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ARE SEVERAL RECENT GENERALIZATIONS OF
EKELAND’S VARIATIONAL PRINCIPLE MORE
GENERAL THAN THE ORIGINAL PRINCIPLE?

TRUONG QUANG BAO AND PHAN QUOC KHANH

Abstract. We show that several recent results proposed as generalizations of
Ekeland’s variational principle are in fact equivalent to the original principle.

In 1974, Ekeland [2] introduced a variational principle, which appears to be one
of the most important results in nonlinear analysis during the last three decades
and has numerous applications. Recently, several generalizations of this principle
have been proposed (see [11, 12]). The purpose of the present note is to show that
these seemingly more general results can be derived from the original Ekeland
variational principle. Let us begin with the original principle.

Theorem 1. [2]. Let (X, d) be a complete metric space, f : X → R ∪ {+∞} be
a lower semicontinuous functional, not identically +∞ and bounded from below.
Then, for every e > 0, λ > 0 and x0 ∈ X such that

f(x0) < inf
x∈X

f(x) + e,

there exists x∗ ∈ X such that
(a) f(x∗) ≤ f(x0);
(b) d(x0, x

∗) ≤ λ;

(c) f(x)− f(x∗) +
ε

λ
d(x∗, x) > 0, ∀x 6= x∗.

For our purpose, the following version of [3] is more suitable.

Theorem 2. [3]. Let (X, d) and f be as in Theorem 1, x0 ∈ domf and ε > 0 be
fixed. Then there exists x∗ ∈ X such that

(i) f(x∗)− f(x0) + εd(x0, x
∗) ≤ 0;

(ii) f(x)− f(x∗) + εd(x∗, x) > 0, ∀x 6= x∗.
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For the sake of completeness, we supply a proof of the equivalence between
Theorems 1 and 2. Let the assumptions of Theorem 1 be satisfied. Setting

ε =
e

λ
, we deduce from Theorem 2 that d(x0, x

∗) ≤ λ

e
(f(x0)− f(x∗)) ≤ λ

e
e = λ.

Hence the conclusion of Theorem 1 is valid. Now, suppose Theorem 1 holds. Let
x0 ∈ domf and ε > 0 be given. Fix any e > f(x0) − inf

x∈X
f(x) and set λ =

e

ε
.

Consider

S := {x ∈ X : f(x)− f(x0) + εd(x0, x) ≤ 0}.
By the lower semicontinuity of f , S is closed. Furthermore, S is nonempty as
x0 ∈ S. Applying Theorem 1 for the chosen e, λ and for S instead of X one finds
x∗ ∈ S satisfying (a), (b) and

(c′) f(x)− f(x∗) +
e

λ
d(x∗, x) > 0, ∀x ∈ S \ {x∗}.

Since x∗ ∈ S, (i) holds.
To show (ii) it is sufficent to check that (c′) is satisfied also for x 6∈ S. By the

definition of S, the property x 6∈ S means

f(x)− f(x0) + εd(x0, x) > 0.

From this and (i) we easily deduce (ii) and then obtain Theorem 2. This shows
that Theorem 2 holds true.

To derive the generalizations of the Ekeland variational principle given in [11,
12], we first prove the following intermediate theorem.

Theorem 3. Let (X, d), f and x0 be as in Theorem 2. Let H : [0, +∞) →
[0, +∞) be a nonincreasing function such that

s∫
0

H(r)dr is a continuous function

of s and
+∞∫
0

H(r)dr = +∞. Let y0 ∈ X be fixed. Then, there exists x∗ ∈ X such

that
(a) f(x∗) ≤ f(x0);
(b) d(y0, x

∗) ≤ r0 + r̄;
(c) f(x)− f(x∗) + H(r(x∗))d(x∗, x) > 0, ∀x 6= x∗;

where r(.) = d(y0, .), r0 = r(x0) and r̄ is such that
r0+r̄∫

r0

H(r)dr ≥ f(x0)− inf
x∈X

f(x).

Proof. . For x ∈ X set

E(x) =
{

y ∈ X| r(x) ≤ r(y) and f(y)− f(x) +

r(y)∫

r(x)

H(r)dr ≤ 0
}
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Clearly, x ∈ E(x). Besides, if y ∈ E(x) then it is easily seen that E(y) ⊆ E(x).
Furthermore, E(x) is closed. To see this, let xn ∈ E(x), xn → x̄. Then

r(x) ≤ r(xn),

f(xn)− f(x) +

r(xn)∫

r(x)

H(r)dr ≤ 0.

By the assumed continuity and lower semicontinuity, letting n →∞ we obtain

r(x) ≤ r(x̄),

f(x̄)− f(x) +

r(x̄)∫

r(x)

H(r)dr ≤ 0,

which shows that x̄ ∈ E(x). So E(x) is a complete metric space.
For every y ∈ E(x0), by the definitions of E(x0) and r̄, we can estimate the

distance d(y0, y) = r(y) as follows
r(y)∫

r0

H(r)dr ≤ f(x0)− f(y) ≤ f(x0)− inf
y∈X

f(y) ≤
r0+r̄∫

r0

H(r)dr.

Since H(r) ≥ 0, the obtained inequality yields

r(y) ≤ r0 + r̄.(1)

Applying Theorem 2 for ε = H(r0 + r̄) and f
∣∣
E(x0)

one finds z∗ ∈ E(x0) such
that

f(z∗)− f(x0) + H(r0 + r̄)d(x0, z
∗) ≤ 0,(2)

f(x)− f(z∗) + H(r0 + r̄)d(z∗, x) > 0, ∀x ∈ E(x0) \ {z∗}.(3)

Again, using Theorem 2 for f (on X), H(r(z∗)) in the place of ε, and z∗ as
the starting point x0, one obtains x∗ ∈ X satisfying

f(x∗)− f(z∗) + H(r(z∗))d(z∗, x∗) ≤ 0,(4)

f(x)− f(x∗) + H(r(z∗))d(x∗, x) > 0, ∀x 6= x∗.(5)

Adding (2) and (4) gives

f(x∗)− f(x0) + H(r0 + r̄)d(x0, z
∗) + H(r(z∗))d(z∗, x∗) ≤ 0,

which indicates that f(x∗) ≤ f(x0). Thus assertion (a) holds.
If x∗ = z∗, then (5) implies (c) and (1) implies (b). Hence x∗ = z∗ is the

required point. If x∗ 6= z∗, then we have three possibilities. First, if x∗ ∈ E(x0),
then (3) and (1) imply that

f(x∗)− f(z∗) + H(r(z∗))d(z∗, x∗) > 0,
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contradicting (4). Next, if x∗ 6∈ E(x0) (then x∗ 6∈ E(z∗)) and if r(z∗) ≤ r(x∗),
then by the definition of E(z∗) one gets

f(x∗)− f(z∗) + H(r(z∗))d(z∗, x∗) ≥ f(x∗)− f(z∗) +

r(x∗)∫

r(z∗)

H(r)dr > 0,

again contradicting (4). So it remains to consider the case where x∗ 6∈ E(x0) and
r(x∗) < r(z∗). In this case we have d(y0, x

∗) = r(x∗) < r(z∗) ≤ r0 + r̄ by (1).
Hence (b) holds. Besides, r(x∗) < r(z∗) implies that H(r(x∗)) ≥ H(r(z∗)), and
hence (c) follows from (5).

Remark 1. If one chooses, in the statement of the Theorem 3, y0 = x0, r̄ = λ

and H(r) ≡ e

λ
, then one gets Theorem 1 from Theorem 3. So, Theorems 1, 2

and 3 are equivalent.
Theorem 3 implies the following main result of [11].

Theorem 4. [11]. Let (X, d), f and y0 be as in Theorem 3. Let λ > 0, ε > 0
and x0 ∈ X such that f(x0) < inf

x∈X
f(x) + ε. Let h : [0,+∞) → [0,+∞) be

a continuous nondecreasing function such that
+∞∫
0

dr

1 + h(r)
= +∞. Let r0 =

d(y0, x0) and r̄ be such that
r0+r̄∫

r0

dr

1 + h(r)
≥ λ.

Then, there exists x∗ ∈ X such that assertions (a), (b) of Theorem 3 and

(c′) f(x)− f(x∗) +
ε

λ(1 + h(d(y0, x∗)))
d(x, x∗) ≥ 0, ∀x ∈ X,

hold.

Proof. For H(r) =
ε

λ(1 + h(r))
we see that all the assumptions of Theorem 3 are

satisfied, and (c) implies (c′).

Observe that the assumed continuity of h(.), which is inevitable in the proof

in [11], is more restrictive than the continuity of
s∫
0

H(r)dr needed for Theorem

3. Moreover, (c) implies even the strict inequality in (c′) for all x ∈ X \ {x∗}.
We now restate and demonstrate the following Theorem 5, which is the main

result of [12]. Let (X, d), x0, y0 and h(.) be as in Theorem 4. Let F : X ×X →
R ∪ {−∞, +∞} be lower semicontinuous in the second variable and satisfy:

(i) F (x, x) = 0, ∀x ∈ X;
(ii) F (x, z) ≤ F (x, y) + F (y, z), ∀x, y, z ∈ X;
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(iii) −λ := inf
x∈X

F (x0, x) > −∞.

Let r̄ satisfy
r0+r̄∫
r0

dr

1 + h(r)
> λ.

Theorem 5. [12]. Under the just mentioned assumptions, there exists x∗ ∈ X
such that

(a1) F (x0, x
∗) ≤ 0,

d(x0, x
∗) ≤ −(1 + h(r0 + r̄))F (x0, x

∗) ≤ λ(1 + h(r0 + r̄));

(b1) d(y0, x
∗) ≤ r0 + r̄;

(c1) F (x∗, x) +
1

1 + h(d(y0, x∗))
d(x∗, x) > 0, ∀x 6= x∗.

Proof. We will use Theorems 2 and 3 and also some arguments in the proof
of Theorem 3. Set H(.) = (1 + h(.))−1 and f(.) = F (x0, .). Then, it is easy
to see that all the assumptions of Theorem 3 are satisfied. Hence, so are the
assumptions of Theorem 2. Let us choose z∗ and x∗ by the same method as in
the proof of Theorem 3. Then z∗ satisfies (2) and x∗ satisfies (4). Besides, by
(1), H(r(z∗)) ≥ H(r0 + r̄). From (4) it follows that

f(x∗)− f(z∗) + H(r0 + r̄)d(z∗, x∗) ≤ 0.(6)

Adding (2) and (6) gives

f(x∗)− f(x0) + H(r0 + r̄)d(x0, x
∗) ≤ 0.(7)

From this and the definitions of H(.) and f(.) we have

d(x0, x
∗) ≤ −(1 + h(r0 + r̄))F (x0, x

∗) ≤ λ(1 + h(r0 + r̄)),

which together with (7) yields (a1). Finally, since x∗ satisfies the conclusions of
Theorem 3 and since (b1) and (c1), respectively, are nothing else than (b) and
(c) of Theorem 3, we obtain the conclusion of Theorem 5.

Note that the results of [7] are contained in the corresponding results of [12].
So they can be also derived from Theorem 3 by setting f(.) := F (x0, .). For
F (x, y) := f(y) − f(x) and h(.) := H(.)−1 − 1, the conclusion of Theorem 5
clearly implies that of Theorem 3. (However, the assumed continuity of h(.) is
more restrictive than the continuity of

∫ s
0 H(r)dr assumed in Theorem 3.)

Remark 2. Several authors used the term “generalization” to mean also an
extension to the case where f is a vector-valued function. We would like to
observe that, using scalarization one can derive Ekeland’s variational principle
for the vector-valued case from the corresponding result for the scalar case (see
[1, 5, 8]). So these principles for the vector-valued case can be viewed as equivalent
to Theorems 2 and 3. However, Ekeland’s variational principles for vector-valued
case in [4, 6, 9, 10], using vector metrics, are not equivalent to these theorems,
since they imply Theorem 2 when f and the mentioned metric are scalar, but
Theorem 2 does not imply them.
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