GENERAL FORM OF LINEAR FUNCTIONALS ON HARDY SPACES

BUI KHOI DAM

Dedicated to Prof. Nguyen Duy Tien on the oscasion of his 60th birthday

ABSTRACT. In this note, we give a general form of linear functionals on martingale Hardy spaces \mathcal{H}_{Φ} , where the Young function Φ has finite power and its conjugate function Ψ is of the form $\Psi(x) = \Psi_1(x^2)$ with Ψ_1 being also a Young function. Moreover, we discuss the relationship between the martingale Hardy space \mathcal{H}_{Φ} and the spaces \mathcal{K}_{Ψ} .

1. INTRODUCTION

Fefferman [4] has proved that the dual space of the Hardy space \mathcal{H}_1 is the BMO-space (the space of functions of bounded mean oscillation, which in turn, has been treated by John and Nirenberg [7]). The generalizations of the above result were obtained by Garsia [5], who investigated the Hardy spaces \mathcal{H}_p with $1 \leq p < +\infty$. He has shown that the dual of \mathcal{H}_p is the so called \mathcal{K}_q space, where $1 \leq p \leq 2$ and $p^{-1} + q^{-1} = 1$. Later on, Mogyorodi [9] and Bui K. D. [1], [2] have generalized these results to the martingale Hardy space \mathcal{H}_{Φ} . In [1], it was showed that the dual space of the martingale Hardy space \mathcal{H}_{Φ} is the space \mathcal{H}_{Ψ} , where Φ and Ψ are conjugate Young functions and both have finite power. However, the condition saying that the function Ψ has finite power can be omitted if we suppose that $\Phi(x) = \Phi_1(x^2)$ with Φ_1 is also Young function having finite power (see [2]). For a martingale Hardy space with the continuous time, it was treated by Dellacherie and Meyer [3], and Weise [12].

In this paper, we give a general form of a bounded, linear functional on the Hardy space \mathcal{H}_{Φ} under the condition that Φ has finite power and the conjugate function Ψ has the form $\Psi(x) = \Psi_1(x^2)$ with Ψ_1 being a Young function (need not to have finite power). Moreover, we investigate the relationship between \mathcal{H}_{Φ} and \mathcal{K}_{Ψ} in some special cases.

Received March 13, 2002; in revised form March 20, 2003.

¹⁹⁹¹ Mathematics Subject Classification. 60 F 05.

 $K\!ey\ words\ and\ phrases.$ Martingale Hardy space, Young function, Orlicz space.

This work was supported by the National Research Program in Natural Sciences.

BUI KHOI DAM

2. Preliminaries and notations

Let $\phi(t)$ be a nondecreasing and left-continuous function defined on the interval $[0, \infty)$ such that $\phi(0) = 0$ and $\lim_{t \to +\infty} \phi(t) = +\infty$. For $x \ge 0$ define

$$\Phi(x) = \int_0^x \phi(t) dt$$

Then Φ is a continuous convex increasing function on R_+ . It is called a Young function. The power p of Φ will be defined as follows:

$$p = \sup_{x>0} \frac{x\phi(x)}{\Phi(x)} \cdot$$

We say that Φ has finite power if $p < \infty$.

Now we define the generalized inverse function ψ of the function ϕ as follows:

$$\psi(u) = \sup(s > 0 : \phi(s) < u)$$
 if $u > 0$

and

$$\psi(0) = 0.$$

It is easy to see that ψ is also nondecreasing, left-continuous function and $\lim_{t\to+\infty} \psi(t) = +\infty$. The indefinite integral of this function

$$\Psi(x) = \int\limits_0^x \psi(u) du,$$

is also a continuous convex increasing function on R_+ (it is called the conjugate Young function of the function Φ). A pair of such functions (Φ, Ψ) is called a pair of Young's functions and the function Ψ (resp. Φ) is said to be conjugate to Φ (resp. Ψ). The following lemma shows that the function Φ has finite power if and only if it satisfies the condition Δ_2 (see [11]).

Lemma 2.1. For every Young function Φ , the following conditions are equivalent:

(a) $\sup_{t>0} (\Phi(a.t)/\Phi(t)) < \infty$ for some a > 1, (b) $\sup_{t>0} (\phi(a.t)/\phi(t)) < \infty$ for some a > 1, (c) $\sup_{t>0} (t.\phi(t)/\Phi(t)) < \infty$.

We give two examples concerning Young's functions.

Example 2.1. a) If we put $\Phi_{\alpha}(t) = (1 + \alpha)^{-1} t^{1+\alpha}$ for $t \in R_+$ and for every $\alpha \in [0, \infty)$, then the functions Φ_{α} and $\Phi_{1/\alpha}$ form a pair of Young functions (note that $\phi_{\alpha}(t) = t^{\alpha}$).

b) The pair

$$\Phi_1(t) = e^t - 1 - t, \quad \Psi_1(v) = (1 + v)\ln(1 + v) - v; \ t, v \in R_+$$

are conjugate Young functions.

Note that Φ has finite power, but the exponential function Φ_1 does not.

Let (Ω, \mathcal{F}, P) be a probability space and let $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$ be a sequence of sub- σ -fields of \mathcal{F} such that $\mathcal{F}_{\infty} = \sigma(\bigcup_{n=0}^{\infty} \mathcal{F}_n) = \mathcal{F}$. Consider a random variable $X \in L_1 = L_1(\Omega, \mathcal{F}, P)$ and the martingale $X_n = E(X|\mathcal{F}_n), n = 0, 1, \ldots$ For the sake of commodity we suppose that $X_0 = 0$ a.s.. Denote by $d_0 = 0, d_i = X_i - X_{i-1}, i = 1, 2, \ldots$, the corresponding martingale differences.

Definition 2.1. The random variable X belongs to the family $L_{\Phi}(\Omega, \mathcal{F}, P)$ if there exists a positive constant a such that

$$E[\Phi(a^{-1}|X|)] \le 1.$$

In this case we define

$$||X||_{\Phi} = \inf\{a > 0 : E[\Phi(a^{-1}|X|)] \le 1\}.$$

Note that $\|.\|_{\Phi}$ is a norm on $L_{\Phi}(\Omega, \mathcal{F}, P)$ and the normed vector space $L_{\Phi}(\Omega, \mathcal{F}, P)$ is called an Orlicz space.

Definition 2.2. We say that the random variable $X \in L_1$ belongs to the Hardy space \mathcal{H}_{Φ} generated by the Young function Φ if the random variable

$$S = S(X) = \left(\sum_{i=1}^{\infty} d_i^2\right)^{1/2}$$

belongs to L_{Φ} , where L_{Φ} is the Orlicz space generated by the Young function Φ .

It is easy to show that \mathcal{H}_{Φ} with the norm

$$||X||_{\mathcal{H}_{\Phi}} = ||S(X)||_{\Phi}$$

is a Banach space.

Definition 2.3. For $X \in L_1$ define the families Γ_X^{Φ} and $\widetilde{\Gamma}_X^{\Phi}$ of the random variables by setting

$$\Gamma_X^{\Phi} = \{ \gamma : \gamma \in L_{\Phi}, E(|X - X_{n-1}| | \mathcal{F}_n) \le E(\gamma | \mathcal{F}_n) \quad \text{a.s.} \quad \forall n \ge 1 \},$$

$$\widetilde{\Gamma}_X^{\Phi} = \{ \gamma : \gamma \in L_{\Phi}, E(|X - X_{n-1}|^2 | \mathcal{F}_n) \le E(\gamma^2 | \mathcal{F}_n) \quad \text{a.s.} \quad \forall n \ge 1 \}.$$

Let

$$\|X\|_{\mathcal{K}_{\Phi}} = \inf_{\gamma \in \Gamma_X^{\Phi}} \|\gamma\|_{\Phi}$$

if Γ_X^{Φ} is not empty and $||X||_{\mathcal{K}_{\Phi}} = +\infty$ if $\Gamma_X^{\Phi} = \emptyset$. Similarly, let

$$\|X\|_{\tilde{\mathcal{K}}_{\Phi}} = \inf_{\gamma \in \tilde{\Gamma}_{X}^{\Phi}} \|\gamma\|_{\Phi}$$

if $\widetilde{\Gamma}_X^{\Phi}$ is not empty and $\|X\|_{\widetilde{\mathcal{K}}_{\Phi}} = +\infty$ if $\widetilde{\Gamma}_X^{\Phi} = \emptyset$.

We say that $X \in \mathcal{K}_{\Phi}$ (resp. $X \in \widetilde{\mathcal{K}}_{\Phi}$) with the norm $||X||_{\mathcal{K}_{\Phi}}$ (resp. $||X||_{\widetilde{\mathcal{K}}_{\Phi}}$) if Γ_X^{Φ} (resp. $\widetilde{\Gamma}_X^{\Phi}$) is nonempty.

Remark 2.1. In the case $\Phi(x) = x^p$ with $2 \leq p \leq +\infty$ the definition of the spaces \mathcal{K}_{Φ} is equivalent to the definition of $\widetilde{\mathcal{K}}_{\Phi}$ space.

The problem of finding a general form of lineal functional on Hardy space was solved for such a cases, as both functions Φ and Ψ have finite power or Φ has finite power and $\Phi(x) = \Phi_1(x^2)$ with $\Phi_1(x)$ being also Young function but Ψ does not. These results can be found in [1], [2], [9].

Theorem 2.1. (See [1, p. 291]) Let Φ, Ψ be a pair of conjugate Young functions and suppose that both of them have finite power. Then the dual space of the Hardy space \mathcal{H}_{Φ} is the space \mathcal{K}_{Ψ} .

Theorem 2.2. (See [2, Theorem 3.2., p. 59]) Let Φ, Ψ be a pair of conjugate Young functions.

i) For every $X \in \mathcal{H}_{\Phi}$ and $Y \in \mathcal{H}_{\Psi}$ we have

$$|E(X_nY_n)| \le 2||X_n||_{\mathcal{H}_{\Phi}}||Y_n||_{\mathcal{H}_{\Psi}} \qquad \forall n \ge 1.$$

Further, $\lim_{n \to +\infty} E(X_n Y_n)$ exists, it is finite and

$$\left|\lim_{n \to +\infty} E(X_n Y_n)\right| \le 2 \|X\|_{\mathcal{H}_{\Phi}} \|Y\|_{\mathcal{H}_{\Psi}}.$$

ii) Suppose that Φ is of the form $\Phi(x) = \Phi_1(x^2)$, where $\Phi_1(x)$ itself is a Young function having finite power p. If F is a bounded, linear functional on \mathcal{H}_{Φ} , i.e.,

$$|F(X)| \le B \|X\|_{\mathcal{H}_{\Phi}}$$

for some constant B > 0. Then there exists $Y \in \mathcal{H}_{\Psi}$ such that

$$\|Y\|_{\mathcal{H}_{\Psi}} \le \sqrt{2}(2\sqrt{p}+1)E$$

and

$$\lim_{n \to +\infty} E(X_n Y_n) = F(X), \quad \forall X \in \mathcal{H}_{\Phi}.$$

Theorem 2.3. (See [9]) Suppose that Φ, Ψ is a pair of conjugate Young functions such that Φ has finite power and Ψ is of the form $\Psi(x) = \Psi_2(x^2)$ where $\Psi_2(x)$ itself is also a Young function. Then the dual space of the Hardy space \mathcal{H}_{Φ} is the space $\widetilde{\mathcal{K}}_{\Psi}$.

3. Results

Now we present the main results.

Theorem 3.1. Let Φ, Ψ be a pair of conjugate Young functions such that

(i) Φ has finite power,

(ii) Ψ is of the form $\Psi(x) = \Psi_2(x^2)$ where Ψ_2 itself is also Young function and Ψ has a continuous derivative.

Then the dual space of the Hardy space \mathcal{H}_{Φ} is the space \mathcal{K}_{Ψ} .

262

Proof. First of all, we show that the function Φ_2 , which is conjugate function of the function Ψ_2 , has finite power. Note that Ψ_2 has also continuous derivative since Ψ has. Furthermore,

$$\psi_2(t) = \frac{\psi(\sqrt{t})}{2\sqrt{t}}, \quad t > 0.$$

By Theorem 4.3 of [7, p. 27] this implies

$$\frac{t\psi_2(t)}{\Psi_2(t)} = \frac{1}{2} \cdot \frac{\sqrt{t}\psi(\sqrt{t})}{\Psi(\sqrt{t})} > a, \quad a > 0,$$

since Φ has finite power. Again, by the above equality and Theorem 4.3 of [7] we deduce that Φ_2 has finite power.

Let us denote the power of Φ (resp. of Φ_2) by p (resp. p_2). Suppose $X \in \mathcal{H}_{\Phi}$, $Y \in \mathcal{K}_{\Psi}$. Denote $X_n = E(X|\mathcal{F}_n)$ and $Y_n = E(Y|\mathcal{F}_n)$. Then there exists a positive constant C_{Φ} depending only on Φ such that the following Feffermanntype inequality is true (see [8]):

$$|E(X_nY_n)| \le C_{\Phi} \cdot ||X_n||_{\mathcal{H}_{\Phi}} ||Y_n||_{\mathcal{K}_{\Psi}}$$

Moreover, the limit $\lim_{n \to +\infty} E(X_n Y_n)$ exists and satisfies the condition

$$\left|\lim_{n \to +\infty} E(X_n Y_n)\right| \le C_{\Phi} \cdot \|X\|_{\mathcal{H}_{\Phi}} \|Y\|_{\mathcal{K}_{\Psi}}.$$

So if $Y \in \mathcal{K}_{\Psi}$ is fixed and X runs on \mathcal{H}_{Φ} , then $F(X) = \lim_{n \to +\infty} E(X_n Y_n)$ is a continuous linear functional on \mathcal{H}_{Φ} with a norm not exceeding $||Y||_{\mathcal{K}_{\Psi}}$.

Conversely, let F be a bounded linear functional on \mathcal{H}_{Φ} , i.e.,

$$|F(X)| \le B \cdot ||X||_{\mathcal{H}_{\Phi}}, \quad X \in \mathcal{H}_{\Phi}, \quad 0 < B < +\infty.$$

By Theorem 2 of [9], there exists $Y \in \widetilde{\mathcal{K}}_{\Psi}$ with $||Y||_{\widetilde{\mathcal{K}}_{\Psi}} \leq 2.p.B$ such that

$$F(X) = \lim_{n \to +\infty} E(X_n Y_n)$$

for all $X \in \mathcal{H}_{\Phi}$.

Now we show that Y also belongs to the \mathcal{K}_{Ψ} -space. Let $\gamma \in \widetilde{\Gamma}_{Y}^{\Psi}$. Since $\gamma \in L_{\Psi}(R)$, there exists a real number a > 0 such that $E\Psi(a^{-1}|\gamma|) \leq 1$. But $\Psi(x) = \Psi_2(x^2)$, thus $E\Psi_2(a^{-2}\gamma^2) \leq 1$. So $\gamma^2 \in L_{\Psi_2}(R)$ and $\|\gamma^2\|_{\Psi_2} \leq \|\gamma\|_{\Psi}^2$. Consider the martingale $\{E(\gamma^2|\mathcal{F}_n)\}_{n>0}$ and denote

$$\gamma^{\star} = \sup_{n \ge 0} E(\gamma^2 | \mathfrak{F}_n).$$

Using the maximal inequality for martingales on the Orlicz space L_{Ψ_2} with the note that the function Φ_2 , the conjugate function of the function Ψ_2 , has the power p_2 (see [10]), we have

$$\|\gamma^{\star}\|_{\Psi_{2}} \le p_{2} \cdot \|\gamma^{2}\|_{\Psi_{2}} \le p_{2} \cdot \|\gamma\|_{\Psi}^{2}.$$

It is easy to see that

$$E(|Y - Y_{n-1}||\mathcal{F}_n) \le (E(|Y - Y_{n-1}|^2|\mathcal{F}_n))^{1/2} \le \le (E(\gamma^2|\mathcal{F}_n))^{1/2} \le (\gamma^*)^{1/2} \quad \text{a.s.}, \quad n \ge 1.$$

Taking conditional expectation of both sides of the above inequality, we get

$$E(|Y - Y_{n-1}||\mathfrak{F}_n) \le E(\sqrt{\gamma^{\star}}|\mathfrak{F}_n) \quad \text{a.s.} \quad n \ge 1,$$

On the other hand, $\gamma^* \in L_{\Psi_2}$; thus $\sqrt{\gamma^*} \in L_{\Psi}(R)$ and

$$\|\sqrt{\gamma^{\star}}\|_{\Psi} \leq \sqrt{\|\gamma^{\star}\|}_{\Psi_2} \leq \sqrt{p_2}\|\gamma\|_{\Psi}.$$

Consequently, $Y \in \mathcal{K}_{\Psi}$ and

$$\|Y\|_{\mathcal{K}_{\Psi}} \le \sqrt{\|\gamma^{\star}\|}_{\Psi} \le \sqrt{p_2} \|\gamma\|_{\Psi}.$$

Since this inequality holds for all $\gamma \in \widetilde{\Gamma}_{Y}^{\Psi}$, we have

$$\|Y\|_{\mathcal{K}_{\Psi}} \leq \sqrt{p_2} \cdot \|Y\|_{\tilde{\mathcal{K}}_{\Psi}} \leq 2p\sqrt{p_2}B.$$

The proof of Theorem 3.1 is completed.

Theorem 3.2. Let Φ, Ψ be a pair of conjugate Young functions such that Φ has finite power.

(i) If Φ is of the form $\Phi(x) = \Phi_1(x^2)$, where Φ_1 is also Young function, then \mathcal{K}_{Ψ} is a subspace of the space \mathcal{H}_{Ψ} and

$$||Y||_{\mathcal{H}_{\Psi}} \le A_{\Psi} \cdot ||Y||_{\mathcal{K}_{\Psi}} \quad for \ all \quad Y \in \mathcal{K}_{\Psi}$$

where A_{Ψ} is a constant depending only on Ψ

(ii) If Ψ is of the form $\Psi(x) = \Psi_2(x^2)$, where Ψ_2 is also Young function and Ψ has continuous derivative, then \mathcal{H}_{Ψ} is a subspace of the space \mathcal{K}_{Ψ} and

$$||Y||_{\mathcal{K}_{\Psi}} \le B_{\Psi}.||Y||_{\mathcal{H}_{\Psi}} \quad for \ all \quad Y \in \mathcal{H}_{\Psi},$$

with B_{Ψ} being a constant depending only on Ψ .

Proof. (i) Let $Y \in \mathcal{K}_{\Psi}$. The formula

$$F_Y(X) = \lim_{n \to +\infty} E(X_n Y_n), \quad (X \in \mathcal{H}_{\Phi})$$

defines a bounded linear functional on \mathcal{H}_{Φ} and $|F_Y(X)| \leq C_{\Phi} \cdot ||Y||_{\mathcal{K}_{\Psi}} ||X||_{\mathcal{H}_{\Phi}}$ for all $X \in \mathcal{H}_{\Phi}$, where C_{Φ} is a constant depending only on Φ . By Theorem 2.1, there exists $Z \in \mathcal{H}_{\Psi}$ such that

$$F_Y(X) = \lim_{n \to +\infty} E(X_n Z_n)$$

for all $X \in \mathcal{H}_{\Phi}$ with $Z_n = E(Z|\mathcal{F}_n) \quad \forall n \ge 1 \text{ and } \|Z\|_{\mathcal{H}_{\Psi}} \le \sqrt{2}(2\sqrt{2p}+1)\|F_Y\|.$

The above inequalities imply that Y = Z a.s.. So $\mathcal{K}_{\Psi} \subset \mathcal{H}_{\Psi}$ and

$$\|Y\|_{\mathcal{H}_{\Psi}} \le \sqrt{2}C_{\Phi}(2\sqrt{2p}+1)\|Y\|_{\mathcal{K}_{\Psi}}.$$

(ii) Let $Y \in \mathcal{H}_{\Psi}$ be fixed and let $X \in \mathcal{H}_{\Phi}$. Denote

$$\Delta X_i = X_i - X_{i-1}, \quad i = 1, 2, \dots : \Delta Y_j = X_j - X_{j-1}, \quad j = 1, 2, \dots$$

Using the Cauchy-Schwartz inequality, we have

$$\left(\sum_{i=1}^{n} \Delta X_i \Delta Y_i\right)^2 \le \left[\sum_{i=1}^{n} (\Delta X_i)^2\right] \left[\sum_{i=1}^{n} (\Delta Y_i)^2\right].$$

Combining the above inequality with Hölder's inequality for conjugate Young functions, we get

$$|E(X_nY_n)| = \left|\sum_{i=1}^n E(\Delta X_i \Delta Y_i)\right| = \left|E\left(\sum_{i=1}^n \Delta X_i \Delta Y_i\right)\right|$$
$$\leq E\left(\left[\sum_{i=1}^n (\Delta X_i)^2\right]^{1/2} \left[\sum_{j=1}^n (\Delta Y_j)^2\right]^{1/2}\right)$$
$$\leq 2\left\|\left[\sum_{i=1}^n (\Delta X_i)^2\right]^{1/2}\right\|_{\Phi} \left\|\left[\sum_{j=1}^n (\Delta Y_j)^2\right]^{1/2}\right\|_{\Psi}$$

Note that $\{E(X_nY_n)\}_{n\geq 1}$ is a Cauchy sequence since for $m\geq n$ we have

$$|E(X_m Y_m) - E(X_n Y_n)| = \left| E\left(\sum_{i=n+1}^m \Delta X_i \Delta Y_i\right) \right| \le$$
$$\le \left\| \left[\sum_{i=n+1}^m (\Delta X_i)^2\right]^{1/2} \right\|_{\Phi} \left\| \left[\sum_{j=n+1}^m (\Delta Y_j)^2\right]^{1/2} \right\|_{\Psi} \to 0$$

as $n \to +\infty$. Therefore $\lim_{n \to +\infty} E(X_n Y_n)$ exists and

$$\left|\lim_{n \to +\infty} E(X_n Y_n)\right| \le 2 \|X\|_{\mathcal{H}_{\Phi}} \|Y\|_{\mathcal{K}_{\Psi}}.$$

Define the functional

$$F_Y(X) = \lim_{n \to +\infty} E(X_n Y_n), \quad X \in \mathcal{H}_{\Phi}.$$

It is easy to see that $F_Y(.)$ is a linear and bounded functional on \mathcal{H}_{Φ} and $||F_Y|| \le 2||Y||_{\mathcal{H}_{\Psi}}$.

Using Theorem 3.1 we deduce that there exists $Z \in \mathcal{K}_{\Psi}$ such that

$$F_Y(X) = \lim_{n \to +\infty} E(X_n Z_n), \quad X \in \mathcal{H}_{\Phi}.$$

Combining the above equalities, we get

$$\lim_{n \to +\infty} E(X_n Y_n) = \lim_{n \to +\infty} E(X_n Z_n) \quad \forall X \in \mathcal{H}_{\Phi}.$$

This implies Y = Z a.s.. So $\mathcal{H}_{\Psi} \subset \mathcal{K}_{\Psi}$.

Our proof is completed.

Remark 3.1. From the part (i) we have

$$||Y||_{\mathcal{H}_{\Psi}} = ||S(Y)||_{\Psi} \le 2.A_{\Psi} ||Y^{\star}||_{\Psi}$$

for all $Y \in \mathcal{K}_{\Psi}$.

BUI KHOI DAM

References

- [1] Bui Khoi Dam, The dual of the martingale Hardy space \mathcal{H}_{Φ} with general Young function Φ , Analysis Math. 14 (1988), 287-294.
- [2] Bui Khoi Dam, Connection between the BMO- and the \mathcal{K}_{Φ} -spaces, Annals Univ. Sci. Budapest, Sect. Comp. 9 (1988), 51-66.
- [3] C. Dellacherie, P. A. Meyer, *Probabilities and potential* A., North-Holland Math. Studies 29, North-Holland, 1978.
- [4] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587-588.
- [5] A. M. Garsia, *Martingale Inequalities*, Benjamin, Reading, Massachusetts, 1973.
- [6] S. Ishak and J. Mogyorodi, On the generalization of the Fefferman-Garsia inequality, Stochastic Differential Systems, Lecture Notes In Control and Information Sciences, Vol. 36, Springer, Berlin, pp. 85-97, 1981.
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 17 (1961), 415-426.
- [8] M. A. Krasnoselskii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen, Noordhoff, 1961.
- J. Mogyorodi, *Linear functional on Hardy spaces*, Annals Univ. Sci. Budapest, Sect. Math. 26 (1983), 161-174.
- [10] J. Mogyrodi and T. F. Mori, Necessary and sufficient condition for the maximal inequality of convex Young functions, Acta Sci. Math. 45 (1983), 325-332.
- [11] J. Neveu, Discrete parameter martingales, North-Holland, Amsterdam 1973.
- [12] F. Weisz, Martingales Hardy spaces with continuous time, In "Probability Theory and Applications, Essays to the Memory of Jozsef Mogyorodi", (J. Galambos and I. Katai, Eds.) Kluwer Academic Publishers, Dordrecht, pp. 47-75, 1992.

FACULTY OF APPLIED MATHEMATICS, HANOI UNIVERSITY OF TECHNOLOGY