OPTIMALITY CONDITIONS IN REVERSE CONVEX OPTIMIZATION

M. LAGHDIR

ABSTRACT. Necessary and sufficient optimality conditions associated with the problem of minimizing a convex function subject to a reverse convex constraint are obtained in this paper.

1. INTRODUCTION

In the present work, our main objective is to establish optimality conditions for the problem of minimizing an extended real-valued convex function over the complement of a convex subset, called usually reverse convex programming. This wide class of problems has received recently particular attention from the point of view of duality (see [7] and [8]).

More generally, we will study the problem in a large class of objective function that can be written as difference of a convex function and an extended real function. More precisely, let X be a topological vector space, $f_1, f_2 : X \longrightarrow \mathbb{R} \cup \{-\infty, +\infty\}$ be two extended real-valued functions with f_1 being convex and S be a nonempty convex subset of X, we are concerned with the problem

$$(\mathcal{P}) \quad \inf_{X \setminus S} \{ f_1(x) - f_2(x) \}.$$

Naturally, this class of problems covers the class of reverse programming problems by taking f_2 identically equal to zero.

Firstly, we shall establish necessary conditions for an extremum of the problem (\mathcal{P}) in the case where f_2 is supposed strictly Hadamard differentiable. Secondly, we will state the sufficient conditions when the objective function is DC (that is f_1 and f_2 are both convex).

The paper is organized as follows. In Section 2 we recall some definitions and notations. In Section 3 we establish the necessary and sufficient optimality conditions associated to the problem (\mathcal{P}) . Finally, in Section 4 we give an illustration of the problem (\mathcal{P}) where the reverse constraint is termed by a mapping taking its values in a partially ordered topological vector space.

Received September 19, 2002; in revised form December 4, 2002.

¹⁹⁹¹ Mathematics Subject Classification. 90C48, 49N15, 90C26.

Key words and phrases. Optimality conditions, reverse convex constraint, DC-optimization.

M. LAGHDIR

2. Definitions and notations

Let (X, || ||) be a normed real vector space. A function $f : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is said to be locally Lipschitz at point $\bar{x} \in \text{dom } f$ if there exist some neighbourhood V of \bar{x} and k > 0 satisfying

$$|f(x) - f(y)| \le k ||x - y||, \qquad \forall x, y \in V.$$

In [3], it was shown that when f is locally Lipschitz, the generalized directional derivative

$$v \longrightarrow f^{0}(\bar{x}, v) := \limsup_{\substack{x \to \bar{x} \\ t \to 0^{+}}} \frac{f(x + tv) - f(x)}{t},$$

is, for each $\bar{x} \in \text{dom } f$, a finite sublinear function. The following set

$$\partial^c f(\bar{x}) := \{ x^* \in X^* : \langle x^*, x \rangle \le f^0(\bar{x}, v), \quad \forall v \in X \}$$

called generalized subdifferential or Clarke's subdifferential, is a nonempty convex $\sigma(X^*, X)$ -compact subset of X^* . When f is convex and continuous at \bar{x} then f is locally Lipschitz and $f'(\bar{x}, v) = f^0(\bar{x}, v)$ for any $v \in X$ where $v \longrightarrow f'(\bar{x}, v)$ is the usual directional derivative defined by

$$v \longrightarrow f'(\bar{x}, v) := \lim_{t \to 0^+} \frac{f(\bar{x} + tv) - f(\bar{x})}{t},$$

and therefore, $\partial^c f(\bar{x})$ is exactly the subdifferential of f in the sense of the convex analysis, usually denoted by $\partial f(\bar{x})$.

Following [11], we say that f is strictly Hadamard differentiable (with gradient $\nabla f(\bar{x})$) if it is finite on a neighbourhood of \bar{x} and for arbitrary $v \in X$, the function

$$(x,t) \longrightarrow \frac{f(x+tv) - f(x)}{t} - \langle \nabla f(\bar{x}), v \rangle$$

converges to zero uniformly on all compact v-sets as $t \longrightarrow 0^+$ and $x \longrightarrow \bar{x}$.

Let S be a nonempty subset of X and consider its distance function, that is the function $d_S: X \longrightarrow [0, +\infty[$ defined, for any $x \in X$, by

$$d_S(x) := \inf_{y \in S} ||x - y||.$$

The Clarke's normal cone to S at \bar{x} is given by

$$N_S^c(\bar{x}) := \operatorname{cl}\Big(\bigcup_{\lambda \ge 0} \lambda \partial^c d_S(\bar{x})\Big),$$

where "cl" stands for weak star closure in X^* . If S is convex then $N_S^c(\bar{x})$ coincides with the closed normal cone $N_S(\bar{x})$ to S at \bar{x} in the sense of convex analysis.

Let us recall (see [9] and [10]) that a subset S is said to be epi-Lipschitzian at \bar{x} (\bar{x} is a cluster point of S) if there exist some neighbourhood V of \bar{x} , $\lambda > 0$ and a nonempty open subset O such that

$$x + ty \in S, \quad \forall x \in S \cap V, \quad \forall y \in O, \quad \forall t \in]0, \lambda[.$$

It was demonstrated in [10] that if S is epi-Lipschitzian at \bar{x} and \bar{x} is a boundary point of S then

$$N_{X\setminus S}^c(\bar{x}) = -N_S(\bar{x}).$$

As an example of epi-Lipschitzian subset one can take any nonempty open convex subset of X at any cluster point.

3. Optimality conditions

In this section we investigate the optimality conditions related to the problem (\mathcal{P}) . At first, we study the necessary optimality conditions given by the following proposition.

Proposition 3.1. Assume that f_1 is convex, finite and continuous at \bar{x} which is a local minimum of the problem (\mathcal{P}) and f_2 is supposed to be strictly Hadamard differentiable at \bar{x} , then we have

- (i) $\nabla f_2(\bar{x}) \in \partial f_1(\bar{x}) N_S(\bar{x})$ where \bar{x} is a boundary point to S.
- (ii) $\nabla f_2(\bar{x}) \in \partial f_1(\bar{x})$ where \bar{x} is a topological interior point of $X \setminus S$.

Proof. (i) By k > 0 we denote a common Lipschitz constant of f_1 and f_2 . As \bar{x} is a local minimum of (\mathcal{P}) , by Proposition 2.4.3 in Clarke [3], the function $x \longrightarrow f_1(x) - f_2(x) + kd_{X \setminus S}(x)$ attains its local minimum at \bar{x} . So

$$0 \in \partial^c (f_1 - f_2 + k d_{X \setminus S})(\bar{x}).$$

Applying the sum rule ([3]) we obtain

$$\nabla f_2(\bar{x}) \in \partial^c f_1(\bar{x}) + N^c_{X \setminus S}(\bar{x})$$

Since S is an open convex subset, it follows from [10] that it is epi-Lipschitzian at \bar{x} which is a boundary point to S. According to Rockafellar's result [10], we have

$$N_{X\setminus S}^c(\bar{x}) = -N_S(\bar{x}),$$

and thus we get

$$\nabla f_2(\bar{x}) \in \partial f_1(\bar{x}) - N_S(\bar{x})$$

(ii) If \bar{x} is an topological interior point of $X \setminus S$ then \bar{x} is indeed a local minimum of (\mathcal{P}) without constraint and therefore it results from Proposition 3.1 that $\nabla f_2(\bar{x}) \in \partial f_1(\bar{x})$.

Remark 3.1. 1) In Proposition 3.1, there is no difference to work on $f_1 - f_2$ or $f_1 + f_2$ provided f_2 is smooth.

2) In the above proof, we only need to assume that f_1 , f_2 are Lipschitz around \bar{x} , and S is epi-Lipschitzian. Of course the formula in (i) should be changed to

$$0 \in \partial^c f_1(\bar{x}) - \partial^c f_2(\bar{x}) - N_S^c(\bar{x}).$$

Before stating the sufficient conditions linked to the problem (\mathcal{P}) , we need first to recall some notions and results that will be used in the sequel. In [5],

Hiriarty-Urruty established that a necessary and sufficient conditions for \bar{x} to be a global solution of the following minimization problem

$$\inf_{x \in X} \{g(x) - h(x)\}$$

is that

(3.1)
$$\partial_{\varepsilon} h(\bar{x}) \subset \partial_{\varepsilon} g(\bar{x}), \quad \forall \varepsilon \ge 0,$$

where

$$\partial_{\varepsilon}f(\bar{x}):=\{x^*\in X^*: f(x)\geq f(\bar{x})+\langle x^*,x-\bar{x}\rangle-\varepsilon,\quad \forall x\in X\},$$

denotes the ε -subdifferential of the function $f : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ at \overline{x} and $g, h : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ are two proper convex lower semicontinuous functions. Also we will need the following result due to Hiriart-Urruty et al. [6].

Theorem 3.1. Suppose that $g, h : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ are convex, proper and lower semicontinuous and $\bar{x} \in \text{dom } g \cap \text{dom } h$. Then for all $\varepsilon > 0$, one has

$$\partial_{\varepsilon}(g+h)(\bar{x}) = \operatorname{cl}\Big(\bigcap_{\substack{\varepsilon_1 \ge 0, \varepsilon_2 \ge 0\\\varepsilon_1 + \varepsilon_2 = \varepsilon}} \partial_{\varepsilon_1}g(\bar{x}) + \partial_{\varepsilon_2}h(\bar{x})\Big)$$

where "cl" stands for topological closure operation with respect to weak star topology $\sigma(X^*, X)$.

Let S be a subset of X and let $\Delta_S : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ be the function defined, for any $x \in X$, by

$$\Delta_S(x) := d_S(x) - d_{X \setminus S}(x).$$

If S is empty, $\Delta_S \equiv +\infty$ and if S = X, $\Delta_S \equiv -\infty$. In other cases Δ_S is a Lipschitz function and its Lipschitz constant k = 1. In [5], Hiriart-Urruty proved that Δ_S is obtained by infimal convolution of a function μ_S given by

$$\mu_S(x) := \begin{cases} +\infty, & \text{if } x \in X \setminus S \\ -d_{X \setminus S}(x), & \text{if } x \in S \end{cases}$$

and the norm function $\| \|$. In [5], it was shown that S is convex if and only if μ_S is convex and hence Δ_S is convex. Let us consider the following auxiliary nonconvex minimization problem

$$(\mathcal{H}): \inf_{x \in X} \{f_1(x) - f_2(x) + d_{X \setminus S}(x)\}.$$

It is easy to check that if \bar{x} is both a boundary point of S and a global (resp. local) minimum of (\mathcal{H}) then it is also a global (resp. local) minimum of the problem (\mathcal{P}) .

Now, we can state the sufficient optimality conditions related to problem (\mathcal{P}) .

Proposition 3.2. Suppose that $f_1, f_2: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ are convex, proper and lower semicontinuous, S is a nonempty open convex subset of X and $\bar{x} \in \text{dom } f_1 \cap$ dom f_2 is a boundary point of S. If, for each $\varepsilon > 0$, we have

(3.2)
$$\partial_{\varepsilon} f_2(\bar{x}) + N_S(\bar{x}) \subset \partial_{\varepsilon} f_1(\bar{x})$$

then \bar{x} is a global minimum of (\mathcal{P}) .

Proof. As previously mentioned that S is an epi-Lipschitzian subset at \bar{x} and according again to Rokafellar's result [10] we have

$$N_{X\setminus S}^c(\bar{x}) = -N_S(\bar{x}),$$

and since

$$\partial^c d_{X \setminus S}(\bar{x}) \subset N^c_{X \setminus S}(\bar{x}),$$

it follows from (3.2) that

$$\partial_{\varepsilon} f_2(\bar{x}) - \partial^c d_{X \setminus S}(\bar{x}) \subset \partial_{\varepsilon} f_1(\bar{x}), \quad \forall \varepsilon > 0,$$

which implies

$$\partial_{\varepsilon} f_2(\bar{x}) + \partial d_S(\bar{x}) - \partial^c d_{X \setminus S}(\bar{x}) \subset \partial_{\varepsilon} f_1(\bar{x}) + \partial d_S(\bar{x}).$$

As

$$\partial \Delta_S(\bar{x}) \subset \partial d_S(\bar{x}) - \partial^c d_{X \setminus S}(\bar{x}),$$

we get

$$\partial_{\varepsilon} f_2(\bar{x}) + \partial \Delta_S(\bar{x}) \subset \partial_{\varepsilon} f_1(\bar{x}) + \partial d_S(\bar{x}), \quad \forall \varepsilon > 0,$$

which yields

(3.3)
$$\partial_{\varepsilon} f_2(\bar{x}) + \partial \Delta_S(\bar{x}) \subset \partial_{\varepsilon} (f_1 + d_S)(\bar{x}), \quad \forall \varepsilon > 0.$$

By virtue of Theorem 3.1 we have

(3.4)
$$\partial_{\varepsilon} (f_2 + \Delta_S)(\bar{x}) \subset \overline{\partial_{\varepsilon} f_2(\bar{x}) + \partial \Delta_S(\bar{x})}, \quad \forall \varepsilon > 0.$$

Since $\partial_{\varepsilon}(f_2 + \Delta_S)(\bar{x})$ and $\partial_{\varepsilon}(f_2 + d_S)(\bar{x})$ are both $\sigma(X^*, X)$ -closed, combining (3.3) and (3.4) we obtain

$$\partial_{\varepsilon} (f_2 + \Delta_S)(\bar{x}) \subset \partial_{\varepsilon} (f_1 + d_S)(\bar{x}), \quad \forall \varepsilon > 0.$$

Then, we deduce from (3.1) that \bar{x} is a global minimum of (\mathcal{H}) and since \bar{x} is a boundary point to S, it follows that \bar{x} is also a global minimum of (\mathcal{P}) .

M. LAGHDIR

4. Application

In the present section we apply the previously obtained results to the following minimization problem subject to a vector reverse convex constraint

$$(\mathcal{Q}) \quad \begin{cases} \inf f_1(x) - f_2(x) \\ h(x) \notin -\inf Y_+, \end{cases}$$

where f_1 and f_2 are two extended real-valued convex functions and $h: X \longrightarrow Y \cup \{+\infty\}$ is a convex and proper mapping taking values in a topological vector real space equipped with a partial ordered induced by a convex cone Y_+ and defined as

$$y_1 \leq_Y y_2 \iff y_2 - y_1 \in Y_+,$$

for any $y_1, y_2 \in Y$. By "int Y_+ " we denote the topological interior of the cone Y_+ . The convexity of the mapping h is taken with respect to the partial order in the following sense

$$h(\alpha x_1 + (1 - \alpha)x_2) \leq_Y \alpha h(x_1) + (1 - \alpha)h(x_2)$$

for any $\alpha \in [0,1]$ and any $x_1, x_2 \in X$. Let us notice that the mapping h be authorized to take the value $+\infty$ supposed the greatest element adjoined to $Y : y \leq +\infty, \forall y \in Y$.

For a given function $g: Y \longrightarrow \mathbb{R} \cup \{+\infty\}$ we denote by $g \circ h$ the composite function defined by

(4.1)
$$(g \circ h)(x) := \begin{cases} g(h(x)) & \text{if } x \in \text{dom } h \\ \sup_{y \in Y} g(y), & \text{otherwise.} \end{cases}$$

Throughout, we assume that the positive cone Y_+ is with nonempty topological interior and h is continuous. Let us consider the following subset S of X defined by

$$S := \{ x \in X : h(x) \in -\text{int } Y_+ \} = h^{-1}(-\text{int } Y_+),$$

and the following constraint qualification

$$(C.Q.S): \exists a \in X \text{ such that } h(a) \in -\text{int } Y_+,$$

called usually, the Slater condition. In the sequel, we shall need the following result (see [1]): Under the Slater condition (C.Q.S) we have

(4.2)
$$\partial(\delta_{-Y_{+}} \circ h)(\bar{x}) = \bigcup_{\substack{y^{*} \in Y_{+}^{*} \\ \langle y^{*}, h(\bar{x}) \rangle = 0}} \partial(y^{*} \circ h)(\bar{x}),$$

where Y_{+}^{*} is the polar positive cone defined as

$$Y_{+}^{*} := \{y^{*} \in Y^{*} : \langle y^{*}, y \rangle \ge 0, \ \forall y \in Y_{+}\}$$

and the symbol $\langle \ , \ \rangle$ denotes the bilinear pairing between Y and Y^* (resp. X and $X^*).$

Remark 4.1. Let us notice that the function $y \longrightarrow \delta_{-Y_+}(y)$ defined on Y be nondecreasing with respect to the partial order associated to the cone Y_+ (see [1]) i.e.

$$y_1 \leq_Y y_2 \Longrightarrow \delta_{-Y_+}(y_1) \leq \delta_{-Y_+}(y_2),$$

and also, it is easy to see that for a given Y_+ -convex mapping $h: X \longrightarrow Y \cup \{+\infty\}$, the composite function $\delta_{-Y_+} \circ h: X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is also convex. Indeed, (4.2) is a particular form of a general formula established by Combari et al. [1] (see also [2]) in the setting of partially ordered topological vector space by replacing the indicator function δ_{-Y_+} by a convex and Y_+ -nondecreasing function.

In order to derive the main results of this section, we will need the following lemma which characterizes the closure of the subset S.

Lemma 4.1. If we assume that the mapping $h: X \longrightarrow Y \cup \{+\infty\}$ is Y_+ -convex, continuous and the cone Y_+ is closed then under the Slater condition we have

$$\overline{S} = \{x \in X : h(x) \in -Y_+\}$$

where \overline{S} denotes the norm topological closure in X of the subset S.

Proof. It is obvious that $S \subset \{x \in X : h(x) \in -Y_+\}$. From the continuity of the mapping h and the fact that the cone Y_+ is closed, it follows that the subset $\{x \in X : h(x) \in -Y_+\}$ is closed and hence we obtain $\overline{S} \subset \{x \in X : h(x) \in -Y_+\}$.

Conversely, let us consider any $x \in X$ with $h(x) \in -Y_+$ and an element $a \in X$ satisfying $h(a) \in -\text{int } Y_+$ whose existence is guaranteed by the Slater condition. If we set $x_n := \frac{1}{n}a + (1 - \frac{1}{n})x$ for any integer $n \ge 1$, obviously the sequence $(x_n)_{n\ge 1}$ converges to x. By applying the convexity of the mapping h and the convexity of the cone Y_+ we obtain

$$h(x_n) \leq_Y \frac{1}{n}h(a) + (1 - \frac{1}{n})h(x) \in -int Y_+ - Y_+ \subset -int Y_+$$

which yields $x_n \in S$. Hence the equality

$$\overline{S} = \{x \in X : h(x) \in -Y_+\}$$

holds.

Now, we are ready to state the local necessary optimality conditions related to problem (Q).

Proposition 4.1. Let us assume that $f_1 : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is convex, proper and lower semicontinuous, $f_2 : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ is strictly Hadamard differentiable at \bar{x} , $h : X \longrightarrow Y \cup \{+\infty\}$ is continuous and Y_+ -convex, the Slater condition (C.Q.S) is satisfied and \bar{x} is a local minimum of (Q). Then we have

(i) If \bar{x} is a boundary point of S, then there exists some $y^* \in Y^*_+$ satisfying $\nabla f_2(\bar{x}) \in \partial f_1(\bar{x}) - \partial (y^* \circ h)(\bar{x})$ and $\langle y^*, h(\bar{x}) \rangle = 0$;

(ii) If \bar{x} is a topological interior point of $X \setminus S$, then we have $\partial f_2(\bar{x}) \subset \partial f_1(\bar{x})$.

M. LAGHDIR

Proof. (i) It is straightforward to check that by means of the convexity and continuity of h that the subset S is convex and open. Also, let us note that S is nonempty by virtue of the Slater condition. Hence, it follows from Proposition 3.1 that when \bar{x} is both a boundary point of S and a local minimum to (\mathcal{Q}) we have

$$\nabla f_2(\bar{x}) \in \partial f_1(\bar{x}) - N_S(\bar{x}).$$

By Lemma 4.1, we can write $\delta_{\overline{S}} = \delta_{-Y_+} \circ h$. Since $N_S(\overline{x}) = N_{\overline{S}}(\overline{x})$, we get

$$N_S(\bar{x}) = \partial \delta_{\overline{S}}(\bar{x}) = \partial (\delta_{-Y_{\perp}} \circ h)(\bar{x}).$$

Applying formula (4.2) we can conclude that there exist some $y^* \in Y^*_+$ satisfying $\nabla f_2(\bar{x}) \in \partial f_1(\bar{x}) - \partial (y^* \circ h)(\bar{x})$ and $\langle y^*, h(\bar{x}) \rangle = 0$.

(ii) We apply the same arguments used in (ii) of Proposition 3.1.

Concerning the sufficient conditions associated to problem (\mathcal{Q}) we have

Proposition 4.2. Suppose that $f_1, f_2 : X \longrightarrow \mathbb{R} \cup \{+\infty\}$ are convex, proper and lower semicontinuous, $h : X \longrightarrow Y \cup \{+\infty\}$ is proper, continuous and Y_+ -convex, $\bar{x} \in \text{dom } f_1 \cap \text{dom } f_2$ is a boundary point of S and the Slater condition (C.Q.S) is satisfied. If for any $y^* \in Y^*_+$ satisfying $\langle y^*, h(\bar{x}) \rangle = 0$ and

(4.3)
$$\partial_{\varepsilon} f_2(\bar{x}) + \partial(y^* \circ h)(\bar{x}) \subset \partial_{\varepsilon} f_1(\bar{x}), \quad \forall \varepsilon > 0,$$

then \bar{x} is a global minimum of (Q).

Proof. As in the proof of Proposition 4.1, observe that the subset $S = \{x \in X : h(x) \in -\text{int } Y_+\}$ is again, under the same assumptions, a nonempty open convex subset of X. Also, as mentioned previously, under the Slater condition we have

$$N_{S}(\bar{x}) = \partial \delta_{\overline{S}}(\bar{x}) = \partial (\delta_{-Y_{+}} \circ h)(\bar{x}) = \bigcup_{\substack{y^{*} \in Y_{+}^{*} \\ \langle y^{*}, h(\bar{x}) \rangle = 0}} \partial (y^{*} \circ h)(\bar{x})$$

and hence condition (4.3) is equivalent to

$$\partial_{\varepsilon} f_2(\bar{x}) + N_S(\bar{x}) \subset \partial_{\varepsilon} f_1(\bar{x}), \quad \forall \varepsilon > 0.$$

Thus, by applying Proposition 3.2, we see that \bar{x} is a global minimum of problem (Q).

Remark 4.2. In the case when $Y = \mathbb{R}$ and $Y_+ = \mathbb{R}_+$ we have $Y_+^* = \mathbb{R}_+$ and the problem (\mathcal{Q}) becomes

$$(\mathcal{L}) \quad \begin{cases} \inf f_1(x) - f_2(x) \\ h(x) \ge 0. \end{cases}$$

Noticing that $\partial(\lambda h)(\bar{x}) = \lambda \partial h(\bar{x})$ for any $\lambda > 0$ and $\partial(0 \cdot h)(\bar{x}) = \{0\}$ according to convention (4.1) we derive easily from Proposition 4.1 and Proposition 4.2 the related optimality conditions to the above scalar problem (\mathcal{L}).

Acknowledgment

The author would like to thank an anonymous referee for his valuable remarks and suggestions.

References

- C. Combari, M. Laghdir and L. Thibault, Sous-différentiel de fonctions convex composées, Ann. Sci. Math. Quebec 8 (1994), 119-148.
- [2] C. Combari, M. Laghdir and L. Thibault, A note on subdifferentials of convex composite functionals, Arch. Math. 67 (1996), 239-252.
- [3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- [4] I. Ekland and R. Temam, Analyse convexe et Problémes variationnels, Dunod, Paris, 1974.
- [5] J. B. Hiriart-Urruty, Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In "Convexity and duality in optimization", Lecture Notes in Economics and Mathematical Systems 256 (1986), pp. 37-70.
- [6] J. -B. Hiriarty-Urruty, M. Moussaoui, A. Seeger and M. Volle, Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey, Nonlinear Anal. 24 (1995), 1727-1754.
- [7] B. Lemaire, Duality in reverse optimization, SIAM J. Optim. 8 (1998), 1029-1037.
- [8] B. Lemaire and M. Volle, *Duality in D. C. programming*, Proceedings of the 5th international Symposium on Generalized Convexity, Luniny, 1996.
- [9] R. T. Rockafellar, Clarke's tangent cones and boundaries of closed sets in Rⁿ, Nonlinear Anal. TMA 3 (1979), 145-154.
- [10] R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian. J. Math. 32 (1980), 175-180.
- [11] R. T. Rockafellar, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. 39 (1979), 331-355.

Département de Mathématiques, Faculté des Sciences B.P. 20, El-Jadida, Maroc.

E-mail address: laghdir@ucd.ac.ma