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LYAPUNOV REGULARITY OF LINEAR DIFFERENTIAL
ALGEBRAIC EQUATIONS OF INDEX 1

NGUYEN DINH CONG AND HOANG NAM

Abstract. In this paper, we introduce a concept of Lyapunov regularity of
linear differential algebraic equations (DAEs) based on the notion of Lyapunov
exponents of DAEs. It was proved that under certain conditions a DAE of in-
dex 1 is Lyapunov regular if and only if the corresponding ordinary differential
equation is Lyapunov regular.

1. Introduction

In science and practical applications there are numerous problems such as the
problem of description of dynamic systems, electric circuit systems or problems
in cybernetics etc... requiring investigation of solutions of differential equations
of the type Ax′+Bx = 0, where A, B are constant or continuous time-dependent
matrices of order m with detA = 0; such equations are called differential algebraic
equations (DAEs).

Investigation of DAEs was carried out intensively by many researchers around
the world (see [1, 2, 4, 7, 8, 10] and the references therein). Many results on
stability properties of DAEs were obtained: asymptotic and exponential stability
of DAEs which are of index 1 and 2, a criterion for stability of a DAEs of index
1, stability of periodic DAEs (see [9, 10, 12, 13]). The method used for the above
papers is based on the reduction of the investigation of a DAE to the investigation
of a corresponding ordinary differential equation (ODE). For qualitative theory of
linear ordinary differential equations (ODEs) Lyapunov introduced the notion of
regularity. It is well known that a regular linear ODE has many good asymptotic
properties such as all their solutions have exact Lyapunov exponents and their
stability is robust under small nonlinear perturbations of order higher than 1 (see
Bylov et al. [3]).

This paper continues the investigation of asymptotic properties of linear DAEs
based on the method of Lyapunov exponents which started in our papers [5, 14].
In [5, 14] we introduced a concept of the Lyapunov spectrum of a linear DAE.
In this paper, we shall develop a concept of Lyapunov regularity for linear DAEs
which is similar to that of linear ODEs. Based on the notion of the Lyapunov
spectrum of linear DAEs and the notion of the adjoint equation of DAEs we will
define Lyapunov regularity of linear DAEs and derive asymptotic properties of
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regular DAEs. One of the main result of this paper is a theorem stating that
under some assumptions a DAEs is regular if and only if a corresponding linear
ODE is regular.

In the next section we recall some results from the theory of ODEs and DAEs
which are needed in subsequent sections. In Section 3 we introduce the notion of
Lyapunov regularity of a linear DAE which is based on the Lyapunov spectrum
and the adjoint equation of a linear DAE. In Section 4 we derive a criterion for
Lyapunov regularity of a linear DAE which states that under some assumptions
a DAE is regular if and only if the corresponding ODE is regular. In the last
section we prove some asymptotic properties of a regular DAE which are similar
to those of a regular ODE.

2. Preliminaries

In this paper we will consider a linear DAE

A(t)x′ + B(t)x = 0,(1)

where A, B : R+ → L(Rm,Rm) are bounded continuous m×m-matrix functions,
rankA(t) = r, r is a fixed integer, r < m, N(t) := kerA(t) is of the constant
dimension m− r for all t ∈ R+. We will always assume that (1) is of index 1, i.e.
there exists a C1-smooth projector Q ∈ C1(R+, L(Rm,Rm)) onto kerA(t), such
that the matrix G(t) := A(t) + B(t)Q(t) has bounded inverse on each interval
[t0, T ] ⊂ R+ (see [8, 9]). For definition of a solution x(t) of the DAE (1) one does
not require x(t) to be C1-smooth but only some of its coordinates are smooth.
Namely, we introduce the space

C1
A(R+,Rm) := {x(t) : R+ → Rm, x(t) is continuous and P (t)x(t) ∈ C1(R+,Rm)},

where P (t) := I − Q(t) and I is the identity operator of Rm, and note that the
function space C1

A does not depend on the choice of the C1-smooth projector
Q(t) onto kerA(t).

Definition 2.1. Assume that N(t) is smooth, i.e. there exists a differentiable
projector function Q onto N(t). A function x ∈ C1

A(R+,Rm) is said to be a
solution of (1) on R+ if the identity

Ax′ + Bx = A[(Px)′ − P ′x] + Bx = 0,

where P (t) := I − Q(t) and I is the identity operator of Rm, is satisfied for all
t ∈ R+.

The following proposition on the existence and uniqueness of the solution of an
initial value problem (IVP) for the DAE (1) of index 1 was proved in Griepentrog
and März [8, p. 36], Balla and März [1].

Proposition 2.1. For each given x0 ∈ Rm the IVP

A(t)x′ + B(t)x = 0, x(t0)− x0 ∈ N(t0),(2)
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is uniquely solvable on each interval [t0, T ] ⊂ R+. The solution is defined by the
state variable system

u′(t) = P ′(t)u(t)− P (t)(I + P ′(t))G−1(t)B(t)u(t), u(t0) = P (t0)x0,(3)

x(t) = u(t)−Q(t)G−1(t)B(t)u(t);(4)

furthermore, u(t) = P (t)x(t).

Note that, using the projector Ps(t) := I −Q(t)G−1(t)B(t) onto

S(t) := {x ∈ Rm : B(t)x ∈ im A(t)},
the formulas (3), (4) can be rewritten as

u′(t) = [P ′(t)Ps(t)− P (t)G−1(t)B(t)]u(t),(5)

x(t) = Ps(t)u(t),(6)

or (see [1, 9])

u′(t) =
(
P ′(t)− P (t)A−1

1 (t)B0(t)
)
u(t),(7)

where

B0 := B −AP ′, A1 := A + B0Q.

Definition 2.2. The ODE (5) (or (7)) is called the corresponding (under P )
ordinary differential equation (ODE) of the DAE (1) of index 1.

Note that (5) and (7) are two different versions of the state variable equation
of the DAE (1) (see [1, 8, 9]). Though derived from the same DAE (1) the ODEs
(5) and (7) are different ODEs in the space Rm because to derive (5) and (7)
from (1) we use G and A1 which are, in general, different matrices. However,
restricted to the invariant solution space imP the ODEs (5) and (7) are the same
and their solutions are u = Px with x being solutions of (1). The matrices A1

and G are related by the formula A1 = G − AP ′Q = G(I − PP ′Q). Hence, if
P ′Q = 0, which is the case if kerA(t) does not depend on t, then A1 = G and
(7) coincides with (5).

Definition 2.3. A square matrix X(t) of order m is called a fundamental solution
matrix (FSM) of (1) if its first r vector-columns are linearly independent solutions
of (1) and the last m− r vector-columns of X(t) are zero.

Definition 2.4. For a real function f : R+ → R, the number

λ(f) := lim sup
t→∞

1
t

ln |f(t)|

(which may be ±∞) is called the Lyapunov exponent of f . If in the above formula
the limit exists, i.e. we can replace lim sup by lim, then we say that f has exact
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Lyapunov exponent. The Lyapunov exponent of a matrix function F (t) = [fik(t)]
(j, k = 1, . . . , m) is

λ(F ) := max
j,k

λ(fjk).

Clearly, if G−1 is bounded on R+ and the projector P has bounded continuous
derivative P ′ then (5) is an ODE with bounded continuous coefficients, hence it
has a finite Lyapunov spectrum, which implies that (1) has a finite Lyapunov
spectrum (see [5]). Note that for a given DAE (1) there are many different
bounded and differentiable projectors P which lead to different corresponding
ODEs under these projectors. Among these projectors there may be some with
bounded derivatives and some with unbounded derivatives (for a simple example,
consider a DAE (1) with constant kerA(t) ≡ kerA(t0)). Those with bounded
derivatives lead to ODE (5) with bounded coefficients, hence the classical theory
of Lyapunov exponents is applicable (see [3]). Meanwhile, those projectors P
with unbounded derivative may lead to ODE (5) with unbounded coefficients for
which we still do not have a well developed theory of Lyapunov exponents, hence
we do not benefit from reduction of (1) to (5). From now on we consider only
C1-smooth projectors with bounded derivatives. Moreover, we will also assume
that G−1 is bounded on R+ (this is an assumption on P ), which implies that
P = G−1A is bounded.

Definition 2.5. A FSM

X(t) = [x1(t), . . . , xr(t), 0, . . . , 0]

of (1) is called normal if the sum

σ :=
r∑

i=1

λ(xi)

attains its minimum in the set of all FSMs of (1).

It is known (see [5]) that a FSM

X(t) = [x1(t), . . . , xr(t), 0, . . . , 0]

of (1) is normal if and only if the system x1(t), . . . , xr(t) has the property of
incompressibility, i.e. for any linear combination

y(t) =
r∑

i=1

cixi(t),

we have λ(y) = max
i∈{1,... ,r}, ci 6=0

λ(xi).

Let X(t) = [x1(t), . . . , xr(t), 0, . . . , 0] be a normal FSM of (1) and λ(xi) = λi.
We may always order x1(t), . . . , xr(t) by increasing values of their Lyapunov
exponents

λ1 ≤ · · · ≤ λr.
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Note that two normal FSMs have the same set of Lyapunov exponents λ1 ≤
· · · ≤ λr, which is called the Lyapunov spectrum of (1) (see [5]). We may also
identify, as some authors do, distinct Lyapunov exponents λ̃1 < · · · < λ̃d of a
normal FSM of (1) and their multiplicities n1, . . . , nd in the set λ1 ≤ · · · ≤ λr,
and call the set of pairs (λi, ni), i = 1, . . . , d, the Lyapunov spectrum of (1) as
well. However, in this paper we prefer to use the definition of Lyapunov spectrum
of (1) as the set λ1 ≤ · · · ≤ λr.

In the sequel, we will need the notion of adjoint equation of a DAE. We cite
here the definition and some properties of adjoint equations from Balla and März
[1] and refer to [1] for more details.

Definition 2.6. The equation

(A∗ϕ)′ −B∗ϕ = 0(8)

is called the adjoint equation of (1).

In this paper we use the notation A∗ for the conjugate matrix of a matrix A
which coincides with the transposed matrix AT of A since we are considering the
real case. It is known that if the equation (1) is of index 1, then the adjoint equa-
tion (8) is of index 1 too, i.e. dimA∗(t) = r < m for all t ∈ R+, the pencil of ma-
trices {A∗, B∗} has index 1 and there exists a projector Q∗ ∈ C1(R+, L(Rm,Rm))
such that imA∗(t) = kerQ∗(t) for all t ∈ R+ (see [1]).

Similarly to the case of the DAE (1) a solution ϕ of (8) is not necessarily
C1-smooth, it should only belong to the function space

C1
∗A(R+,Rm) := {ϕ ∈ C(R+,Rm) : A∗ϕ ∈ C1(R+,Rm)}.

Note that the function spaces C1
A∗(R+,Rm) and C1

∗A(R+,Rm) are different.
However, if A is C1-smooth, then C1

A∗(R+,Rm) = C1
∗A(R+,Rm).

For an adjoint DAE of a DAE of index 1, the IVP also has a unique solution. To
formulate the theorem, we denote by A+ the Moore-Penrose inverse of a matrix
A, i.e. A+ ∈ L(Rm,Rm) and

A+y = x ∈ im(A∗) for y ∈ im A with Ax = y,

A+y = 0 for y ∈ kerA∗.

Then AA+ and A+A are orthoprojectors onto imA and imA∗ along kerA∗ and
kerA.

Theorem 2.1. [1] For an arbitrary ϕ0 ∈ Rm, there exists and unique a solution
ϕ ∈ C1

∗A(R+,Rm) of the IVP
{

(A∗ϕ)′ −B∗ϕ = 0,

A∗(t0)(ϕ(t0)− ϕ0) = 0,
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and this solution is of the form

ϕ(t) = P∗s(t)A+∗(t)P ∗(t)v(t),

ϕ(t0) = P∗s(t0)ϕ0,

where P∗s := A∗−1
1 A∗ and v(t) is the solution of the IVP

{
v′ = (B∗

0A∗−1
1 P ∗ − P ∗′)v,

v(t0) = A∗1(t0)ϕ
0.

Note that, any solution ϕ of (8) satisfies the condition ϕ ∈ im P∗s, hence S∗ :=
im P∗s is the solution space for (8). We have dimS∗ = r, S∗ ⊕ kerA∗(t) = Rm.

Theorem 2.2. [1] Suppose that

X ∈ C1
A(R+, L(Rm,Rm)) and Φ ∈ C1

∗A(R+, L(Rm,Rm))

are FSMs of (1) and (8), then

(Φ∗AX)′ = 0.(9)

Note that if we truncate the zero-columns in the definition of FSM (Definition
2.3) then we get a (m × r)-matrix function which is a minimal fundamental
solution in the sense of [1]. Given a FSM X(t) = [x1(t), . . . , xr(t), 0, . . . , 0] in
the sense of Definition 2.3, any FSM in the sense of [1] is related to X by a simple
above truncation and a multiplication by a constant matrix from the right (see
[1], Theorem 3 and Lemmas 3, 4). We choose this particular definition of FSM
(Definition 2.3) since the zero-columns added to the solutions x1(t), . . . , xr(t)
while make X a square matrix do not affect the Lyapunov exponent of X, hence
the latter is determined by x1(t), . . . , xr(t). By this choice of definition, a FSM
X, in general, does not have the group property unlike a FSM of an ODE or
a so-called normalized maximal FSM of a DAE (see [1], Theorem 7). Since we
do not need the group property of a FSM in this paper but we are interested
mainly in Lyapunov exponents of solutions and of FSMs of DAEs, Definition 2.3
is sufficient for our aim.

3. Lyapunov regularity of
linear differential algebraic equations

In this section, we introduce a concept of Lyapunov regularity of linear DAEs,
which is an application of the classical Lyapunov regularity of ODEs to the DAEs.
The Lyapunov regularity is an important property of linear ODEs, which was
introduced by Lyapunov in the 19th century. A regular system has a good as-
ymptotic behavior, which was exploited intensively in the qualitative theory of
ODEs.

Let us recall the classical notion of Lyapunov regularity of an ODE. Consider
a linear ODE

x′ = A(t)x, x ∈ Rm, t ∈ R+,(10)
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where A ∈ C(R+, L(Rm,Rm)) and sup
0≤t<∞

‖A(t)‖ < +∞. The solution space of

(10) is of dimension m. A fundamental solution matrix (FSM) of (10) is a square
(m × m)-matrix composed by m linearly independent column-vector functions
which are solutions of (10). A FSM is called normal if the sum of Lyapunov
exponents of its column-vectors attains the minimal possible value among that
for all FSMs of (10). Denote by σX the sum of all Lyapunov exponents of solutions
of (10) in a normal FSM X(t) of (10). Note that this quantity does not depend
on the choice of the normal FSM X(t).

Definition 3.1. The equation (10) is called Lyapunov regular if the following
equality holds

σX = lim inf
t→∞

1
t

t∫

t0

traceA(t1)dt1.

It is known (see [6]) that (10) is Lyapunov regular if and only if
(i) there exists the limit

S = lim
t→∞

1
t

t∫

t0

traceA(t1)dt1

and
(ii) the Lyapunov equality σX = S holds.

Based on considering the adjoint equation of (10), Perron had found an equiv-
alent definition of Lyapunov regularity which allows us to avoid the use of Lya-
punov inequality. Recall that the adjoint equation of (10) is the linear ODE

ẏ = −A∗(t)y,(11)

where A∗(t) = AT (t) is the complex conjugate of A(t) and A∗(t) = AT (t) in the
real case.

If X, Y are FSMs of (10) and (11), then we have the Lagrange equality

Y ∗X = C,

where C is a constant matrix. Perron proved that (10) is regular if and only if
the Lyapunov spectrum of (10)

λ1 ≤ · · · ≤ λm

and the Lyapunov spectrum of the adjoint ODE (11) ordered by decreasing values
of Lyapunov exponents

β1 ≥ · · · ≥ βm

satisfy the equality

λs + βs = 0 for all s = 1, . . . ,m.
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This theorem of Perron gives us an alternative definition of Lyapunov regularity.
Following the idea of Perron, in this paper we introduce a concept of Lyapunov
regularity of the DAEs of index 1, which is based on the concept of Lyapunov
spectrum of the DAE introduced in [5], and the concept of adjoint equation
introduced in [1, 2].

Definition 3.2. The linear DAE (1) of index 1, is called Lyapunov regular if

λi + βi = 0 for all i = 1, . . . , r,

where λ1 ≤ · · · ≤ λr is the Lyapunov spectrum of (1) and β1 ≥ · · · ≥ βr is the
Lyapunov spectrum ordered decreasingly of the adjoint equation (8) of (1).

4. Criterion for Lyapunov regularity of DAEs

In this section we derive a criterion for Lyapunov regularity of a linear DAE
of index 1 by means of Lyapunov regularity of the corresponding ODEs.

Recall that for the DAE (1) we assume that the matrix G(t) := A(t)+B(t)Q(t)
has bounded inverse on R+, hence P (t) is bounded and (5) has bounded coeffi-
cients on R+. Moreover, we shall assume that the nullspace of A does not depend
on t ∈ R+, which implies that P ′Q ≡ 0 (see [5]), hence A1 = G and (7) coincides
with (5). We will need the following lemma.

Lemma 4.1. Let (1) be a DAE of index 1. Assume that the coefficient matrices
A, B, A−1

1 are bounded on R+ and the nullspace of A does not depend on t. Then
there exists a normal FSM U(t) of the corresponding ODE

u′ = (P ′ − PA−1
1 B0)u(7)

such that the first r vector-columns of U(t) are solutions of (7), which belong
to imP (t) for all t ∈ R+ and the remaining m − r vector-columns of U(t) are
solutions of (7), which belong to kerP (t) for all t ∈ R+.

Proof. Let U(t) = [u1(t), . . . , um(t)] be a normal FSMs of (7) and

λ(u1) ≤ · · · ≤ λ(um).

Suppose that for some index k (1 ≤ k ≤ m) and some t0 ∈ R+ we have uk(t0) 6∈
im P (t0) and uk(t0) 6∈ kerP (t0). Then we can write

uk(t0) = P (t0)uk(t0) + Q(t0)uk(t0) = v1(t0) + v2(t0),

where 0 6= v1(t0) ∈ imP (t0) and 0 6= v2(t0) ∈ kerP (t0).
Since kerA(t) = N does not depend on t, we have P ′Q = 0 (see [5]), therefore

for a function u being a solution of (7) we have

(Pu)′ = Pu′ + P ′u = (P ′ − PA−1
1 B0)Pu + P ′Qu = (P ′ − PA−1

1 B0)(Pu),

and

(Qu)′ = −P ′Qu = 0.
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Consequently, if v1(t) is the solution of the initial value problem (IVP)
{

u′ = (P ′ − PA−1
1 B0)u,

u(t0) = v1(t0),

then v1(t) ∈ imP (t) for all t ∈ R+, and if v2(t) is the solution of the IVP
{

u′ = (P ′ − PA−1
1 B0)u,

u(t0) = v2(t0),

then v2(t) ≡ v2(t0), i.e. v2(t) is a nonzero constant.
Due to the linearity of the equation (7) we have

uk(t) = v1(t) + v2(t) for all t ∈ R+.

Moreover, for all t ∈ R+ we have

v1(t) = P (t)u(t) and v2(t) = Q(t)u(t).

Since P is bounded, from this it follows that

λ1(v1) ≤ λ(P ) + λ(u) ≤ λ(u),

λ(v2) ≤ λ(Q) + λ(u) ≤ λ(u).

There are three possible cases.

Case 1: λ(v1) < λ(v2) = 0, hence λ(uk) = 0. In this case v1 may be represented
as a linear combination of solutions u1, . . . , uk−1, uk+1, . . . , um because other-
wise the set U1 of solutions {u1(t), . . . , uk−1(t), v1(t), uk+1(t), . . . , um(t)} of (7) is
a FSM of (7) which satisfies σU1 < σU contradicting the assumption that U is nor-
mal. Therefore v2 is linearly independent of the vectors u1, . . . , uk−1, uk+1, . . . , um

and we may replace uk by v2 in U without changing the sum of Lyapunov expo-
nents σU . Thus, we obtain a new system, which is a normal FSM of (7) and has
k-th vector v2 ∈ kerP (t).

Case 2: λ(v1) > λ(v2) = 0, hence λ(uk) = λ(v1). In this case v2 may be
represented as a linear combination of u1, . . . , uk−1, uk+1, . . . , um. Hence v1 is
linearly independent of u1, . . . , uk−1, uk+1, . . . , um and we may replace uk by v1

in U to receive a new normal FSM, which has k-th vector v1 ∈ imP (t).

Case 3: λ(v1) = 0 = λ(v2), hence λ(uk) = 0. In this case we may replace uk either
by v1 or by v2 provided v1 or v2 is linearly independent of u1, . . . , uk−1, uk+1, . . . , um

(note that at least one of v1, v2 must be linearly independent of u1, . . . , uk−1,
uk+1, . . . , um).

Thus, in any case, we can always change from a normal FSM U(t) which has
k-th column-vector belonging to neither kerP (t) nor imP (t) to a new normal
FSM Ũ(t) which has k-th column-vector belonging to either kerP (t) or imP (t)
and has the same other column-vectors as U(t).

Repeating this procedure at most m times we find a normal FSM of (7) which
satisfies the conclusion of the lemma.
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Lemma 4.2. Assume that (1) is a DAE of index 1, the coefficient matrices A, B
are bounded on R+, the nullspace of A is independent on t ∈ R+ and the canonical
projector Ps onto S(t) along N = kerA(t) is bounded. If P1, P2 are C1-smooth
bounded projectors along N . Then the Lyapunov spectra of the corresponding
ODEs of (1) under projectors P1 and P2 coincide.

Proof. The corresponding ODE of (1) under P1 is

u′ = (P ′
1 − P1A

−1
1 B0)u,(12)

where A1 = A + B0Q1, Q1 = I − P1, B0 = B −AP ′
1. The corresponding ODE of

(1) under P2 is

u′ = (P ′
2 − P2A

−1
1 B0)u,(13)

where A1 = A + B0Q2, Q2 = I − P2, B0 = B −AP ′
2.

By Lemma 4.1 we can find a normal FSM

U =
[
u1(t), . . . , ur(t), ur+1(t), . . . , um(t)

]

of (12) such that ui(t) ∈ imP1(t), i = 1, 2, . . . , r, and uj(t) ∈ kerP1(t), j =
r + 1, . . . , m, for all t ∈ R+.

Put

xi(t) := Ps(t)ui(t), i = 1, . . . , r,

and

ui(t) := P2(t)xi(t), i = 1, . . . , r.

Then xi(t) are solutions of (1), ui(t) are solutions of (13) and ui(t) ∈ im P2(t),
i = 1, . . . , r, for all t ∈ R+.

It is known that λ(ui) = λ(xi) = λ(ui), i = 1, . . . , r. Since there is a one-to-
one correspondence between ui and xi, as well as between xi and ui, it is easily
seen that u1, . . . , ur are independent and they span imP2(t). Take m−r linearly
independent solutions ur+1, . . . , um of (13), which belong to kerP2, and compose
a FSM U = [u1, . . . , um] of (13). We see that the sum of Lyapunov exponents of
solutions of (13) from U(t) equals the sum of Lyapunov exponents of solutions of
(12) from U(t), because λ(ui) = λ(ui) for all i = 1, . . . , r and λ(uj) = λ(uj) = 0
for all j = r + 1, . . . , m.

Since U is a normal FSM of (12) the above argument implies that the sum σ1

of the Lyapunov exponents of a normal FSM of (12) is greater than or equal to
the sum σ2 of the Lyapunov exponents of a normal FSM of (13). Changing the
role of (12) and (13) we find that σ2 ≥ σ1. Hence σ1 = σ2. Moreover, the FSM U
of (13) constructed above must be normal. Consequently, the Lyapunov spectra
of (12) and (13) coincide.

Lemma 4.2 states that the Lyapunov spectrum of the corresponding ODE of
(1) under a projector does not depend on the choice of the projector from a
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certain class. Our next theorem will show that the Lyapunov regularity of the
corresponding ODE does neither depend on the choice of the projector.

Theorem 4.1. Suppose the conditions of Lemma 4.2 are satisfied. Then the cor-
responding ODEs (12) and (13) of (1) under P1 and P2 are either both Lyapunov
regular or both nonregular.

Proof. Let U(t) =
[
u1(t), . . . , ur(t), ur+1(t), . . . , um(t)

]
be a normal FSM of (12)

such that ui(t) ∈ imP1(t), i = 1, . . . , r, uj ∈ kerP1 j = r + 1, . . . , m. Such a
FSM exists by Lemma 4.1. Moreover, uj are non-zero constants, j = r+1, . . . , m.

Put

xi(t) := Ps(t)ui(t), i = 1, . . . , r,

ui(t) := P2(t)xi(t), i = 1, . . . , r,

where Ps(t) denotes the canonical projector of (1). In the proof of Lemma 4.2, it
was shown that

λ(ui) = λ(xi) = λ(ui), i = 1, . . . , r.

Moreover, if we take a set of m− r non-zero vectors

ur+1, . . . , um ∈ kerP2(t) = N = kerA(t),

which are linearly independent, then

U(t) =
[
u1(t), . . . , ur(t), ur+1, . . . , um

]

is a normal FSM of (13). Furthermore,

σU = σU .

Since P1(·) is bounded, the angle between kerP1(t) and imP1(t) is separated
away from 0 by a constant independent of t ∈ R+. Similarly for kerP2(t) and
im P2(t).

Furthermore, the linear operators

P2(t)Ps(t) : imP1(t) → im P2(t),

P1(t)Ps(t) : imP2(t) → im P1(t)

are bounded and are inverses of each other.
Therefore there exists a constant K > 1 independent of t such that

1
K
| det U(t)| ≤ | det U(t)| ≤ K| det U(t)|(14)

for all t ∈ R+.
Using Liouville’s formula for ODEs (12) and (13) we see that due to (14)

the Lyapunov equality for (12) and (13) can happen only simultaneously. The
theorem is proved.
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Theorem 4.2. Let (1) be a linear DAE of index 1. Assume that the matrices A,
B, A−1

1 are bounded on R+ and the nullspace of A(t) is independent of t ∈ R+.
Then the DAE (1) is Lyapunov regular if and only if the corresponding ODE (7)
of (1) under a C1-smooth bounded projector P , is Lyapunov regular.

Proof. By Theorem 4.1 we may choose Q to be the orthogonal projector onto N =
kerA(t) and P = I − Q, hence P and Q are independent of t and P ′ = Q′ = 0
because N = kerA(t) is independent of t ∈ R+.

Let (1) be Lyapunov regular. We show that the ODE (7) is regular. Since
P ′ = 0, the adjoint equation of (7) is

v′ = B∗
0A∗−1

1 P ∗v.(15)

Denote by v(t) ∈ C1(R+,Rm) the unique solution of the IVP{
v′ = B∗

0A∗−1
1 P ∗v,

v(0) = v0, v0 ∈ Rm,

then P ∗v(t) ∈ C1(R+,Rm) is the solution of the IVP{
(P ∗v)′ = P ∗B∗

0A∗−1
1 (P ∗v),

P ∗v(0) = P ∗v0, v0 ∈ Rm.
(16)

Take a normal FSM Φ = [ϕ1(t), . . . , ϕr(t)] of the DAE (8) such that λ(ϕ1) ≥
λ(ϕ2) ≥ · · · ≥ λ(ϕr). Then ϕi are solutions of the IVP{

(A∗ϕi)′ −B∗ϕi = 0,

A∗(0)(ϕi(0)− ϕ0
i ) = 0,

and by Theorem 2.1 they can be represented by solutions of the IVPs{
v′i = B∗

0A∗−1
1 P ∗vi,

vi(0) = A∗1(0)ϕ0
i

by the formula

ϕi = P∗sA+∗P ∗vi.

Since P∗s = A∗−1
1 A∗, we get

ϕi = A∗−1
1 A∗A+∗P ∗vi = A∗−1

1 P ∗vi.

Therefore,

A∗1ϕi = P ∗vi, i = 1, 2, . . . , r.

Since P ′ = 0 we have B0 = B, A1 = A + BQ both bounded, hence for all
i = 1, . . . , r

λ(P ∗vi) = λ(A∗1ϕi) ≤ λ(A∗1) + λ(ϕi) ≤ λ(ϕi),

and, since A−1
1 is bounded by assumption,

λ(ϕi) = λ(A∗−1
1 P ∗vi) ≤ λ(A∗−1

1 ) + λ(P ∗vi) ≤ λ(P ∗vi).
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Thus

λ(ϕi) = λ(P ∗vi), i = 1, 2, . . . , r.

Now we show that imP ∗ and kerP ∗ are invariant with respect to (15). Suppose
that v(t) is a solution of (15) with v(0) = v0 ∈ im P ∗.

Since Q∗′ = 0 we have

(Q∗v)′ = Q∗′v + Q∗v′ = Q∗v′ = Q∗B∗
0A∗−1

1 P ∗v = 0

because

Q∗B∗
0A∗−1

1 P ∗ = (PA−1
1 B0Q)∗ = (PA−1

1 (A1 −A))∗

= (PA−1
1 A1 − PA−1

1 A)∗ = (P − P )∗ = 0.

Since Q∗v(0) = Q∗v0 = 0 we have Q∗v(t) = 0 for all t ∈ R+. Therefore,

v(t) = (P ∗ + Q∗)v(t) = P ∗v(t) ∈ imP ∗ for all t ∈ R+.

Thus imP ∗ is invariant with respect to (15).
Now suppose that v(0) = v0 ∈ kerP ∗. By (16) and P ∗v(0) = P (v0) = 0 we

have P ∗v(t) = 0 for all t ∈ R+. Thus kerP ∗(t) is invariant with respect to
(15).

Moreover, if v(0) ∈ kerP ∗ then v(t) = v(0) = constant for all t ∈ R+, hence
λ(v) = 0.

By Lemma 4.1, we can find a normal FSM of (7)

U(t) =
[
u1(t), . . . , ur(t), ur+1, . . . , um

]

such that

λ(u1) ≤ · · · ≤ λ(ur), u1, . . . , ur ∈ im P,

λ(ur+1) = · · · = λ(um) = 0, ur+1, . . . , um ∈ kerP.

Put

xi(t) := Psui(t), i = 1, . . . , r,

where Ps(t) is the canonical projector of (1). Then X(t) :=
[
x1(t), . . . , xr(t)

]
is

a normal FSM of (1) and

λ(xi) = λ(ui), i = 1, . . . , r.

Since (1) is regular we can find a normal FSM

Φ(t) =
[
ϕ1(t), . . . , ϕr(t)

]

of the adjoint DAE (8) of (1) such that

λ(ϕ1) ≥ · · · ≥ λ(ϕr)

and

λ(ϕi) + λ(xi) = 0 for all i = 1, . . . , r.(17)
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It is easily seen that the solutions ϕi(t), i = 1, . . . , r, correspond to the solutions
vi(t) of (15) with vi(t) ∈ imP ∗(t) and vi(t) are linearly independent. Extend
this set of solutions of (15) to a FSM

V (t) =
[
v1(t), . . . , vr(t), vr+1, . . . , vm

]

by adding m − r basis vector vr+1, . . . , vm of kerP ∗. As we have shown above,
at the beginning of the proof,

λ(vi) = λ(P ∗vi) = λ(ϕi), i = 1, . . . , r.

Therefore, by (17),

λ(ui) + λ(vi) = 0 for all i = 1, . . . , m.(18)

Since (15) is the adjoint equation of the ODE (7) and U is a normal FSM of (7),
by the Theorem of Perron the relation (18) implies that (7) is Lyapunov regular.

Conversely, suppose that (7) is regular. Choose normal FSMs U = [u1, . . . , ur,
ur+1, . . . , um] of (7) and V = [v1, . . . , vr, vr+1, . . . , vm] of (15) such that

ui(t) ∈ imP, vi(t) ∈ im P ∗, i = 1, . . . , r,

uj(t) ∈ kerP, vj(t) ∈ kerP ∗, j = r + 1, . . . , m,

λ(u1) ≤ . . . ≤ λ(ur), λ(v1) ≥ . . . ≥ λ(vr),

λ(uk) + λ(vk) = 0, for all k = 1, . . . ,m.

By U and V we find corresponding normal FSMs X = [x1, . . . , xr] of DAE (1)
and Φ = [ϕ1, . . . , ϕr] of the adjoint equation (8) of (1), which satisfy the relations

λ(xi) + λ(ϕi) = 0, i = 1, . . . , r,

hence (1) is Lyapunov regular.

Theorem 4.2 gives us a characterization of Lyapunov regularity of DAE (1) via
its corresponding ODE. However, the assumption of constant null space kerA(t)
of (1) is restrictive. This assumption was used essentially in the proof of the
theorem where in order to apply Lemma 4.1 we need the invariance with respect
to the ODE (7) of the function space kerA(t) = kerP (t). Now, to apply our
result to a larger class of DAEs we reduce the general case of variable null space
to the case of Theorem 4.2 by means of a change of variables.

Let us make a change of variable x = Fx̄ in the DAE (1), where F : R+ →
L(Rm,Rm) is a nonsingular bounded differentiable m ×m-matrix function with
bounded inverse and bounded derivative. The DAE (1) is transformed into the
following equivalent DAE (see [10])

Ā(t)x̄′ + B̄(t)x̄ = 0,(1’)

where Ā(t) := A(t)F (t), B̄(t) := B(t)F (t) + A(t)F ′(t). It is easily seen that (1’)
is again a DAE of index 1 with bounded continuous coefficients, hence the theory
of Lyapunov spectrum and Lyapunov regularity is applicable to (1’). We show
that this kind of transformation does not change Lyapunov regularity of the DAE
(1).
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Theorem 4.3. Let (1) be a linear DAE of index 1. Assume that the matrices
A, B, A−1

1 are bounded on R+ and F is a nonsingular bounded differentiable
m ×m-matrix function with bounded inverse and bounded derivative. Then the
DAE (1) is Lyapunov regular if and only if the transformed DAE (1’) of (1) by
F is Lyapunov regular.

Proof. Recall that the adjoint equation of (1) is

(A∗ϕ)′ −B∗ϕ = 0(8)

and the adjoint equation of (1’) is

(Ā∗ψ)′ − B̄∗ψ = 0.(8’)

Suppose ϕ is a solution of (8). Multiplying F ∗ from left in both sides of (8) we
have

0 = F ∗(A∗ϕ)′ − F ∗B∗ϕ

= (F ∗A∗ϕ)′ − F ∗′A∗ϕ− F ∗B∗ϕ

= ((AF )∗ϕ)′ − (F ∗B∗ + F ∗′A∗)ϕ

= (Ā∗ϕ)′ − B̄∗ϕ.

Thus, ϕ is a solution of (8’). Conversely, if ψ is a solution of (8’) then it is a
solution of (8). Therefore the solution space of (8) and (8’) coincide, hence their
Lyapunov spectra coincide. Since (1’) is the transformed equation of (1) by F and
since F and F−1 are both bounded it is easily seen that the Lyapunov spectra of
(1) and (1’) coincide. Consequently, by Definition 3.2 the DAE (1) is Lyapunov
regular if and only if so is (1’).

To conclude this section we remark that Theorems 4.2 and 4.3 give us a cri-
terion for Lyapunov regularity of index 1 DAEs via corresponding ODEs. This
criterion is applicable to a fairly large class of DAEs with variable null space
which can be reduced to DAEs with constant null space by bounded differen-
tiable nonsingular transformation. It is well known that if we use a larger class
of transformation then we can always reduce a DAE of index 1 into its Kronecker
normal form which obviously has constant null space (see [10]). However, the
class of transformations we use in Theorem 4.3 is smaller than that needed in
[10] to reduce a general DAE to its Kronecker normal form. This restriction is
needed because we are able to apply the theory of Lyapunov spectrum and Lya-
punov regularity only to the DAEs and ODEs with bounded coefficients. One can
easily see that if we do not require the boundedness assumption on F as in Theo-
rem 4.3 then starting from a simple regular DAE (say, in Kronecker normal form
and with constant coefficients) we may transform it into a DAE with unbounded
coefficients, hence the above theory is not applicable.
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5. Some properties of regular DAEs

Recall the linear DAE (1) of index 1 from Section 2

A(t)x′ + B(t)x = 0,

where A,B ∈ C(R+, L(R+,Rm)) are bounded on R+, dim imA(t) = r < m, and
its adjoint equation

(A∗ϕ)′ −B∗ϕ = 0.(8)

Suppose that X, Φ are arbitrary FSMs of (1) and (8), respectively. By Theorem
2.2

(Φ∗AX)′ = 0,

hence Φ∗AX = C, where C is a constant matrix. If x, ϕ are arbitrary (column-
vector) solutions of (1) and (8), respectively, then we may include them into some
FSMs of (1) and (8), hence we have

ϕ∗Ax = const.(19)

(this identity can be proved directly, see [2]). Note that the solution space of
(1) and (8) are imPs(t) and imP∗s(t) which are of dimension r. Due to the
theorem on existence and uniqueness of solutions of DAEs (see [1,8]) each solution
x(t) of (1) or ϕ(t) of (8) is determined by its initial value x(0) ∈ im Ps(0) or
ϕ(0) ∈ im P∗s(0). Consequently, since FSMs of (1) and (8) are composed by
solutions they are determined by their initial values as well. By (19) and the
linearity of (1) and (8) the abstract theory of exponents presented in Bylov et al.
[3, §2.6 and §3.2] is applicable to the Lyapunov exponents of (1) and (8). Now
we introduce some notions which are versions of those from the theory of ODEs
(see [3] and [6]) adapted to the DAEs.

Definition 5.1. Two FSMs X = [x1, . . . , xr, 0, . . . , 0] and Φ = [ϕ1, . . . , ϕr, 0, . . . , 0]
of (1) and (8) are called conjugate if

ϕ∗i Axi = 1 for all i = 1, . . . , r.(20)

Note that pairs of conjugate FSMs of (1) and (8) exist because by Corollary
3 of [2] for each pair X, Φ of maximal FSMs of (1) and (8) normalized at 0 we
have Φ∗AX = A(0), hence rank(Φ∗AX) = r. From (20) it follows that if X and
Φ are conjugate then, since A is bounded, for any i = 1, . . . , r we have

λ(xi) + λ(ϕi) ≥ 0, i = 1, . . . , r.

Definition 5.2. The number

γ′(X, Φ) := max
1≤i≤r

{λ(xi) + λ(ϕi)},

is called the defect of the conjugate pair X,Φ.
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Definition 5.3. The number

γ = min γ′(X, Φ),

where minimum is taken with respect to all conjugate pairs X, Φ of FSMs of (1)
and (8), is called the coefficient of irregularity of (1) and (8).

Definition 5.4. The number

π := max{λi + βi}, i = 1, 2, . . . , r,

where λ1 ≤ · · · ≤ λr is the Lyapunov spectrum of (1) and β1 ≥ · · · ≥ βr is the
Lyapunov spectrum of (8) ordered decreasingly, is called the Perron coefficient
of (1) and (8).

For coefficients γ, γ′ and π, similarly to the case of ODEs we have the following
relations (cf. Bylov et al. [3], Lemma 3.2.5, p. 68).

Lemma 5.1. The following inequalities hold
(i) 0 ≤ π ≤ γ ≤ γ′,
(ii) 0 ≤ π ≤ γ ≤ rπ.

From Lemma 5.1 and Definition 3.2 it follows immediately

Theorem 5.1. The DAE (1) is Lyapunov regular if and only if its coefficient of
irregularity and Perron coefficient vanish (π = γ = 0).

Note that in Theorem 5.1 we do not assume that kerA(t) is constant.

Theorem 5.2. Suppose that the assumptions of Theorem 4.2 are satisfied. If the
linear DAE (1) is Lyapunov regular, then any solution of (1) has exact Lyapunov
exponent.

Proof. By Theorem 4.2, since (1) is regular the ODE (7) is regular, hence any
solution of (7) has exact Lyapunov exponent (see [3], Theorem 22.1.1, p. 284).
Let x(t) be an arbitrary solution of (1). Then u(t) := P (t)x(t) is a solution of (7)
and x(t) = Ps(t)u(t). From the assumptions of the theorem the projectors P, Ps

are bounded, hence there exists a positive constant c > 1 such that

1 ≤ ‖P‖ ≤ c, 1 ≤ ‖Ps‖ ≤ c.

Then we have for all t ∈ R+ the inequalities

‖u(t)‖ ≤ ‖P (t)‖ · ‖x(t)‖ ≤ c‖x(t)‖
and

‖x(t)‖ ≤ ‖Ps(t)‖ · ‖u(t)‖ ≤ c‖u(t)‖.
Therefore,

c−1‖u(t)‖ ≤ ‖x(t)‖ ≤ c‖u(t)‖,
hence x has exact Lyapunov exponent because u has exact Lyapunov exponent.
The theorem is proved.
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Note that using Theorem 4.3 we can have a result for a larger class of DAEs
with variable null space. Namely, suppose that the DAE (1) can be transformed
into a DAE satisfying the assumptions of Theorem 4.2 by a transformation F
which is a nonsingular differentiable m ×m-matrix function and is bounded to-
gether with F−1 and F ′; if (1) is Lyapunov regular, then any solution of (1) has
exact Lyapunov exponent.

Theorem 5.3. Suppose that the assumptions of Theorem 4.2 are satisfied. If (1)
is Lyapunov regular, then the following Lyapunov equality holds

σX =
r∑

i=1

λ(xi) = lim
t→∞

1
t

t∫

t0

trace(P ′ − PA−1
1 B0)(t1)dt1,

where X = [x1, . . . , xr] is a normal FSM of (1).

Proof. It (1) is Lyapunov regular then, by Theorem 4.2, its corresponding ODE
(7)

u′ = (P ′ − PA−1
1 B0)u

is also Lyapunov regular. Therefore, we have (see Demidovich [6, p. 166])

σU =
m∑

i=1

λ(ui) = lim
1
t

t∫

t0

trace(P ′ − PA−1
1 B0)(t1)dt1,

where U = [u1, . . . , um] is a normal FSM of (7). On the other hand, since the
nullspace N of A(t) does not depend on t and the matrices A, B, A−1

1 are bounded
(cf. proof of Theorem 4.2) we have

σU = σX .

Therefore,

σX =
r∑

i=1

λ(xi) = lim
1
t

t∫

t0

trace(P ′ − PA−1
1 B0)(t1)dt1.

Theorem 5.4. Suppose that the assumptions of Theorem 4.2 are satisfied. The
linear DAE (1) is Lyapunov regular if and only if

(i) there exists limit

S = lim
t→∞

1
t

t∫

t0

trace(P ′ − PA−1
1 B0)(t1)dt1

(ii) and the Lyapunov equality

σX =
r∑

i=1

λ(xi) = S,
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where X = [x1, . . . , xr] is a normal FSM of (1), holds.

Proof. Suppose that (1) is Lyapunov regular. By Theorem 4.2, the corresponding
ODE (7) of (1) is Lyapunov regular, hence the exact limit

S = lim
t→∞

1
t

t∫

t0

trace(P ′ − PA−1
1 B0)(t1)dt1

exists and σU =
m∑

i=1
λ(ui) = S, where U = [u1, . . . , um] is a normal FSM of (7).

On the other hand, from Lemmas 4.1, 4.2 and Theorem 4.1, it follows that
σU = σX , hence σX = σU = S.

Conversely, suppose that there exists exact limit

S = lim
t→∞

1
t

t∫

t0

(P ′ − PA−1
1 B0)(t1)dt1

and

σX =
r∑

i=1

λ(xi) = S.

Since N = kerA(t) does not depend on t and A, B, A−1
1 are bounded, we have

σX = σU , where U is a normal FSM of (7), hence σU = S.
Therefore, the corresponding ODE (7) of (1) is Lyapunov regular, which implies

that (1) is regular.

Now we consider a DAE

A(t)x′ + B(t)x = 0,(21)

where

A(t) =
(

W (t) 0
0 0

)
, B(t) =

(
B11(t) B12(t)
B21(t) B22(t)

)
,

the matrices W , B22 are invertible and are of the order r and m − r, and W ,
W−1, B, B−1

22 are continuous and bounded on R+.

Theorem 5.5. The DAE (21) is Lyapunov regular if and only if the ODE

u′1 = W−1(B12B
−1
22 B21 −B11)u1(22)

is Lyapunov regular.

Proof. Obviously, N = ker A(t) = Rm−r does not depend on t. We consider a

projector Q =
(

0 0
0 I

)
onto N , P = I −Q =

(
Ir 0
0 0

)
. Then the corresponding
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(under P ) ODE of (21) is

u′ =
(

W−1(B12B
−1
22 B21 −B11) 0
0 0

)
u(23)

or, equivalently,
{

u′1 = W−1(B12B
−1
22 B21 −B11)u1,

u′2 = 0,

here

u =
(

u1

u2

)
, u1 ∈ Rr, u2 ∈ Rm−r.

Clearly, the regularity of (22) and (23) is equivalent. By Theorem 4.2, the Lya-
punov regularity of (21) and (23) is equivalent. Hence the Lyapunov regularity
of (21) and (22) is equivalent.
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