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ON HAMILTON CYCLES IN CONNECTED
TETRAVALENT METACIRCULANT GRAPHS
WITH NON-EMPTY FIRST SYMBOL

NGO DAC TAN AND TRAN MINH TUOC

ABSTRACT. In this paper, we show that every connected tetravalent metacir-
culant graph MC(m,n,a, So, S1,...,S5,) with So # 0 possesses a Hamilton
cycle if m =1 or 2 or m > 2 and both m and n are odd.

1. INTRODUCTION

Thomassen (and others) conjectured that there are only finitely many con-
nected vertex-transitive nonhamiltonian graphs (see [8]). At present, only four
such graphs are known to exist: the Petersen graph, the Coxeter graph and the
two graphs obtained from them by replacing each vertex by a triangle. The
readers can see [7] for more information about the Petersen and Coxeter graphs.

Metacirculant graphs were introduced by Alspach and Parsons in [3] as an
interesting class of vertex-transitive graphs, in which there might be some new
connected nonhamiltonian graphs. A natural question raised here is to find hamil-
tonian metacirculant graphs.

Connectedness of cubic metacirculant graphs has been considered in [10]. The
obtained results there were used successfully to prove the existence of a Hamilton
cycle in many connected cubic metacirculant graphs [9, 11]. Motivated by this, we
apply here the results obtained in [13] to prove the existence of a Hamilton cycle
in some connected tetravalent metacirculant graphs. Namely, we will prove that
every connected tetravalent metacirculant graph G = MC(m,n, o, So, S1,... ,Su)
with Sp # ) are hamiltonian whenever m = 1 or m = 2 (Theorem 3.1) or m > 2
and both m and n are odd (Theorem 3.2).

2. PRELIMINARIES

All graphs considered in this paper are finite undirected graphs without loops
and multiple edges. Unless otherwise indicated, our graph-theoretic terminology
will follow [6], and our group-theoretic terminology will follow [14]. For a graph
G we denote by V(G), E(G) and Aut(G) the vertex-set, the edge-set and the
automorphism group of G, respectively. For a positive integer n, we will denote
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the ring of integers modulo n by Z,, and the multiplicative group of units in Z,
by Z;.

A graph G is called vertex-transitive if for any two vertices u,v € V(@) there
exists an automorphism ¢ € Aut(G) such that p(u) = v. If a graph G is
both vertex-transitive and connected, then it is called connected vertex-transitive.
Vertex-transitive graphs possess a high symmetry. So it is probable that they have
many pleasant properties.

Let S be a subset of a group I' such that 1 ¢ S = S~! where S~ = {s7!|s €
S}. Then the Cayley graph on T' respect to S, denoted by Cay(T,5), is defined
to be the graph with vertex-set V(Cay(T',S)) =T and two elements z,y € I" are
adjacent in Cay(T,S) if and only if 271y € S.

Circulant graphs are Cayley graphs on cyclic groups. But for abelian groups
one usually use additive notation. So we must reformulate the definition for
circulant graphs as follows. Let n be a positive integer and S be a subset of Z,,
such that 0 ¢ S = —S. Then we define the circulant graph G = C(n, S) to be the
graph with vertex-set V(G) = {v, | y € Z,} and edge-set E(G) = {vyvy | y, h €
Zy; (h—y) € S}, where subscripts are always reduced modulo n. The subset S
is called the symbol of C(n,S).

The following class of graphs called metacirculants was introduced by Alspach
and Parsons in [3]. This class of graphs is of interest because it properly contains
the class of circulant graphs. Therefore, many problems for vertex-transitive
graphs can be verified nontrivially first in this class.

Let m and n be two positive integers, o € Z},, p = [n/2]| and Sp, S1,...,S,
be subsets of Z,, satisfying the following conditions:

1) 0.¢ So = —5S0;
2) a™S, =85, for0 < r < u;
3) If m is even, then oS, = —S,,.

Then we define the metacirculant graph G = MC(m,n, o, Sp, S1,...,S,) to be
the graph with vertex-set

V(G)={vj | i€ Zm; jE Zn}
and edge-set
E(G) = {vév}fr 10< r<w; i€ Zp; j,h€ Z, & (h—j) €a'S,},
where superscripts and subscripts are always reduced modulo m and modulo n,
respectively. The subset S; is called (i + 1)-th symbol of G.
Let p and 7 be two permutations on V' (G) defined by p(v;) = U§+1 and T(U;-) =

vij;-l. Then p and 7 are automorphisms of G and the subgroup (p, 7) of Aut(G)

generated by p and 7 is a transitive subgroup of Aut(G). Thus, metacirculant
graphs are vertex-transitive.

Denote the degree of a vertex v of a graph G by deg(v). It is easy to see that for
any vertex v € V(G) of a metacirculant graph G = MC(m,n, a, So, S1,...,5,)
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deg(v) — S0l 4 2[S1| + - + 2[5, if m is odd,
¢ |So| +2[S1] 4+ -+ 2[Su—1] +|Sy| if m is even.
A graph G'is called cubic (resp. tetravalent) if for any vertex v € V(G), deg(v) = 3
(resp. deg(v) = 4).
The following results have been proved in [12] and [13], respectively.

Lemma 2.1. [12] A metacirculant graph G = MC(m,n,a, Sy, S1,. .. ,S,) with
So # 0 is tetravalent if and only if one of the following cases holds:

(1) |Sol=4andS1=...=85,=0;
(2) m and n are even, |So| = 3, S; = 0 for any j € {1,2,...,p — 1} and
|S,u| = 1;

(3) m s even, |So| =2, 85 =0 for any i € {1,2,... ,p— 1} and |S,| = 2;

(4) m > 2is odd, |So| =2, |Si| =1 for some i € {1,2,... ,u} and S; =0 for
any i # 7 €4{1,2,... ,u};

(5) m > 2is even, |So| =2, |S;| =1 for some i€ {1,2,... ,u—1} and S; =0
foranyi#je{1,2,... u};

(6) m andn are even, |So| =1, S; =0 foranyi € {1,2,... ,u—1} and |S,| = 3;

(7) m > 2, m and n are even, |So| =1, |S;| =1 for some i€ {1,2,... ,u—1},
S; =0 foranyi#je{1,2,... ,p—1} and |S,| = 1.

Theorem 2.1. [13] Let G = MC(m,n,a, So, S1, ... ,Syu) be a tetravalent metacir-
culant graph with Sy # (0. Then G is connected if and only if one of the following
conditions holds:

(1) m=1, Sy ={£s,£r} and gcd(s,r,n) =1;

(2) m =2, nis even, Sy = { + s, g}, Sy ={k} and gcd(s, g) =1;
(3) m=2,Sy={%s}, S1={k,l} and ged(s,k —1l,n) =1;
(4) m > 2 is odd, Sy = {£s}, Si = {k} for some i € {1,2,...,u} such that

ged(i,m) =1, S; = 0 for any i # j € {1,2,...,u} and ged(s,m,n) =1
where 7 = k(1 4+ o/ 4 -- - + oM7),

(5) m > 2 is even, So = {£s}, S; = {k} for some i € {1,2,...,p — 1} such
that ged(i,m) =1, S; =0 for any i # j € {1,2,... ,u} and ged(s,r,n) =1
where 7 = k(1 4+ of + - - - 4+ oM7),

(6) m =2, nis even, Sy = {g}, S1 ={h,k,1} and gcd(h— k,k—l,g) =1;

(7) m > 2 is even, n is even, Sy = {g}, S; = {s} wherei is odd and gcd(i,m) =
1, S; =0 foranyi #je€{1,2,... ,p—1}, S, = {r} and gcd(p,%) =1,
where p is [r — s(1+a’ + a2 + -+ + o=V reduced modulo n;

(8) m > 2 is even but p = % is odd, n is even, Sy = g , Si = {s} where
i s even and ged(i,m) = 2, S; = 0 for any i # j € {1,2,...,p— 1},
S, ={r} and gcd(q, g) =1, where i = 24" with t > 1 and i’ odd and q is
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[r(1+ of +a? 4. o@D (140l 42 44 a(“_l)i/)} reduced
modulo n.

Let n > 1 be an integer. The dihedral group D,, is the group generated by two
elements a and (3 satisfying the relations o = % = 1 and Baf = o~ L.

The following theorem has been proved in [5].
Theorem 2.2. [5] Every connected cubic Cayley graph on a dihedral group has
a Hamilton cycle.

Let n > 1 be an integer. Then the generalized Petersen graph GP(n,k),
1 <k <n—1,is defined to be the graph with vertex-set

V(GP(n,k)) = {ug,u1, ... ,Up—1,00,V1,--- ,Un_1}
and edge-set
E(GP(n,k)) = {uitit1, uivi, vivipg | 0 <i<n—1},

where subscripts are always reduced modulo n.

The following result was proved by Alspach [1] for generalized Petersen graphs.
Theorem 2.3. [1] The generalized Petersen graph GP(n,k) is hamiltonian if

and only if it is not one of the following:
(n+1)
2

(1) GP(n.2) = GP(nn —2) = GP(n, (n 1)) ~ GP(n,

2
n=>5 (mod 6),
(2) GP(4m,2m), m > 2.

) , where

A permutation « is said to be semiregular if all cycles in the disjoint cycle
decomposition of o have the same length. If Aut(G) of a graph G contains a
semiregular element «, then the quotient graph G/« can be defined as follows:
the vertices of G/« are orbits of () and two such vertices are adjacent in G/«
if and only if there is an edge in G joining a vertex in one corresponding orbit to
a vertex in the other orbit.

The following result will be useful for this work.
Theorem 2.4. [2] Let G be a graph that admits a semiregular automorphism «
of ordert > 3 and let G1,Ga, ... , Gy be the subgraphs induced by G on the orbits

of (). Let each G; be connected and have degree 2. Then the graph G has a
Hamilton cycle if either of the following statements is true:

(1) G, and G5 have the same symbol and there is a Hamilton path of G/«
joining them;
(2) There is a Hamilton cycle in G/a and k is odd.

3. RESULTS

First we prove the following lemmas.

Lemma 3.1. Let G = MC(m,n,«, Sy, S1) be a metacirculant graph withm =1,
So = {£s, £r} and ged(s,r,n) = 1. Then G possesses a Hamilton cycle.
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Proof. 1t is clear that G is a connected circulant graph. So G has a Hamilton
cycle [4]. O

Lemma 3.2. Let G = GP(n, k) be the generalized Petersen graph with ged(n, k) =
1. Then there is a Hamilton path in G joining v; to viy1.

Proof. Let V.= {v; | i € Z,} and U = {u; | i € Z,}. Then G[V] and G[U]
are isomorphic to the circulant graphs C'(n, {£k}) and C(n,{%1}), respectively.
So G[V] is the cycle Cy = vivi4 xVit2k - - - Vig(n—1)x¥i and G[U] is the cycle C1 =
Ui Wi 2 - - - Uiy (1) Ui Denote

P1o = 0ivitkVigok - - V(g 1)~k

Pi1 = 0i410341) 1k V(i+ 1) 42k - - - Vieks

Py = 0(i41) -k Ur1) —kU(i+2)—kW(i13)—k - - - WimkVi—k-

If £ # 1, then vjip # vit1, V(i4+1)— 75 v; and P = PoU PyU Py is a
Hamilton path in G with the endvertlces v; and viy1. If K = 1, then P =
ViVim1Vi—2 -+ Vg2 Uit 2Uit3 - - . Uj Ujt1V;+1 1S & Hamilton path in G With the end-
vertices v; and vjyq. ]
Lemma 3.3. Let G = MC(2,n,«, Sy, S1) be a metacirculant graph with n even,
So = {j: s,g}, S1 = {k} and gcd(s, g) = 1. Then G possesses a Hamilton

cycle.

Proof. By Lemma 2.1 and Theorem 2.1, it is clear that G is a connected tetrava-
lent metacirculant graph.

Let V(G) = {vi | i € Zq, j € Z,} and G' = MC(2,n,a,5),57) be a
metacirculant graph with vertex-set
V(G)=A{w)|i€ Zy, j€ Zy}

and S = Sp, S7 = {0}. It is easy to see that the mapping ¢ : V(G) — V(G'),
0 1

defined by go(v?) = w?; 4,0(11}) = wjl-_ 4 15 an isomorphism between the graphs G

and G'. Therefore, without loss of generality we may assume that the graph G
has the second symbol S; = {0}. Let H be a spanning subgraph of G with the
edge-set

E(H) = E(G)\{t}v}, 2, vjvj,a | j € Zu}.
We consider separately two cases.
Case 1: gcd(s, %) =1 and ged(s,n) = 1.
Since ged(s,n) =1 and a € Z), we can see that
{0,s,2s,...,(n—1)s} = {0, as,2as,... ,(n — 1)as}
=1{0,1,2,... ,n—1} = Z,,.
Therefore,

1 1 0,1 :
( )_ {U j—‘,—s’ 7 ]-{—asv ij ’] € Zn}
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Now we define the map v : V(H) — V(GP(n,a)) by ¥(vd,) = u;; ¥(vl,,) =
Vaiy 1 € {0,1,2,... ,n—1}. Then ¥ is a bijection from V(H) onto V(GP(n,a)).
Furthermore, it is not difficult to see that 1 is an isomorphism between H and
GP(n,«q).

Since n is even and a € Z,, the generalized Petersen graph GP(n,a) is
neither exclusion (1) nor exclusion (2) in Theorem 2.3. Therefore GP(n, a) has
a Hamilton cycle. But H is isomorphic to GP(n,«a) and is a spanning subgraph
of G. So G also has a Hamilton cycle.

Case 2: gcd(s, g) = 1 but ged(s,n) = 2.
It is clear that n and s are even, o and g are odd. Then
{0,3,23, - ,(g —1)s} ={0,as,2as, ..., (g — l)as}
={0,2,... ,n—2},

nn n n o n
Ly L | }
{2,2+s,2+ s, ,2—1-(2 )s

:{n ﬁ—1—043,2—1—20459,...,ﬁ—i—(ﬁ—l)as}

272 2 2 2
={1,3,...,n—1}.
Let

— 0,0 0 1,1 1

‘/even - {UO,US,. .. 7”(%_1)37007vasv e av(%_l)as}a

H. :H[%ven]

— 0o .0 0 1 .1 1

Vodd == {U%7vg+s, e ,’U%_,’_(%_l)s,’l)%,’l}%_,'_as,. .. 71}%—‘,—(%—1)0&5}7

Ho = H [V,qa].
Then both H, and Hy are isomorphic to the generalized Petersen graph GP (g, o ) ,
where o is the integer satisfying 1 < o/ < " and o = a (mod g) So we may
identify them with the graph GP(%, 0/).

Since ged(n,a) = 1, we have gcd(g,a’) = 1. By Lemma 3.2, there exist a

1
s

and a Hamilton path Py in Hy joining

n_n
Since « is odd and ag =5 (mod n), the vertex v{ is adjacent to

Hamilton path P. in H, joining vé to v

1 1
vn to W .
310 Vs

vk and v! is adjacent to vk .- Therefore, we can construct a Hamilton cycle C
2 2

Jr
in G as follows: Starting C' at vé, we go along the Hamilton path P, in H. to

the vertex v!. Further, by vslv;rﬁ we go to the vertex v;+ﬂ. Then from U;+Q we
2 2 2

go along the Hamilton path Py in Hy to the vertex vy . Finally, we return to v}
2

from v} by the edge vivh. Lemma 3.3 is proved. O
2 2
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Lemma 3.4. Let G = MC(2,n,a, Sy, S1) be a metacirculant graph with Sy =
{£s}, S1 ={h,k} and gcd(s,h — k,n) = 1. Then G possesses a Hamilton cycle.

Proof. By Lemma 2.1 and Theorem 2.1, it is clear that G is a connected tetrava-
lent metacirculant graph. Consider the automorphism p of G defined by p(v}) =

Ji 41~ We can see that p is semiregular. Let ged(s,n) = d. Then the automor-
phism 3 = p? of G is also semiregular. The orbit of (3) containing the vertex v§
ISVZ— , T fori=0,1and j=0,1,...,(d—1).

{ U j+d i +(d ) } J ( )

On the other hand, the subsets {O,d, e ( )d} {0 s, , (— — 1) } and
{O, as, ..., (g — 1)as} of Z,, coincide with each other. So G[Vﬂ is the cycle

U;U;+aisvé+2ais ce U;’—l—(%—l)aisq};
for any i € Z9 and j € Z.
Consider the quotient graph G /3. It has the vertex-set
V(G/B)={V] | i € Zy; j € Za}

and two vertices of G/ are adjacent in G/ if and only if there is an edge in G
joining a vertex in one corresponding orbit of < 8 > to a vertex in the other orbit.
Since G is a connected tetravalent graph MC(2,n,a, Sy, S1) with Sy = {*s}, it
is not difficult to see that G/ is the cycle

VOV ViV enVatn—i) - - Vi) (it Vid—1y (-t 11 Vo
In G, each vertex v2 S VY is adjacent to U;H_h c V! 4n and each vertex v € V1
is adjacent to v _k e V

Let H; = G[ i(h— k)UV(h k)+h] J € Z4. Then
V(H)) = {09100} pitas | £ = 0,1, E — 1},
0 0 1 1 0 1
E(H]) = {vj+tsvj+(t+1)s’ Uj+h+tasvj+h+(t+l)as’ VjttsVjthtts | t=0,1,... E - 1}

Let o' be the integer satisfying 1 < o/ < = and ¢/ = a (mod %) Then the

a3

bijection
¢ V(H) — V(GP(%,o/)) :
n
U?_A,_tg = Uy, U]1'+h+tas = Uty T E {0, L., (E - 1)}

is an isomorphism between H; and GP(%, o )

We rename the vertices of H;, j =0,1,... ,d — 1, as follows: v?HS is renamed

with u;; v

]1.+h+ms is renamed with v; ;o for £ =0,1,...,— —1. We can see that

d
GP(E,O/ ) is neither exclusion (1) nor exclusion (2) in Theorem 2.3. Therefore

d
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Hg_1 has a Hamilton cycle (', containing the edge ug—10uq—1,1. Let v4_o; be

adjacent in G to uq—1,0. Then it is not difficult to see that vy_s ;41 is adjacent
n

to ug—1,1. On the other hand, since gcd(a, o/) =1, by Lemma 3.2 there exists a

Hamilton path Py_o in Hy 5 joining vq_2; and vg_2;41. Now replacing the edge

Ug—1,0Ud—1,1 in Cp by the path

{ua—1,0va—2,i} U Pa—o U {vg—2ir1ua—1,}

we can obtain a Hamilton cycle in G[V (Hg—2) UV (Hg_1)]. This procedure can
be continued to obtain a Hamilton cycle in

G= G[V(Ho) U V(Hl) U...uU V(Hd_l)] .
O

Lemma 3.5. Let G = MC(2,n,a, Sy, S1) be a metacirculant graph with n even,
So = {g},Sl = {h,k,l} and gcd(h -k k — l,g) = 1. Then G possesses a

Hamilton cycle.

Proof. Let G' = MC(2,n,—1,S5y,51) where Sy = {g}, S1 = {h,k,1} and the
vertex-set V(G') = {u; | i € Z2,j € Zy}. Let ¢ be a bijection from V(G)
onto V(G'), defined by <p(v§-) = u; Then it is not difficult to verify that ¢ is an
isomorphism between G and G’. Therefore, without loss of generality , we may
assume that the graph G is MC(2,n,—1,S5y,51) where n is even, Sy = {%},

S1 ={h,k,l} and gcd(h —k k-1, g) = 1. There are two cases to consider.

Case 1: gcd(h — k,k —1,n) = 1.

Let G’ be a spanning subgraph of G isomorphic to H = MC(2,n,—1, 5y, S)
with S{ = 0 and S| = S1 = {h, k,l}. It is clear that H is a cubic metacirculant
graph. Since ged(h—k, k—I1,n) = 1, by [10, Theorem 2], the graph H is connected.
By [3, Theorem 9], H is a Cayley graph on the group (p, 7), where p and 7 are the
automorphisms of H with p(v;) = ; 41 and T(U;) = vz;]r-l. It is not difficult to see
that p and 7 satisfy the relations 7pr~! = p~! and p" = 72 = 1. Therefore (p, 7)
is a dihedral group. Thus H is a connected cubic Cayley graph on the dihedral
group (p, 7). By Theorem 2.2, we conclude H has a Hamilton cycle. Since H is
isomorphic to the spanning subgraph G’ of G, G possesses a Hamilton cycle.

Case 2: gcd(h — k,k —1,n) = 2.

Let G be a tetravalent metacirculant graph M C(2,n,—1, Sy, S1) with n even,
S = {g}, S1 = {h, k,1} and ged(h—k, k—1, g) = 1 but ged(h—k, k—1,n) = 2.
It is clear that ged(h — k,k — 1) = d is even. It follows that h — k, k — [ are even.
So either all h, k, [ are even or all of them are odd. Since gcd(h -k, k—I, g) =1,

the number g must be odd.
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Consider two subsets 47 = {0,2,...,n—2} and Ay ={1,3,... ,n—1} of Z,,.
Since g isodd, Ay = A1 + % Let

V11 = {’UO ’U~1 ’ 1€ Al};

1771
Vag = {0],vj | j € A2 };

Vm:{vo ’Ul~ ’iEAl,jEAQ};

i Y5
Vo1 = {U?,Ul-l ’ 1€ Al,j S AQ}.

It is clear that Vi3 N Vo = 0 and Vi3 U Vag = V(G); Via N Vo = 0 and V(G) =
Vig U V.

First assume that all h, k, [ are even. Let G171 = G[VH] and Gag = G[Va2]. Then
it is not difficult to verify that ¢ : Vi1 — Vao, v;- — v;. 4o is an isomorphism
between GG11 and G9o. Furthermore, GG11 and Gog are isomorphic to the cubic
metacirculant graph H = Mc(z,g,—l,sg,sg) with S = 0, S| = {I',K,1'},

h k l
where b/ = 5 K = 3 ' = 7 Since ged(h — k, k — 1, %) =1, we have ged(h/ —

KK -1, g) = 1. Therefore the graph H is connected. As in Case 1, we can

show that H is a Cayley graph on a dihedral group of order g By Theorem 2.2,

H has a Hamilton cycle. This implies that G11; has a Hamilton path P with the
endvertices v? and vjl-, where j — ¢ € S1. Then ¢(P) is a Hamilton path of Gay

with the endvertices v (v)) = v?+£ and 1/}(11}-) = vjl.Jrﬁ. Since in G v is adjacent
2 2

to U?Jrﬁ and vjl- is adjacent to vjl. L it is not difficult to construct a Hamilton
2 2

0,0 1,1

cycle of G from P, ¢(P) and the edges v; Vipns VU

Now assume that all h, k,l are odd. Let G1a2 = G[Vi2] and Ga1 = G[Va1]. By

considering G12 and G921 with arguments similar to those above, we can show that

the graph G has a Hamilton cycle. Lemma 3.5 has been proved completely. [

Next we consider which connected tetravalent metacirculant graph
G = MC(m,n,a,So,...,S,) with Sp # 0 and m = 1 or 2 has a Hamilton
cycle.

Theorem 3.1. Let G = MC(m,n,a, Sy, S1,...,5,) be a connected tetravalent
metacirculant graph with Sy # 0 and m =1 or 2. Then G possesses a Hamilton
cycle.

Proof. Let G = MC(m,n,a, So, S1,...,S,) be a connected tetravalent metacir-
culant graph with Sy # @ and m = 1 or 2. By Theorem 2.1, only one of the
following cases may happen:

(1) m =1, Sp = {£s,+r} and ged(s,r,n) = 1;
(2) m =2, nis even, Sy = {:t s, g}, S1 = {k} and gcd(s, g) =1;
(3) m =2, Sp = {=£s}, S1 ={k,l} and ged(s,k —,n) =1,
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(4) m =2, n is even, So = {g}, Sy = {h,k,1} and ged(h — k, k — I, g) —1.
Now Theorem 3.1 is implied from Lemmas 3.1, 3.3, 3.4, 3.5. O

Finally we consider which connected tetravalent metacirculant graph G =
MC(m, n,a,S,S1,...,8,) with Sg # 0 and m > 2 has a Hamilton cycle.
For this case, we obtain the following result.

Theorem 3.2. Let G = MC(m,n,a, Sy, S1,...,S5,) be a connected tetravalent
metacirculant graph with So # 0, m > 2 and both m and n are odd. Then G
possesses a Hamilton cycle.

Proof. Let G = MC(m,n,a, Sy, S1,...,S,) be a graph satisfying the hypothesis.
Then m > 3. By Theorem 2.1, we must have Sy = {£s}, S; = {k} for some
i € {1,2,...,p} such that gcd(i,m) =1, S; = 0 for any ¢ # j € {1,2,...,u}
and ged(s,r,n) =1 where

r=k(l+a +a¥ 4 +am i,

Let G' = MC(m,n,d, S, Sy, ... ,S),) be a metacirculant graph with

V(G = {ug |z e Zy, ye Zn}
and o/ = of, S) =Sy, S} = S;, Sy =8, == S, = 0. We will prove that the
graph G is isomorphic to the graph G'.

Consider the mapping ¢ : V(G) — V(G’), U;’i — uy. Since ged(i,m) = 1, we
can see that ¢ is a bijection. Further, let v?j’v,’i”r € E(G). Then we must have
either r =i and (h —y) € a®S; or r =0 and (h —y) € a®S.

Ifr=iand (h—y) € oz'“'Si, then go(vgi)go(v}f”i) = uguflﬂ with (h—y) € a®S;.
This means (h —y) € (a*)*S;. So (h —y) € (¢/)*S]. Thus uguffl is an edge of
G'. If r =0 and (h —y) € a®'Sp, then we have

(v )p(vi ™)

with (h—y) € a®Sp = (a/)*Sj. Thus ufuf is also an edge of G’. Similarly, we can

= uyup,
verify that if ugu}f“ is an edge of G’ then cp_l(ug)ap_l(uf”) is also an edge of G.
Thus, ¢ is an isomorphism from G onto G’. So, without loss of generality, we may
assume that the graph G is the graph MC(m,n,«, So, S1,...,S,) with m > 2
odd, n odd, Sp = {£s}, S1 = {k}, S =S3=... =S5, =0 and ged(s,r,n) =1,
where 7 is k(1 + a4 o + ... + o™ D),

Let p be the automorphism of G defined by p(vj-) = v} 41+ Then p is semiregular.
If ged(s,n) = d then the automorphism 3 = p® is also semiregular. The orbit of
(B) containing the vertex v} is

‘/j’l = {’U;','U;+d,'l);~+2d, e ,’U;-+(%71)d}.
On the other hand, the subsets
{O,d, 2d, ... ,(% — l)d} and {O,ais,2ozis, e ,(% - 1) ozis}
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of Z,, coincide with each other. So G [Vﬂ is the cycle

vjvj+aisvj+2ais tet UjJr(%fl)aisvj

forany : =0,1,...,(m—1)and 7 =0,1,...,(d —1).
: 2d ()i — i : j _
If the automorphism ( has order 2, then p (v;) = fu;-. This means v;- yoq =

v§ < 2d = 0 (mod n). This is impossible because n is odd and d is a proper
divisor of n.

Consider the quotient graph G/3. We have V(G/f3) = {VJZ li€e Z,, j€ Zd}
and two vertices of G/ are adjacent in G/ if and only if there is an edge in G
joining a vertex of one corresponding orbit to a vertex of the other orbit of (3).
Since G is connected, the graph G/ is also connected. Moreover, since G [VJZ] is
a cycle and G is tetravalent, G/ is a regular graph of degree 2. It follows that
G/p is a cycle. We have |V (G/f3)| = md with m odd and d a divisor of n. So
|V(G/B)| is odd. By Theorem 2.4 we conclude that G has a Hamilton cycle. The
proof of Theorem 3.2 is complete. 0
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