ∈ R+, being a continuous-parameter analogue of
additively correlated sequences (cf. Thu [3], Thu-Weron [4]).

Example 3.2. In [1] Lasser and Leitner presented a direct approach to modified
stationarity starting from the classical estimators for the mean M = EXn, n ∈ Z
of a weakly stationary process Xn, n ∈ Z given by

Yn =
1

2n + 1

n∑

k=−n

Xk, n > 0.

The process {Yn} is no longer weakly stationary. However, it is stationary with

respect to Jacobi polynomials P
(1/2,−1/2)
n .

Example 3.3. Let {Xt}, t ∈ R, be a complex-valued weakly stationary process
with the symmetric correlation function. Then the real part process Yt := Re Xt,

t ∈ R+ is a (P, ∗1,1)-correlated process. Indeed, because of Re Xt =
1

2
(Xt + Xt)

and for t, s > 0

RY (t, s) = EYtYs =
1

2
(RY (t + s, 0) + RY (|t− s|, ◦))

=

∞∫

0

RY (u, 0)δt ∗1,1 δs(du).
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