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A SIMPLE PROOF OF JUNG’S THEOREM ON

POLYNOMIAL AUTOMORPHISMS OF C2

NGUYEN VAN CHAU

Abstract. The Automorphism Theorem, discovered first by Jung in 1942,
asserts that if k is a field, then every polynomial automorphism of k2 is a finite
product of linear automorphisms and automorphisms of the form (x, y) 7→

(x + p(y), y) for p ∈ k[y]. We present here a simple proof for the case k = C

by using Newton-Puiseux expansions.

1. In this note we present a simple proof of the following theorem on the structure
of the group GA(C2) of polynomial automorphisms of C2

Automorphism Theorem. Every polynomial automorphism of C2 is tame,

i.e. it is a finite product of linear automorphisms and automorphisms of the form

(x, y) 7→ (x + p(y), y) for one-variable polynomials p ∈ C[y].

This theorem was first discovered by Jung [J] in 1942. In 1953, Van der Kulk
[Ku] extended it to a field of arbitrary characteristic. In an attempt to understand
the structure of GA(Cn) for large n, several proofs of Jung’s Theorem have
presented by Gurwith [G], Shafarevich [Sh], Rentchler [R], Nagata [N], Abhyankar
and Moh [AM], Dicks [D], Chadzy’nski and Krasi’nski [CK] and McKay and Wang
[MW]. They are related to the mysterious Jacobian conjecture, which asserts that
a polynomial map of Cn with non-zero constant Jacobian is an automorphism.
This conjecture dated back to 1939 [K], but it is still open even for n = 2. We
refer to [BCW] and [E] for nice surveys on this conjecture.

2. The following essential observation due to van der Kulk [Ku] is the crucial
step in some proofs of Jung’ theorem.

Division Lemma. F = (P,Q) ∈ GA(C2) ⇒ deg P |deg Q or deg Q|deg P .

Abhyankar and Moh in [AM] deduced it as a consequence of the theorem
on the embedding of a line to the complex plane. McKay and Wang [MW]
proved it by using formal Laurent series and the inversion formula. Chadzy’nski
and Krasi’nski [CK] obtained the Division Lemma from a formula of geometric
degree of polynomial maps (f, g) that the curves f = 0 and g = 0 have only one
branch at infinity. Here, we will prove this lemma by examining the intersection
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of irreducible branches at infinity of the curves P = 0 and Q = 0 in term of
Newton-Puiseux expansions.

Our proof presented here is quite elementary and simpler than any proof men-
tioned above. It uses the following two elementary facts on Newton-Puiseux
expansions (see, for example, [BK]).

Let h(x, y) = yn+a1(x)yn−1+· · ·+an(x) be a reducible polynomial. Looking at
the compactification CP 2 of C2, the curve h = 0 has some irreducible branches
located at some points in the line at infinity, which are called the irreducible

branchs at infinity. For such a branch γ, the Newton’ algorithm allows us to find
a meromorphic parameterization of γ, an one-to-one meromorphic map t 7−→
(tm, u(t)) ∈ γ defined for t large enough,

u(t) = tm
∞
∑

k=0

bkat−k, gcd{k : bk 6= 0} = 1,

The fractional power series u(x
1
m ) is called a Newton-Puiseux expansion at infinity

of γ and the natural number mult(u) := m the multiplicity of u.

The first fact is a simple case of Newton’s theorem (see [A]).

Fact 1. Suppose the curve h = 0 has only one irreducible branch at infinity and

u is a Newton-Puiseux expansion at infinity of this branch. Then

h(x, y) =

deg h
∏

i=1

(y − u(εix
1

deg h ))

and mult(u) = deg h, where ε is a primitive (deg h)-th root of 1.

Let ϕ(x, ξ) be a finite fractional power series of the form

ϕ(x, ξ) =

nϕ−1
∑

k=0

ckx
1− k

mϕ + ξx
1−

nϕ
mϕ ,(1)

where ξ is a parameter and gcd({k = 0, . . . nϕ − 1 : ck 6= 0} ∪ {nϕ}) = 1. Let us
represent

h(x, ϕ(x, ξ)) = x
aϕ
mϕ (h0(ξ) + lower terms in x

1
mϕ ), h0(ξ) 6= 0.(2)

The second fact is deduced from the Implicit Function Theorem.

Fact 2. Let ϕ and h0 be as in (1) and (2). If c is a simple zero of h0(ξ), then

there is a Newton-Puiseux expansion at infinity

u(x
1

mϕ ) = ϕ(x, c + lower terms in x
1

mϕ )

for which h(x, u(x
1

mϕ )) ≡ 0. Furthermore, mult(u) divides mϕ and mult(u) = mϕ

if c 6= 0.
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3. Proof of the Division Lemma. Given F = (P,Q) ∈ GA(C2). We may
assume that deg P > deg Q and we will prove that deg Q divides deg P . By
choosing a suitable linear coordinate, we can express

P (x, y) = ydeg P + lower terms in y,

Q(x, y) = ydeg Q + lower terms in y.

Observe that F is a polynomial diffeomorphism of C2 and

J(P,Q) := PxQy − PyQx ≡ const. 6= 0.

Then, P and Q are reducible and each of the curves P = 0 and Q = 0 is
diffeomorphic to C which has only one irreducible branch at infinity. Let α and
β be the unique irreducible branches at infinity of P = 0 and Q = 0, respectively.

Then, by Fact 1 we can find Newton-Puiseux expansions u(x
1

deg P ) and v(x
1

deg Q )
with mult(u) = deg P and mult(v) = deg Q such that

P (x, y) =

deg P
∏

i=1

(y − u(σix
1

deg P )),

Q(x, y) =

deg Q
∏

j=1

(y − v(δjx
1

deg P )),

where σ and δ are primitive deg P -th and deg Q-th roots of 1, respectively.

Put

θ := min
ij

ord(u(σix
1

deg P ) − v(δjx
1

deg Q )).

Without loss of generality, we may assume ord(u(x
1

deg P ) − v(x
1

deg Q )) = θ. We
define a fractional power series ϕ(x, ξ) with parameter ξ by deleting in u all terms
of order not larger than θ and adding to it the term ξxθ,

ϕ(x, ξ) =

nϕ−1
∑

k=0

ckx
1− k

mϕ + ξx
1−

nϕ
mϕ

with gcd{k = 0, . . . K − 1 : ck 6= 0} ∪ {nϕ} = 1, where 1 −
nϕ

mϕ
= θ. Then, by

definition,

u(x
1

deg P ) = ϕ(x, ξu(x)) with ξu(x) = αu + lower terms in x,

v(x
1

deg Q ) = ϕ(x, ξv(x)) with ξv(x) = βv + lower terms in x

and αu − βv 6= 0. Let us represent

P (x, ϕ(x, ξ)) = x
aϕ
mϕ (Pϕ(ξ) + lower terms in x

1
mϕ )

Q(x, ϕ(x, ξ)) = x
bϕ

mϕ (Qϕ(ξ) + lower terms in x
1

mϕ )

where aϕ and bϕ are integers and 0 6= Pϕ, Qϕ ∈ C[ξ].
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Claim 1

(a) Pϕ(αu) = 0 and Qϕ(βv) = 0.

(b) The polynomials Pϕ(ξ) and Qϕ(ξ) have no common zero.

Proof. (a) is implied from the equalities P (x, ϕ(x, ξu(x))) = 0 and Q(x, ϕ(x, ξv(x))) =
0. For (b), if Pϕ(ξ) and Qϕ(ξ) have a common zero c, then by Fact 2 there exist
series

ξ̄u(x) = c + lower terms in x,

ξ̄v(x) = c + lower terms in x

such that ϕ(x, ξ̄u(x)) and ϕ(x, ξ̄u(x)) are Newton-Puiseux expansions at infinity
of α and β, respectively. For these expansions ord(ϕ(x, ξ̄u(x)) − ϕ(x, ξ̄v(x)) < θ.
This contradicts to the definition of u and v.

Claim 2. Pϕ and Qϕ have only simple zeros.

Proof. First, observe that

aϕ > 0, bϕ > 0.(3)

Indeed, for instance, if aϕ ≤ 0, then F (t−mϕ , ϕ(t−mϕ , ξv(t
−mϕ)) tends to a point

(a, 0) ∈ C2 as t 7→ 0. This is impossible because F is a diffeomorphism.

Now, let

Jϕ := aϕPϕ
d

dξ
Qϕ − bϕQϕ

d

dξ
Pϕ.

Taking differentiation of DF (t−mϕ , ϕ(t−mϕ , ξ), one get by (3) that

mϕJ(P,Q)tnϕ−2mϕ−1 = −Jϕt−aϕ−bϕ−1 + higher terms in t.

Since J(P,Q) ≡ const. 6= 0,

Jϕ ≡

{

−mϕJ(P,Q), if aϕ + bϕ + nϕ = 2mϕ,

0, if aϕ + bϕ + nϕ > 2mϕ.

If Jϕ ≡ 0, it must be that P
−bϕ
ϕ = CQ

−aϕ
ϕ for C ∈ C∗. This is impossible by

Claim 1(b). Thus, Jϕ = −mϕJ(P,Q). In particular, Pϕ and Qϕ have only simple
zeros.

Now, we can complete the proof of the lemma. By Claim 2 the numbers αu

and βv are simple zero of Pϕ and Qϕ, respectively. Then, by Fact 2 there exist
Newton-Puiseux expansions at infinity

ū(x
1

mϕ ) = ϕ(x, αu + lower terms in x
1

mϕ ),

v̄(x
1

mϕ ) = ϕ(x, βv + lower terms in x
1

mϕ ),



A SIMPLE PROOF OF JUNG’S THEOREM 213

for which P (x, ū(x
1

mϕ )) ≡ 0, Q(x, v̄(x
1

mϕ )) ≡ 0 and mult(ū) and mult(v̄) divide
mϕ. Since mult(ū) = deg P > deg Q = mult(v̄) and αu 6= βv, we get αu 6= 0,
βv = 0 and deg P = mϕ. Hence, deg Q|deg P .

4. Proof of Automorphism Theorem. The proof uses Division Lemma and
the following fact which is only an easy elementary exercise on homogeneous
polynomial:

Fact 3 (See, for example [E, Lemma 10.2.4, p. 253]). Let f, g ∈ C[x, y] be homo-

geneous. If fxgy − fygx ≡ 0, then there is a homogeneous polynomial h ∈ C[x, y]
with deg h = gcd(deg f,deg g) such that

f = ah
deg f
deg h and g = bh

deg g
deg h , a, b ∈ C∗.

Given F = (P,Q) ∈ GA(C2). Assume, for instance, deg P ≥ deg Q and
deg P > 1. Then, by the Division Lemma deg P = m deg Q, and hence, by the
above fact deg(P − cQm) < deg P for a suitable number c ∈ C. By induction
one can find a finite sequence of automorphisms φi(x, y), i = 1, . . . , k of the form
(x, y) 7→ (x + cyl, y) and (x, y) 7→ (x, y + cxn) such that the components of the
map of φk ◦ φk−1 ◦ · · · ◦ φ1 ◦ F are of degree 1. Note that φ−1

i has the form as
those of φi. Then, we get the Automorphism Theorem.
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