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ON CONVERGENCE OF MULTIPARAMETER
MULTIVALUED MARTINGALES

VU VIET YEN

Abstract. The aim of this note is to prove some convergence theorems in
Mosco’s sense for multiparameter multivalued martingales.

1. Introduction and Preliminaries

The study of multivalued functions (or multifunctions) has been developed
extensively with applications in several areas, such as mathematical economics,
optimal control and decision theory. On the other hand, the theory of real-
valued martingales indexed by R × R was initiated by Cairoli and Wash [1975].
Frangos and Sucheston [1985] introduced the concept of block martingales and
proved their convergence theorems. Our main aim is to combine the ideas of
these two approaches to prove some convergence theorems in Mosco’s sense for
multiparameter multivalued martingales.

Throughout this note we shall denote by (Ω,F ,P) a complete probability space,
X a separable Banach space with the dual X∗ and 2X is the set of all subsets of
X. Further, we denote by C (resp. by K) the family of non-empty closed convex
subsets of X (resp. the family of non-empty weakly compact convex subsets of
X).

For A ∈ 2X\ ∅, ∅ being the empty set, let clA and coA denote the closure and
the closed convex hull of A, respectively.

Define

|A| = sup{‖x‖ : x ∈ A},
d(x,A) := inf{‖x− y‖ : y ∈ A},

s(x∗, A) := sup{< x∗, x >: x ∈ A}.

Given a sub-σ-field A of F , a multifunction F is said to be measurable (resp.
A-measurable) if, for every open set U of X the set

F−(U) := {ω ∈ Ω : F (ω) ∩ U 6= ∅}
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is a member F (resp. A). A function f : Ω → X is called a selection of F if, for
any ω ∈ Ω, f(ω) ∈ F (ω). A Castaing representation of F is a sequence (fn)n∈N
of measurable selections of F such that

F (ω) = cl{fn(ω) : n ∈ N}, ∀ω ∈ Ω.

It is known (cf. Theorem III.9 [11]) that a multifunction F with nonempty
closed values in X is measurable if it has a Castaing representation or, equiv-
alently, for any x ∈ X, the real function d(X, F (.)) is measurable. Let L1(X)
denote the Banach space of X-valued measurable functions f such that

‖f‖1 = E(‖f‖) < ∞.

Here and in the sequel we identify the elements of L1 which are equal with
probability one. In particular, we write L1 instead of L1(R) and

L1(X,A) = {f ∈ L1(X) : f is A-measurable}.
For any measurable multifunction F , we put

S1(F,A) := {f ∈ L1(X,A) : f(ω) ∈ F (ω) a.s.}.
The multivalued Aumann integral of F is defined by

I(F ) := {Ef : f ∈ S1(F,A)}
(cf. Aumann [1]). Given a sub-σ-field A ⊂ F and an integrable F-measurable
multifunction F , Hiai and Umegaki [11] proved the existence of a unique A-
measurable integrable multifunction G such that

S1(G,A) = cl{E(f |A) : f ∈ S1(F,F)},
where the closure is taken with respect to the norm topology in L1(X,A). G is
called the (multivalued) conditional expectation of F relative to A and is denoted
by E(F |A). The ordering on T = Nd is defined as the natural one. Namely, for
s = (s1, s2, . . . , sd) and t = (t1, t2, . . . , tn), we put s ≤ t whenever si ≤ ti for each
i = 1, 2, . . . , d. Let At, t ∈ T , be a sequence in C. Define

s- lim inf At := {x ∈ X : lim
T

d(x, At) = 0},
w- lim supAt := {x ∈ X : w- lim

S
xs = x for xs ∈ As

and some cofinal subset S ⊂ T},
where w-lim means the convergence in the weak topology of X. We denote by
M -lim

T
At = A the convergence of At to A in the Mosco’s sense (cf. [14]), i.e.,

w-lim supAt = A = s-lim inf At.
Let (Ft, t ∈ T ) be an increasing net of complete sub-algebras of F and F∞ :=

σ(
⋃

t∈T

Ft).

A net F := (Ft)t∈T of measurable C-valued multifunctions is said to be adapted
to (Ft) if, for any t ∈ T, Ft is Ft-measurable.
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An adapted net (Ft,Ft)t∈T is said to be a (multivalued) martingale (submartin-
gale, supermartingale, resp.) if, for any t ≥ s

E(Ft|Fs) = Fs a.s. (E(Ft|Fs) ⊃ Fs, E(Ft|Fs) ⊂ Fs a.s, resp.).

Given i and j such that 1 ≤ i ≤ j ≤ d we put

F i→j
t := σ

( ∨

{s∈Nd:sk=tk,i≤k≤j}
Fs

)
.

In particular, if i = j, F i→i
t is denoted simply by F i

t . Futher, we denote the
conditional expectation E(.|F i→j

s ) by Ei→j
s (.) and E(.|Fs) by Es.

If k ∈ N, 1 ≤ k ≤ d, then we say that (Ft,Ft) is a multivalued block k-
martingale (k-submartingale, k-supermartingale, resp.) if

E1→k
s Ft = F(s1,... ,sk,tk+1,... ,td),

(
E1→k

s Ft ⊃ F(s1,... ,sk,tk+1,... ,td), E1→k
s Ft ⊂ F(s1,... ,sk,tk+1,... ,td), resp.

)

whenever s ≤ t. For single-valued block k-martingales, the reader is referred to
[7].

Now suppose that d = 2. A stochastic basis (Ft)t∈T is said to satisfy the
condition (F4) if F1

t is conditionally independent of F2
t given Ft.

Let f = (ft)t∈T be an adapted net of measurable functions from Ω into X. We
shall say that (ft) is a martingale selection of (Ft) (see [5], [9], [12]) if it satisties

a) (ft,Ft) is an integrable X-valued martingale,
b) ∀t ∈ T, ft ∈ S1(Ft,Ft).

The set of all martingale selections of the net (Ft) will be denoted by MS(Ft).

2. The main results

The following result shows the existence of martingale selections for two-
parameter multivalued martingale. We will use the same notation T for N2.

Theorem 2.1. Let (Ft,Ft)t∈T , be a martingale with values in C. Then
(i) MS(Ft) 6= ∅.
(ii) For any t ∈ T , Prs(MS(Ft)) is dense in S1(Fs,Fs), where Prs denotes

the projection defined by Prs(f) = fs, whenever f = (ft, t ∈ T ).
(iii) There exists a countable subset D of MS(Ft) such that, for any s ∈

T, Prs(D) is a Castaing representation of Fs.

For one-parameter multivalued martingale, this result was first obtained by
Van Custem for weakly compact valued martingales and later, by Luu [12] for
multivalued martingales with bounded values in an infinite dimentional Banach
space, and by Hess for martingales with values in C. Our method of the proof is
similar to that of Coste [6].
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Proof of Theorem 2.1. (i) For each (s, t) ∈ N2, s ≤ t, define the map αst :
S1(Ft,Ft) → S1(Fs,Fs) by

αst(f) = E(f |Fs), f ∈ S1(Ft,Ft).

It is easy to check that, the system {S1(Ft,Ft), αst} is a projective system of
non-empty complete subsets of L1(X).

On the other hand, for any s ≤ t

cl(αst(S1(Ft,Ft))) = cl{E(f |Fs), f ∈ S1(Ft,Ft)}
= S1(Fs,Fs).

Hence and by Mittag-Leffler’s Theorem (cf. [2], p.II.17) the projective limit of
the above projective system is non-empty. Futher, if f = (ft) is a member of the
projective limit, then for any (s, t) ∈ N2, s ≤ t

Prs((f)) = αst ◦ Prt((f)).

Hence fs = E(ft|Fs) and (ft) is a martingale selection of (Ft).
(ii) Follows from ([2], Proposition 8, p.I.64).
(iii) It follows from (ii) that Prs(MS(Ft)) is dense in S1(Fs,Fs). Moreover,

since for each s ∈ T , Fs has a Castaing representation in S1(Fs,Fs) there exists
a countable subset Ds ⊂ MS(Ft) and a negligible set Ns of such that for each
ω 6∈ ⋃

t∈T

Nt, the set {fs(ω) : (fs) ∈ Dt} is dense in Fs(ω). Thus, Ds is a Castaing

representation of Fs. Finally, putting

D =
⋃

t∈T

Dt

we obtain (iii), which completes the proof.

We shall need the following lemmas.

Lemma 2.1. Let (Ct) ⊂ K and C ∈ H. Suppose that the following two condi-
tions are satisfied:

(i) d(x,C) = lim
T

d(x,Ct), for any x ∈ X,

(ii) s(x∗, C) = lim
T

s(x∗, Ct) for every x∗ ∈ X∗.

Then M - lim
T

Ct−→C.

Proof. The proof is carried out in two steps:
(a) We first prove that w-lim supCt ⊂ C. Suppose that x ∈ X\C. Then, by

the Separation Theorem (cf. [4]), there exists a x∗ ∈ X∗ such that

(x∗, x) > s(x∗, C).

Therefore there exists t0 ∈ T and ε > 0 such that, for any t ∈ T and t ≥ t0,

(x∗, x) > s(x∗, Ct) + ε,

which shows that x 6∈ w − lim supCt.
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(b) Let x ∈ C. Then d(x,C) = 0. It follows from (i) that

lim d(x,Ct) = 0.

Then there exists a net (xt)t∈T such that for any t, xt ∈ Ct which implies that
d(x, xt) → 0. Thus x ∈ s− lim inf Ct and the lemma is proved.

The proof of the following lemma is given in [16].

Lemma 2.2. If F is an integrable measurable multifunction, then for any x ∈ X
and G ⊂ F we have

(i) |E(F |G)| ≤ E(|F ||G) a.s.
(ii) d(x,E(F |G) ≤ E[d(x, F )|G] a.s.
(iii) s(x∗,E(F |G)) = E[s(x∗, F )|G] a.s., x∗ ∈ X∗.

Corollary 2.1. If (Ft,Ft)t∈Nd is a multivalued block martingale, then
(i) for any x ∈ X, (d(x, Ft),Ft)t∈T is a block sub-martingale,
(ii) for any x∗ ∈ X, the process (s(x∗, Ft),Ft)t∈T is a block martingale.

Further, let us denote by C∗ a coutable dense (in the Mackey topology) subset
of the closed unit ball B∗ of X∗ and by D∗ the set of all rational linear combi-
nations of members of C∗. It is clear that D∗ is countable dense subset of X∗ in
the Mackey topology. Moreover, by a simple reasoning we have:

Lemma 2.3. Let (Ct)t∈T be a net in K such that the following conditions are
satisfied:

(i) There exists K ∈ K such that Ct ⊂ K, ∀t ∈ T .
(ii) For each x∗ ∈ D∗ there exists the limit lim

T
s(x∗, Ct).

Then there exists C ∈ K such that for any x∗ ∈ X∗

s(x∗, C) = lim
T

s(x∗, Ct).

Now, we are in a position to prove the following theorem.

Theorem 2.2. If (Ft,Ft)t∈Nd is a multivalued block martingale which is L logd−1 L-
bounded, i.e.,

sup
t
E(|Ft| logd−1 |Ft|) < ∞.(1)

Then
(i) for any x∗ ∈ X∗, the block martingale

(
s(x∗, Ft)

)
is convergent a.s. as

t →∞.
(ii) if for any t ∈ T , Ft ∈ K and there exists G ∈ K such that for each t ∈ T ,

Ft ⊂ G, then there exists F ∈ K and a negligible subset N of Ω such that

s(x∗, F (ω)) = lim
t

s(x∗, Ft(ω)) ∀ω 6∈ N, ∀x∗ ∈ X∗.
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Proof. (i) It follows from Corollary 2.1 that (s(x∗, Ft))t∈T is a real-valued block
martingale. Futhermore, for any x∗ ∈ X∗, the process (s(x∗, Ft))t∈T is bounded
in L logd−1 L. By Theorem 9.4.4 [7], the block-martingale (s(x∗, Ft))t∈T converges
a.s. as t → ∞. Since D∗ is countable it is possible to find a negligible subset N
such that lim

T
s(x∗, Ft(ω)) exists for any x∗ ∈ D∗ and ω ∈ Ω\N .

(ii) By Lemma 2.3, there exists a measurable multifunction F such that

s(x∗, F (ω)) = lim
T

s(x∗, Ft(ω)), ∀ω ∈ Ω\N, ∀x∗ ∈ X∗

which completes the proof.

We know that if (Ft)t∈T , T = N2, is a stochastic basis satisfying the condition
(F4) then every uniformly integrable martingale is a block martingale. Thus we
have the following

Theorem 2.3. Suppose that X has the Radon-Nikodym property (RNP), X∗ is
separable and (Ft)t∈T is a stochastic basis satisfying the condition (F4). Assume,
furthermore, that ((Ft,Ft))t∈I is a K-valued martingale such that

sup
t
E(|Ft| log |Ft|) < ∞

and Ft(ω) ⊂ K(ω), ω ∈ Ω, t ∈ T for some K-valued multifunction K. Then
there exists a measurable multifunction F such that

M - lim
T

Ft = F a.s.

Proof. Define

D := {f ∈ L1(Ω,F ,P, X) : ∃(ft,Ft) ∈ MS(Ft), lim
T

ft = f a.s.}

We shall show that D is a non-empty bounded convex and F∞-decomposable
subset.

By Theorem 2.1, there exists a martingale selection (ft,Ft)t∈T of (Ft,Ft)t∈T .
Since

sup
t
E(‖ft‖ log ‖ft‖) ≤ sup

t
E(|Ft| log |Ft|) ≤ ∞,

X has RPN and (Ft) satisfies the condition (F4) we infer, by virtue of Theorem
9.4.4 in [7], that the martingale (ft) converges a.s to f ∈ L1(X). Thus D is
non-empty.

It is clear that D is convex. It remains to prove that D is F∞-decomposable.
By Lemma 2.4 [5], it suffices to show that for any A ∈ ⋃

T

Ft, and f, g ∈ D, we

have f1A + g1A ∈ D, where A = Ω\A.
Let (ft,Ft)t∈T and (gt,Ft)t∈T be martingale selections of (Ft) such that

f = lim
T

ft, and g = lim
T

gt a.s.
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Since A ∈ ⋃
T

Ft there exists t0 ∈ T such that A ∈ Ft0 . For t ≥ t0, we put

ht = ft1A + gt1A.

For t0 6≤ t, choose t1 ∈ T such that t ∨ t0 ≤ t1 and put

ht = E(ht1 |Ft).

Then (ht)t∈T is the martingale selection of (Ft)t∈T and, by Theorem 9.4.4 [7],
there exists h such that

h = lim
T

ht (a.s.)

and f1A + g1A = h ∈ D. In the other words, D is F∞-decomposable. Since clD
is non-empty closed and decomposable there exists a measurable multifunction
F such that

D = S1
F (F)

and F (ω) ∈ K a.s. (cf. Theorem 3.1 [10]).
Our further aim is to prove that M - limFt = F .
(a) We first show that F ⊂ s- lim inf

t
Ft. Note that for every f ∈ clD there

exists a sequence (fn) ⊂ D such that fn L1−→ f . Passing to a subsequence if
neccesary, one may assume that fn → f (a.s). Moreover, for each n = 1, 2, . . .
one can find a martingale selection (fn

t )t∈T ∈ MS(Ft) such that fn = lim
T

fn
t a.s.

From this equality and the following trivial inequality

d(fn(ω), Ft(ω)) ≤ d(fn(ω), fn
t (ω)) (a.s)

it follows that

lim
t

d(fn(ω), Ft(ω)) = 0 (a.s).

Letting t →∞ and n →∞ in the inequality

d(f(ω), Ft(ω)) ≤ d(f(ω), fn(ω)) + d(fn(ω), Ft(ω))

we have
lim

t
d(f(ω), Ft(ω)) = 0 a.s.

Thus f ∈ s- lim inf
t

Ft a.s. which means that F ⊂ s- lim inf
t

Ft a.s.

(b) Next, by Theorem 2.2 there exists N ∈ F such that P(N) = 0 and a
measurable multifunction H such that

s(x∗,H(ω)) = lim
t

s(x∗, Ft(ω))

for every ω ∈ Ω\N and any x∗ ∈ X.
According to the proof of Lemma 2.3 we have w-lim sup

t
Ft ⊂ H (a.s.) which

together with Theorem 2.8 [5] gives

M - lim
n→∞F(n,n) = H = F a.s.
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Thus w-lim sup
t

Ft ⊂ F a.s. The proof is complete
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