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ON SOME BADLY-SOLVED PROBLEMS WITH INVEXITY

HOANG XUAN PHU

Abstract. Using invexity, D. V. Luu and N. X. Ha investigated in [4], [5],
and [8] the problem

minimize f(x) = inf
α∈A

fα(x),

subject to g(x) = inf
β∈B

gβ(x) ≤ 0, x ∈ C.

We show that their results concerned with this problem are wrong or too
weak or redundant, while a lot of too strong and unnecessary assumptions are
used. For correction, a necessary condition and a sufficient condition for local
minima are given in this paper. Some comments and sufficient conditions for
local minima of the other problems considered in [5] and [8] are also presented.

1. Introduction

In 1981, Hanson [7] introduced a class of differentiable functions φ : C ⊂ X →
R satisfying

φ(x)− φ(x′) ≥ 〈∇φ(x′), η(x, x′)〉 for all x, x′ ∈ C,(1)

for some arbitrarily given function η : C × C → X, which were called invex by
Craven [2], and proved that if all functions of a constrained minimization problem
are invex with respect to a common function η, then the Kuhn-Tucker conditions
become also sufficient for a (global) minimum.

To extend Hanson’s result to Lipschitz functions, Reiland [12] used the Clarke
[1] generalized directional derivative defined by

φ◦(x; v) = lim sup
y→x, t↓0

(y + tv)− φ(y)
t

to replace 〈∇φ(x′), η(x, x′)〉 by φ◦(x′; η(x, x′)). Note that in the original definition
of Hanson and Reiland X is equal to Rn. But in this paper, X is a Banach space
if not specified otherwise.

While Hanson and Reiland required the property (1) or its modification to
hold everywhere in C to state a sufficient condition for global minima, it suffices
to demand it locally if only local minima are considered. Concretely, a locally
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Lipschitz function φ : X → R is said to be invex on U at x with respect to
η : U × U → X if

φ(x)− φ(x) ≥ φ◦(x; η(x, x)) for all x ∈ U(2)

where U is a subset of X containing x.
If φ is directionally differentiable at x in all directions, i.e., the one-sided di-

rectional derivative

φ′(x; v) = lim
t↓0

φ(x + tv)− φ(x)
t

exists for all v ∈ X, then φ is called weakly invex on U at x with respect to η if

φ(x)− φ(x) ≥ φ′(x; η(x, x)) for all x ∈ U.(3)

From definitions it follows that φ′(x; v) ≤ φ◦(x; v). If φ is directionally dif-
ferentiable at x in all directions and φ′(x; v) = φ◦(x; v) for all v ∈ X, then φ is
named regular at x ([1], p. 39). Obviously, if φ is both weakly invex and regular
at x, then it is invex there.

What can weak invexity alone bring ? To assert something concerned with
optimization, one has to demand the considered function to be both weakly invex
and regular at some interested point x. But weak invexity along with regularity
is not weaker but even stronger than invexity then.

Using the notions mentioned above, Luu and Ha investigated in [4], [5], and
[8] the problem

(P1)





minimize f(x) = inf
α∈A

fα(x),

subject to g(x) = inf
β∈B

gβ(x) ≤ 0, x ∈ C.

where A and B are metrizable compact topological spaces, fα (α ∈ A) and gβ (β ∈
B) are real-valued functions defined on a Banach space X, and C ⊂ X. But their
main results, which include the weak invexity of the infimum function inf

α∈A
fα,

a condition for the Lagrange multiplier λ to be positive, and some sufficient
conditions for local minima of this problem, are wrong, as explained in Section 2.

In Section 3, we show that (P1) is actually a simple problem, whose serious
motive is still missing, and that other possibly true results concerned with neces-
sary conditions are too weak, while a lot of strong and unnecessary assumptions
are used. For correction, a necessary condition and a sufficient condition for local
minima of (P1) are presented.

To complete our discussion, some comments on other problems investigated in
[5] and [8] are given in Section 4.

Our investigation shows that some auxiliary results in [5] and [8], such as the
weak invexity, the generalized gradient, and the directional derivative of min

1≤i≤m
fi

or of inf
α∈A

fα, are redundant and only misleading (to weak or wrong assertions).
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2. Some essential errors

Throughout this paper, corresponding to Problem (P1), we denote

M = {x ∈ C : g(x) ≤ 0},
A0(x) = {α ∈ A : fα(x) = f(x)},
B0(x) = {β ∈ B : gβ(x) = g(x)}.

For a nonempty subset C of a Banach space X,

dC(x) = inf{‖x− c‖ : c ∈ C},
TC(x) = {v ∈ X : d◦C(x; v) = 0},
NC(x) = {ξ ∈ X∗ : 〈ξ, v〉 ≤ 0 for all v ∈ TC(x)}

are the distance function, the tangent cone, and the normal cone to C at x ∈ X,
respectively. If φ : X → R is Lipschitz near x, then

∂φ(x) = {ξ ∈ X∗ : φ◦(x; v) ≥ 〈ξ, v〉 for all v ∈ X}
is its generalized gradient of f at x (see [1]).

In [8], Luu and Ha considered a special case of (P1), where A = {1, 2, ..., l} and
B = {1, 2, ..., m}, i.e.,

(P1a)





minimize f(x) = min
1≤i≤l

fi(x),

subject to g(x) = min
1≤j≤m

gj(x) ≤ 0, x ∈ C.

The next two theorems belong to the main results of [8].

Theorem 4 [8]. Let x̄ be a feasible point of Problem (P1a). Let the functions
f1, . . . , fl, g1, . . . , gm be locally Lipschitz and regular at x̄. Let the functions f and
g be regular at x̄. Assume that there are a neighborhood V of x̄ and a function
η : M×M → TC(x̄) such that the functions f1, . . . , fl, g1, . . . , gm are weakly invex
at x̄ on M ∩ V with respect to the function η. Suppose, furthermore, that there
exist numbers

λi ≥ 0, i ∈ A0(x̄),
∑

i∈A0(x̄)

λi = 1,

(4)
µj ≥ 0, j ∈ B0(x̄),

∑

j∈B0(x̄)

µj = 1, µ ≥ 0,

such that

0 ∈
∑

i∈A0(x̄)

λi∂fi(x̄) + µ
∑

j∈B0(x̄)

µj∂gj(x̄) + NC(x̄),

(5)
µ min

1≤j≤m
gj(x̄) = 0.

Then x̄ is a local minimum of (P1a).
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Theorem 5 [8]. Let x̄ be a feasible point of Problem (P1a) and C be a closed
convex subset of X. Let the functions f1, . . . , fl, g1, . . . , gm be convex and locally
Lipschitz at x̄, and the functions f and g are regular at x̄. Assume that there are
numbers λi, µj, and µ satisfying (4) such that (5) is fulfilled. Then x̄ is a local
minimum of (P1a).

Counter-example 1. Let X = C = R, A = {1}, B = {1, 2}, f1(x) = x,
g1(x) = 0, and

g2(x) =

{
−x if x < 0

0 if x ≥ 0.

Obviously, f = f1, g = g1, and g2 are convex, and therefore, invex with respect to
η(x, x′) = x− x′. Moreover, f = f1, g = g1, and g2 are regular everywhere. For
x̄ = 0 we have g1(x̄) = g2(x̄) = 0, ∂f1(x̄) = {1}, ∂g1(x̄) = {0}, ∂g2(x̄) = [−1, 0],
and NC(x̄) = {0}, which implies for λ1 = µ = µ2 = 1 and µ1 = 0 that

0 ∈ [0, 1] = λ1∂f1(x̄) + µ
(
µ1∂g1(x̄) + µ2∂g2(x̄)

)
+ NC(x̄).

Since all assumptions of Theorems 4 and 5 from [8] are fulfilled, each of them
yields that x̄ is a local minimum of (P1a). But, in fact, no point of the feasible
set

{x ∈ C : g(x) = min{g1(x), g2(x)} ≤ 0} = R

can be a local minimum of f(x) = f1(x) = x.

Counter-example 2. Let X = C = R, A = {1, 2}, B = {1}, f1(x) = x,
g1(x) = 0, and

f2(x) =

{
0 if x < 0
x if x ≥ 0.

Obviously, f = f1, f2, and g = g1 are convex, and therefore, invex with respect
to η(x, x′) = x − x′. Moreover, f = f1, f2, and g = g1 are regular everywhere.
For x̄ = 0 we have f1(x̄) = f2(x̄) = g1(x̄) = 0, ∂f1(x̄) = {1}, ∂f2(x̄) = [0, 1],
∂g1(x̄) = {0}, and NC(x̄) = {0}, which implies for λ2 = µ = µ1 = 1 and λ1 = 0
that

0 ∈ [0, 1] = λ1∂f1(x̄) + λ2∂f2(x̄) + µµ1∂g1(x̄) + NC(x̄).

Since all the assumptions of Theorems 4 and 5 from [8] are fulfilled, each of them
yields that x̄ is a local minimum of (P1a). But, in fact, no point of the feasible
set

{x ∈ C : g(x) = g1(x) ≤ 0} = R

can be a local minimum of f(x) = min{f1(x), f2(x)} = x.
The above examples show that both Theorems 4 and 5 from [8] are already

false if |A| > 1 or |B| > 1, i.e., if A or B contains more than one element.
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In [4] and [5], another case of (P1) is considered, where A and B are not
necessarily finite and C = X = Rn, i.e.,

(P1b)





minimize f(x) = inf
α∈A

fα(x),

subject to g(x) = inf
β∈B

gβ(x) ≤ 0.

In this context, the following assertions on the weak invexity or the invexity of
infimum function are stated.

Theorem 5.3 [5]. Assume that for all x ∈ V ⊂ Rn, x 6= x̄, the function β 7→
gβ(x) is lower semicontinuous, the function β 7→ gβ(x̄) is continuous, and the set-
valued mapping (β, x) 7→ −∂gβ(x) is upper semicontinuous at (β̄, x̄), ∀β̄ ∈ B0(x̄).
Suppose, furthermore, that for all β̄ ∈ B0(x̄), −gβ̄ is regular at x̄, and gβ̄ is weakly
invex on U at x̄ with respect to the same function η. Then there exists a number
δ > 0 such that the function g = infβ∈B gβ is weakly invex on B(x̄; δ) ∩ V at x̄
with respect to η.

Corollary 5.1 [5]. Assume that all hypotheses of Theorem 5.3 [5] are satisfied.
Suppose, furthermore, that the function g = inf

β∈B
gβ is regular at x̄. Then there

exists a number δ > 0 such that g is invex on B(x̄; δ)∩V at x̄ with respect to η.

Counter-example 3. Consider B = [−1, 1] ⊂ R and

gβ(x) =
1
2
β2 − βx (β ∈ B, x ∈ R).

Since gβ(x) ≥ gx(x) = −1
2
x2 for all β ∈ B and for any fixed x ∈ R, it holds

g(x) =





x +
1
2

if x < −1

−1
2
x2 if − 1 ≤ x ≤ 1

−x +
1
2

if x > 1.

(6)

Moreover, we have:

– B is compact.
– For every x ∈ R, the mapping β 7→ gβ(x) is continuous.
– ∂gβ(x) = {−β}. Hence, the mapping (β, x) 7→ −∂gβ(x) is continuous every-

where.
– For all β ∈ R, −gβ and g are regular at any x ∈ R.
– For all β ∈ R, gβ is affine and therefore weakly invex (even invex) with

respect to η(x, x′) = x− x′.

Thus all the assumptions of Theorem 5.3 and Corollary 5.1 from [5] are fulfilled.
According to these statements, there exists δ > 0 such that g is weakly invex or
even invex on the open ball B(x̄, δ) at x̄ = 0 with respect to η(x, x′) = x − x′.
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But, obviously, the function g given in (6) is neither invex nor weakly invex at
x̄ = 0, with respect to any η, because

g◦(0; η(x, 0)) = g′(0; η(x, 0)) = 0 > g(x)− g(0) for x 6= 0.

We have seen that the conclusions of Theorem 5.3 and Corollary 5.1 from [5] are
false.

Next, we show that the second part of the following theorem, which states a
sufficient condition for the Lagrange multiplier λ corresponding to the objective
function f to be positive, is false.

Theorem 1 [4]. Assume that x̄ is a local minimum of (P1b), the mappings fα

(α ∈ A) and gβ (β ∈ B) are Lipschitz on some open set U containing x̄ with
Lipschitz constants KA and KB, respectively. Suppose that

(a) the mappings α 7→ fα(x̄) and β 7→ gβ(x̄) are continuous, and
(b) for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄), the set-valued mappings (α, x) 7→ −∂fα(x)

and (β, x) 7→ −∂gβ(x) are upper semicontinuous at (ᾱ, x̄).

Then there exist λ ≥ 0, µ ≥ 0, not both zero, and

αi ∈ A0(x̄), λαi ≥ 0, i = 1, . . . , l,
l∑

i=1

λαi = 1,

(7)

βj ∈ B0(x̄), µβj ≥ 0, j = 1, ...,m,
m∑

j=1

µβj = 1,

such that

0 ∈ λ
l∑

i=1

λαi∂fαi(x̄) + µ
m∑

j=1

µβj∂gβj (x̄),

(8)
µ inf

β∈B0(x̄)
gβ(x̄) = 0.

If, in addition, the following conditions are satisfied:

(c) There exists x̂ ∈ U such that g(x̂) = inf
β∈B

gβ(x̂) < 0;

(d) For every β ∈ B0(x̄), −gβ and g are regular at x̄, and gβ is weakly invex on
U at x̄ with respect to η;

then λ > 0, thus one can set λ = 1.

Note that the statement “then λ > 0” in the above theorem and in other La-
grange multiplier rules means that λ must be positive. To prove it, one shows that
all multipliers are equal to zero when λ = 0, which conflicts with the condition
“not all zero”. Therefore, to deny the second part of Theorem 1 [4], it suffices
to give an example where (8) is fulfilled for λ = 0 and µ = 1. In this case, fα,
α ∈ A, may be chosen almost arbitrarily because they actually disappear then.
That is why we only announce gβ, β ∈ B, in the next example.
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Counter-example 4. Let X = R, B = {1, 2}, g1(x) = 0, and g2(x) = 1− x. It
holds

g(x) = min{g1(x), g2(x)} =

{
0 if x ≤ 1
1− x if x > 1.

For x̄ = 0 and U = (−2, 2), all assumptions with respect to gβ in (a)–(d) of the
above theorem are satisfied, but (7) and (8) are fulfilled for λ = 0 and µ = µ1 = 1.
Thus, the second part of Theorem 1 [4], which asserts that λ must be positive, is
false.

Theorem 3 [8] states a Lagrange multiplier rule to Problem (P1a), which is
similar to the first part of Theorem 1 [4]. Fortunately, no sufficient condition
for λ > 0 is given there. In Counter-example 4, B is finite, and therefore, it is
suitable to Problem (P1a). This counter-example shows that the claim λ > 0
cannot be ensured by conditions similar to (c)–(d) in Theorem 1 [4].

In Counter-example 4, x̄ = 0 ∈ intM = {x ∈ R : g(x) ≤ 0} = R. Therefore,
if some f has a local minimum at x̄ then 0 ∈ ∂f(x̄). Thus, λ > 0 is possible,
although it is not necessary. Let us come to an example where all assumptions
of Theorem 1 [4] are satisfied but λ must be zero.

Counter-example 5. Let X = R, A = {1}, B = [0, 1] ⊂ R, f1(x) = x, and

gβ(x) = x2 − 3βx + β2 (β ∈ B, x ∈ R).

Then it holds

g(x) = inf
β∈B

gβ(x) =





x2 if x < 0

−5
4
x2 if 0 ≤ x ≤ 2

3

x2 − 3x + 1 if x >
2
3

and

M = {x ∈ R : g(x) ≤ 0} =
[
0, (3 +

√
5)/2

]
.

Obviously, x̄ = 0 is the unique local minimum of f = f1 on M , and A0(x̄) = {1}
and B0(x̄) = {0}. Moreover, we have:

– A and B are compact.
– The mappings f1 and gβ, β ∈ B, are Lipschitz on U = (−1, 1).
– The mapping β 7→ gβ(x̄) is continuous.
– ∂f1(x) = {1} and ∂gβ(x) = {2x − 3β}. Hence, the mappings (1, x) 7→
−∂f1(x) and (β, x) 7→ −∂gβ(x) are continuous everywhere.

– For x̂ = 2/3 ∈ U , g(x̂) = −5/9 < 0.
– For β ∈ B0(x̄) = {0}, −gβ and g are regular at x̄, and gβ is convex, and

therefore, weakly invex on U at x̄ with respect to η(x, x′) = x− x′.
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Thus all the assumptions of Theorem 1 [4] including (a)–(d) are fulfilled. There-
fore, it ensures that (8) must be fulfilled for λ > 0. But (7) and (8) yield

0 ∈ λ∂f1(0) + µ∂g0(0) = λ{1}+ µ{0}.
Consequently, λ must be zero. This contradiction shows once again that the
second part of Theorem 1 [4] is totally wrong.

The last essential error we intend to mention here is the following sufficient
condition for optimality.

Theorem 2 [4]. Assume that x̄ is a feasible point of (P1b), and the mappings
fα (α ∈ A) and gβ (β ∈ B) are Lipschitz on some open set U containing x̄ with
Lipschitz constants KA and KB, respectively. Suppose, furthermore, that:

(a) The mappings α 7→ fα(x̄) and β 7→ gβ(x̄) are continuous, the set-valued
mapping (α, x) 7→ −∂fα(x) is upper semicontinuous at (ᾱ, x̄) (∀ᾱ ∈ A0(x̄)),
and the set-valued mapping (β, x) 7→ −∂gβ(x) is upper semicontinuous at
(β̄, x̄) (∀β̄ ∈ B0(x̄)).

(b) −fᾱ (∀ᾱ ∈ A0(x̄)), −gβ̄ (∀β̄ ∈ B0(x̄)), f and g are regular at x̄. fᾱ (∀ᾱ ∈
A0(x̄)) and gβ̄ (∀β̄ ∈ B0(x̄)) are weakly invex on U at x̄ with respect to the
same η.

(c) There exist µ ≥ 0, αi, λαi, βj, and µβj satisfying (7) such that (8) is fulfilled
for λ = 1.

Then x̄ is a local minimum of (P1b).

Counter-example 6. Let X = R, A = [−1, 1], B = {1}, and

fα(x) =
1
2
α2 − αx (α ∈ A, x ∈ R),

g1(x) = −1 (x ∈ R).

We have

f(x) = inf
α∈A

fα(x) =





x +
1
2

if x < −1

−1
2
x2 if − 1 ≤ x ≤ 1

−x +
1
2

if x > 1,

g(x) = g1(x) = −1, M = {x ∈ R : g(x) ≤ 0} = R, A0(0) = {0}, B0(0) = ∅,
and ∂f0(0) = {0}. For x̄ = 0, λ = λ0 = µ1 = 1, and µ = 0, (7) and (8) are
satisfied. Moreover, it is easy to verify that all the assumptions of Theorem 2 [4]
are fulfilled. Therefore, this theorem implies that x̄ = 0 is a local minimum of
(P1b), which is obviously not true. Hence, Theorem 2 [4] is false.

3. To solve a simple problem

After analyzing several errors in the previous section, one may think that (P1)
is a hard problem. Is that the reason why other authors do not investigate
this problem? Not at all. A serious motive for research is missing in [4], [5],
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and [8]. Are there some practical examples for it? If we accept this problem
unconditionally then, from the computational point of view, it is possibly easier
and more effective to use the relation

inf
x∈D

(
inf
α∈A

fα(x)
)

= inf
α∈A

(
inf
x∈D

fα(x)
)

to decompose the problem into several small ones with objective functions inf
x∈D

fα(x),

α ∈ A, which can be solved parallel or separately before combining the results.
And from the theoretical point of view? It is just a poor research object, as
explained in the forthcoming.

Assume that x̄ ∈ M is a local minimum of (P1), i.e., there exists a neighborhood
V ⊂ X of x̄ such that

f(x̄) ≤ f(x) for all x ∈ M ∩ V.(9)

Since f(x) = infα∈A fα(x) and

M ⊃
⋃

β∈B

{x ∈ C : gβ(x) ≤ 0} ⊃
⋃

β̄∈B0(x̄)

{x ∈ C : gβ̄(x) ≤ 0},

(9) implies

fᾱ(x̄) ≤ fᾱ(x) in {x ∈ C : gβ̄(x) ≤ 0} ∩ V,

i.e., x̄ is a local minimum of

(P̄ᾱ,β̄)

{
minimize fᾱ(x),
subject to gβ̄(x) ≤ 0, x ∈ C,

for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄). Applying a well known Lagrange multiplier rule
([1], p. 228) we obtain immediately a necessary condition for (P̄ᾱ,β̄) with locally
Lipschitz functions fᾱ and gβ̄: There exist λ̄ᾱ ≥ 0 and µ̄β̄ ≥ 0, not both zero,
such that

0 ∈ λ̄ᾱ∂fᾱ(x̄) + µ̄β̄∂gβ̄(x̄) + NC(x̄),
(10)

µ̄β̄gβ̄(x̄) = 0.

Thus, just take arbitrary ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄) and set λ = λ̄ᾱ, µ = µ̄β̄,
λᾱ = µβ̄ = 1, and all other multipliers λα (α 6= ᾱ) and µβ (β 6= β̄) to be zero, then
we have at once the necessary conditions stated in Theorem 1 [4] and Theorem
3 [8]. The essential differences are:

– We only need the locally Lipschitz continuity of corresponding functions,
and all other assumptions such as (a) and (b) in Theorem 1 [4] can be
dropped.

– In our proof, no formula for the generalized gradients of f(x) = infα∈A fα(x)
and g(x) = infβ∈B gβ(x) is needed, which is an essential and expensive tool
in [4], [5], and [8].
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Moreover, our result is so simple that it has almost no theoretical value and is
not worth being published extra, but it is still much more stronger than the ones
in [4], [5], and [8]. To explain that, let us formulate the result as follows.

Proposition 1. Assume that x̄ is a local minimum of (P1) and A0(x̄) and B0(x̄)
are nonempty. Then, for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄), x̄ is a local minimum
of (P̄ᾱ,β̄). In particular, if fᾱ and gβ̄ are locally Lipschitz at x̄, then there exist
λ̄ᾱ ≥ 0 and µ̄β̄ ≥ 0, not both zero, such that (10) is satisfied, where λ̄ᾱ > 0 (so
one can set λ̄ᾱ = 1) if

gβ̄(x̄) < 0 or − ∂gβ̄(x̄) ∩NC(x̄) = ∅.(11)

The first part is shown above, and the second part saying when λ̄ᾱ > 0 is
absolutely obvious. Two additional remarks should be mentioned here.

– In fact, Proposition 1 actually contains |A0(x̄)|×|B0(x̄)| independent neces-
sary conditions in form (10), where |A0(x̄)| and |B0(x̄)| denote the cardinal
numbers of A0(x̄) and B0(x̄), respectively, while corresponding theorems
in [4], [5], and [8] state only one (possibly combined) necessary condition,
which is, of course, not enough for investigating (P1).

– While there is no correct sufficient condition in Theorem 3 [8] and Theorem
1 [4] for λ > 0, it is actually very easy to have it by assuming that (11)
holds for at least one β̄ ∈ B0(x̄) and then taking this β̄ to state (10) with
λ̄β̄ = 1. Condition (11) is clear and simple enough, and it is irrational to
replace it by another one. We have shown in Section 2 that weak invexity
along with regularity and some Slater condition is not suitable to ensure
λ > 0 in (8) and in Theorem 3 [8]. To guarantee λ̄ᾱ > 0 in (10), one could
assume the invexity of gβ̄ at x̄, which is weaker than the weak invexity along
with the regularity of gβ̄ at x̄, and some Slater condition like gβ̄(x̂) < 0 for
some suitable x̂. But this is an unacceptable roundabout way and invexity
is not a suitable tool for this purpose, as shown by our critique in [10] to
the incorrect paper [6].

We have seen that it is really simple to have necessary conditions for local
minima of Problem (P1). In comparison, the necessary conditions for (P1) in [4]
and [8] are rather weak, while many complicated assumptions and tools had been
used there.

Let us explain why the sufficient conditions for local minima of (P1) in [4] and
[8] are wrong. It is a basic knowledge that sufficient conditions must contain
all necessary ones. Knowing only one of them, the authors of [4] and [8] tried
to use it to state sufficient conditions, which cannot lead to a correct result, of
course. For instance, consider Counter-example 1 once again, where X = C = R,
A = {1}, B = {1, 2}, f1(x) = x, g1(x) = 0, and

g2(x) =

{
−x if x < 0

0 if x ≥ 0.
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For x̄ = 0 we have A0(x̄) = {1} and B0(x̄) = {1, 2}. Therefore, due to Proposition
1, there are two necessary conditions which must be satisfied at x̄. While the
condition

0 ∈ λ̄1∂f1(x̄) + µ̄2∂g2(x̄) + NC(x̄)

concerned with Problem (P̄1,2) is fulfilled for λ̄1 = 1, the other one

0 ∈ λ̄1∂f1(x̄) + µ̄1∂g1(x̄) + NC(x̄)

concerned with Problem (P̄1,1) is true only for λ̄1 = 0 because ∂f1(x̄) = {1},
∂g1(x̄) = {0}, and NC(x̄) = {0}. Since Theorems 4 and 5 [8] require only one
of them to be fulfilled for λ̄1 = 1 and ignore the other one, x̄ = 0 becomes a
successful candidate although it is no local minimum.

To repair the mentioned errors, we now state a sufficient condition for local
minima of (P1).

Proposition 2. Assume that A and B are finite (i.e., their cardinal numbers are
finite), all functions fα, α ∈ A, and gβ, β ∈ B, are continuous, and x̄ is a feasible
point of (P1). If, for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄), x̄ is a local minimum of
(P̄ᾱ,β̄), then it is a local minimum of (P1). In particular, x̄ is a local minimum
of (P1) if the following conditions are satisfied for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄):

(a) fᾱ and gβ̄ are locally Lipschitz at x̄.
(b) There exists µ̄β̄ ≥ 0 such that (10) is fulfilled for λ̄ᾱ = 1.
(c) There exists a neighborhood Vᾱ,β̄ of x̄ such that fᾱ and µ̄β̄gβ̄ are invex on

M ∩ Vᾱ,β̄ at x̄ with respect to the same function ηᾱ,β̄ : M ×M → TC(x̄).

Proof. Assume that, for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄), x̄ is a local minimum of
(P̄ᾱ,β̄), i.e., there exists a neighborhood Vᾱ,β̄ of x̄ such that

fᾱ(x̄) ≤ fᾱ(x) in {x ∈ C : gβ̄(x) ≤ 0} ∩ Vᾱ,β̄.(12)

Since A and B are finite and all functions fα, α ∈ A, and gβ, β ∈ B, are
continuous, there exists a neighborhood V of x̄ such that

V ⊂ Vᾱ,β̄ for all ᾱ ∈ A0(x̄), β̄ ∈ B0(x̄),

fᾱ(x) < fα(x) for all ᾱ ∈ A0(x̄), α ∈ A \A0(x̄), x ∈ C ∩ V,(13)

gβ̄(x) < gβ(x) for all β̄ ∈ B0(x̄), β ∈ B \B0(x̄), x ∈ C ∩ V,

which yields

M ∩ V =
⋃

β∈B

{x ∈ C : gβ(x) ≤ 0} ∩ V =
⋃

β̄∈B0(x̄)

{x ∈ C : gβ̄(x) ≤ 0} ∩ V,

(14)
f(x) = inf

α∈A
fα(x) = min

ᾱ∈A0(x̄)
fᾱ(x) for all x ∈ M ∩ V.

It follows from (12)–(14) that

fᾱ(x̄) ≤ fᾱ(x) in
⋃

β̄∈B0(x̄)

{x ∈ C : gβ̄(x) ≤ 0} ∩ V = M ∩ V,



100 HOANG XUAN PHU

and, finally,

f(x̄) ≤ min
ᾱ∈A0(x̄)

fᾱ(x) = f(x) for all x ∈ M ∩ V,

i.e., x̄ is a local minimum of (P1).
Assume that (a) and (b) and (c) are satisfied for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄).

Due to (b), we have

ξ + µ̄β̄ϑ + ν = 0 for some ξ ∈ ∂fᾱ(x̄), ϑ ∈ ∂gβ̄(x̄), ν ∈ NC(x̄),

which yields by applying

φ◦(x; d) = max{〈χ, d〉 : χ ∈ ∂φ(x)},
〈ν, d〉 ≤ 0 for ν ∈ NC(x̄), d ∈ TC(x̄)

and by µ̄β̄ ≥ 0 that

f◦ᾱ(x̄; d) + µ̄β̄g◦̄β(x̄; d) ≥ 0 for all d ∈ TC(x).

Consequently, it follows from (c), µ̄β̄g◦̄
β
(x̄; .) =

(
µ̄β̄gβ̄

)◦(x̄; .), µ̄β̄gβ̄(x̄) = 0, and
ηᾱ,β̄(x, x̄) ∈ TC(x̄) that

fᾱ(x)− fᾱ(x̄) ≥ f◦ᾱ(x̄; ηᾱ,β̄(x, x̄))

≥ −µ̄β̄g◦̄β(x̄; ηᾱ,β̄(x, x̄))

≥ −(
µ̄β̄gβ̄(x)− µ̄β̄gβ̄(x̄)

)

= −µ̄β̄gβ̄(x)
≥ 0

holds for any x in {x ∈ C : gβ̄(x) ≤ 0}∩Vᾱ,β̄, i.e., x̄ is a local minimum of Problem
(P̄ᾱ,β̄). Thus, due to the first part of this proposition, x̄ is a local minimum of
(P1).

The first part of proof is simple, for which (13) and (14) are essential. The
second part contains only standard arguments.

It is worth mentioning that, in Theorem 4 [8], all functions fα, α ∈ A, and
gβ, β ∈ B, are assumed to be regular and weakly invex, that means properly
invex, at x̄ with respect to the same function η. That is essentially stronger than
the assumption in Proposition 2, where only fᾱ and µ̄β̄gβ̄, with ᾱ ∈ A0(x̄) and
β̄ ∈ B0(x̄), in pairs are required to be invex on M ∩Vᾱ,β̄ at x̄ with respect to the
same function ηᾱ,β̄. In particular, in case g(x̄) = gβ̄(x̄) < 0, (10) implies µ̄β̄ = 0,
and µ̄β̄gβ̄ ≡ 0 is invex with respect to any η. Therefore, only fᾱ, ᾱ ∈ A0(x̄),
are required to be invex on M ∩ Vᾱ,β̄ at x̄, each of them with respect to the own
function η = ηᾱ. By the way, the regularity of f and g at x̄ is not demanded
explicitly in Proposition 2, as done in Theorem 4 [8].

Note that the sufficient condition in Proposition 2 is no more true if A or B is
infinite. To see it for infinite A, just take Counter-example 6. For infinite B, we
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modify Counter-example 5 as follows: Let X = C = R, A = {1}, B = [0, 1] ⊂ R,
f1(x) = −x, and

gβ(x) = x2 − 3βx + β2 (β ∈ B, x ∈ R).

Then x̄ = 0 cannot be a local minimum of f = f1 on

M = {x ∈ R : g(x) ≤ 0} =
[
0, (3 +

√
5)/2

]
,

while A0(x̄) = {1}, B0(x̄) = {0}, {x ∈ R : g0(x) ≤ 0} = {0} implies that all the
assumptions of Proposition 2 are fulfilled for this x̄.

The conclusion of Proposition 2 cannot be saved for infinite A by assuming
that, for all ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄), x̄ is a strict local minimum of (P̄ᾱ,β̄). To

see this, it suffices to modify Counter-example 6 by setting fα(x) =
1
2
α2 − αx +

(x− α)2.
Thus, to obtain sufficient conditions for x̄ to be a local minimum of (P1)

when A or B is infinite, it is not enough to consider all the subproblems (P̄ᾱ,β̄)
with ᾱ ∈ A0(x̄) and β̄ ∈ B0(x̄). In the examples just mentioned, the mappings
(x, α) 7→ fα(x) and (x, β) 7→ gβ(x) are continuously Fréchet differentiable, i.e., all
analytical properties are already optimal, nevertheless, it does not help. Hence,
a sufficient condition would be almost expensive as the definition (9) of local
minimum. But one should not proceed to do something more before answering
the question: What are the practical and theoretical motives of Problem (P1) ?

4. Some comments on two residuary problems

The second optimization problem considered in [5] and [8] is

(P2)





minimize f̃(x) = sup
α∈A

fα(x),

subject to g̃(x) = sup
β∈B

gβ(x) ≤ 0,

where A and B are metrizable compact topological spaces, fα, α ∈ A, and gβ,
β ∈ B, are real-valued functions defined on Rn. Denote

M̃ = {x ∈ C : g̃(x) ≤ 0},
Ã0(x) = {α ∈ A : fα(x) = f̃(x)},
B̃0(x) = {β ∈ B : gβ(x) = g̃(x)}.

Let us mention a sufficient condition given in [5].

Theorem 6.3 [5]. Let x̄ be a feasible point of Problem (P2). Suppose:

(a) The functions fα (α ∈ A) and gβ (β ∈ B) are Lipschitz on some open set
U containing x̄ with the same Lipschitz constants KA and KB, respectively.

(b) The mappings α 7→ fα(x̄) and β 7→ gβ(x̄) are continuous, the set-valued
mapping (α, x) 7→ ∂fα(x) is upper semicontinuous at (ᾱ, x̄) (∀ᾱ ∈ Ã0(x̄)),



102 HOANG XUAN PHU

and the set-valued mapping (β, x) 7→ ∂gβ(x) is upper semicontinuous at
(β̄, x̄) (∀β̄ ∈ B̃0(x̄)).

(c) The functions fα (∀ᾱ ∈ Ã0(x̄)) and gβ (∀β̄ ∈ B̃0(x̄)) are regular at x̄ and
invex on U at x̄ with respect to the same function η.

(d) There exist µ ≥ 0 and

αi ∈ Ã0(x̄), λαi ≥ 0, i = 1, ..., l,

l∑

i=1

λαi = 1,

βj ∈ B̃0(x̄), µβj ≥ 0, j = 1, ...,m,

m∑

j=1

µβj = 1,

such that

0 ∈
l∑

i=1

λαi∂fαi(x̄) + µ
m∑

j=1

µβj∂gβj (x̄),

µ sup
β∈B̃0(x̄)

gβ(x̄) = 0.

Then x̄ is a local minimum of (P2).

In the above theorem, some too strong and unnecessary assumptions are re-
quired again. In the following, to come to the same conclusion as Theorem 6.3 [5],
we drop the assumptions on the Lipschitz constants KA and KB for fα (α ∈ A)
and gβ (β ∈ B), respectively, and on the upper continuity of (α, x) 7→ ∂fα(x) and
(β, x) 7→ ∂gβ(x). Moreover, we deal with a more general problem, namely

(P2a)





minimize f̃(x) = sup
α∈A

fα(x),

subject to g̃(x) = sup
β∈B

gβ(x) ≤ 0, x ∈ C

where A and B are arbitrary parameter sets, fα, α ∈ A, and gβ, β ∈ B, are
real-valued functions defined on some Banach space X and C ⊂ X. Note that,
in Problem (P2), A and B are metrizable compact topological spaces, X = Rn,
and there is no condition x ∈ C.

Proposition 3. Let x̄ be a feasible point of Problem (P2a). Suppose that there
are αi ∈ Ã0(x̄), i = 1, ..., l, βj ∈ B̃0(x̄), j = 1, ..., m, for some l ≥ 1 and m ≥ 1
such that the following properties hold true:

(a) The functions fαi, i = 1, ..., l, and gβj
, j = 1, ..., m, are locally Lipschitz

and regular at x̄.
(b) There exist µ ≥ 0, λαi, and µβj satisfying
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λαi ≥ 0, i = 1, ..., l,
l∑

i=1

λαi = 1,

(15)

µβj ≥ 0, j = 1, ..., m,
m∑

j=1

µβj = 1,

and

0 ∈
l∑

i=1

λαi∂fαi(x̄) + µ
m∑

j=1

µβj∂gβj (x̄) + NC(x̄),

(16)
µg̃(x̄) = 0.

(c) There exist a neighborhood V of x̄ and a function η : C × C → TC(x̄) such
that all functions fαi, i = 1, ..., l, and µgβj , j = 1, ..., m, are invex on C ∩V
at x̄ with respect to η.

Then x̄ is a local minimum of (P2a).

Proof. Denote

f̄(x) = max
1≤i≤l

fαi(x), ḡ(x) = max
1≤j≤m

gβj (x).

Since fαi and gβj are regular at x̄, due to Proposition 2.3.12 in [1], we have

∂f̄(x̄) = co
⋃

1≤i≤l

∂fαi(x̄), ∂ḡ(x̄) = co
⋃

1≤j≤m

∂gβj (x̄).(17)

Hence, for all d ∈ X,

f̄◦(x̄; d) = max

{〈
l∑

i=1

tiξi, d

〉
: ξi ∈ ∂fαi(x̄), ti ≥ 0,

l∑

i=1

ti = 1

}

= max

{
l∑

i=1

ti max{〈ξi, d〉 : ξi ∈ ∂fαi(x̄)} : ti ≥ 0,

l∑

i=1

ti = 1

}

= max

{
l∑

i=1

tif
◦
αi

(x̄; d) : ti ≥ 0,
l∑

i=1

ti = 1

}
= max

1≤i≤l
f◦αi

(x̄; d).

Since fαi is invex on C∩V at x̄ with respect to η and fαi(x̄) = f̄(x̄) for 1 ≤ i ≤ l,
it follows that

f̄◦(x̄; η(x, x̄)) = max
1≤i≤l

f◦αi
(x̄; η(x, x̄))

≤ max
1≤i≤l

(
fαi(x)− fαi(x̄)

)

= max
1≤i≤l

fαi(x)− f̄(x̄) = f̄(x)− f̄(x̄)
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for all x ∈ C ∩ V , i.e., f̄ is invex on C ∩ V at x̄ with respect to η. Similarly, by

µ∂ḡ(x̄) = ∂
(
µḡ(x̄)

)
= co

⋃

1≤j≤m

∂µgβj (x̄)

(for µ ≥ 0), µḡ is invex on C ∩V at x̄ with respect to η, too. On the other hand,
(15), (16), and (17) yield

0 ∈ ∂f̄(x̄) + µ∂ḡ(x̄) + NC(x̄), µḡ(x̄) = 0.

Consequently, by the same standard argument of invexity as in the proof of
Proposition 2, we have

f̄(x̄) ≤ f̄(x) in {x ∈ C : ḡ(x) ≤ 0} ∩ V,

which implies by f̄(x̄) = f̃(x̄), f̄(x) ≤ f̃(x), and ḡ(x) ≤ g̃(x) that

f̃(x̄) ≤ f̃(x) in {x ∈ C : g̃(x) ≤ 0} ∩ V,

i.e., x̄ is a local minimum of (P2a).

Note that Theorem 6 [8] is contained in Proposition 3.
It is our intension to present the above complete proof without using any

preliminary results on the invexity and the generalized directional derivative of
the functions f̄(x) = max

1≤i≤l
fαi(x) and ḡ(x) = max

1≤j≤m
gβj (x), just to show the

simplicity of Problem (P2a). Although A and B may be infinite, to prove the
above sufficient condition for local minima of (P2a), we do not need to know the
invexity, the generalized gradient, and the generalized directional derivative of
the supremum function of infinitely many functions.

Another optimization problem considered in [5] is

(P3)





minimize f(x) = inf
α∈A

fα(x),

subject to g̃(x) = sup
β∈B

gβ(x) ≤ 0,

where fα, α ∈ A, and gβ, β ∈ B, are real-valued functions defined on Rn. By
the same arguments as in Section 3, one can see that the necessary optimality
condition given in Theorem 6.1 [5] for Problem (P3) is weak and incomplete. The
assumption on the upper semicontinuity of the mapping (α, x) 7→ −∂fα(x) is too
strong and unnecessary. One can drop it and get a stronger and more complete
necessary optimality condition which is similar to Proposition 1 in Section 3. Note
that, for (P3), the constraint g̃(x) = sup

β∈B
gβ(x) ≤ 0 cannot be decomposed into

the independent constraints gβ(x) ≤ 0, as it was done for g(x) = inf
β∈B

gβ(x) ≤ 0

in Section 3.
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Since no sufficient condition for local minima of (P3) was given in [5], let us
state it now for the following more general problem

(P3a)





minimize f(x) = inf
α∈A

fα(x),

subject to g̃(x) = sup
β∈B

gβ(x) ≤ 0, x ∈ C,

where A is a finite set, B is an arbitrary parameter set, fα, α ∈ A, and gβ, β ∈ B,
are real-valued functions defined on some Banach space X, and C ⊂ X.

Proposition 4. Assume that fα, α ∈ A, are continuous, and x̄ is a feasible point
of (P3a). If, for all ᾱ ∈ A0(x̄) = {α ∈ A : fα(x̄) = f(x̄)}, x̄ is a local minimum
of the problem

(P̃ᾱ)

{
minimize fᾱ(x),
subject to g̃(x) ≤ 0, x ∈ C,

then it is a local minimum of (P3a). In particular, x̄ is a local minimum of (P3a)
if the following conditions are satisfied:

(a) B̃0(x) = {β ∈ B : gβ(x) = g̃(x)} is nonempty.
(b) For all ᾱ ∈ A0(x̄) and β̄ ∈ B̃0(x̄), fᾱ and gβ̄ are locally Lipschitz at x̄, and

gβ̄ is regular at x̄.
(c) For all ᾱ ∈ A0(x̄),

(c1) there exist µ ≥ 0, mᾱ ≥ 1 and

βj ∈ B̃0(x̄), µβj ≥ 0, j = 1, ..., mᾱ,

mᾱ∑

j=1

µβj = 1

such that

0 ∈ ∂fᾱ(x̄) + µ

mᾱ∑

j=1

µβj∂gβj (x̄) + NC(x̄),

µg̃(x̄) = 0;

(c2) there exist a neighborhood Vᾱ of x̄ and a function ηᾱ : C ×C → TC(x̄)
such that all the functions fᾱ and µgβj , j = 1, ..., mᾱ, are invex on
C ∩ Vᾱ at x̄ with respect to ηᾱ.

Proof. When considering g̃ as a unique constraint function, (P3a) becomes a
special case of (P1). Therefore, the first part of Proposition 4 follows directly
from the first part of Proposition 2, i.e., if x̄ is a local minimum of (P̃ᾱ) for all
ᾱ ∈ A0(x̄), then it is a local minimum of (P3a). Note that the assumption on
the continuity of gβ, β ∈ B, in Proposition 2 is only needed for ensuring the first
half of (14), which remains true without the continuity assumption if B consists
of just one element. Therefore, the continuity of g̃ is not needed here.

Since (P̃ᾱ) is a special case of (P2a), due to Proposition 3, the conditions (a),
(b), and (c) yield that for all ᾱ ∈ A0(x̄), x̄ is a local minimum of (P̃ᾱ). Hence,
the first part of Proposition 4 implies that x̄ is a local minimum of (P3a).
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Corresponding to the comment at the end of Section 3, we observe that the
conclusion of Proposition 4 is not true in general if A is allowed to be infinite.

Note that if g̃(x̄) < 0 then µg̃(x̄) = 0 implies µ = 0 and, therefore, µgβj ≡ 0 is
invex with respect to any η. Thus, the invexity requirement in (c) of Propositions
3 and 4 becomes weaker in this case. This explains why we demand the invexity
of µgβj instead of gβj .

5. Concluding remarks

In this paper, we only discuss some essential errors and the weakness of [4],
[5], and [8], and ignore other errors possibly given in the proof of the assertions
which seem to be true. Our main concern is that there are a lot of serious errors
related to invexity and its generalizations. In [10] and [11], we have analyzed
some essential errors of [6] and [9].
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