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A SIMPLE PROOF OF JUNG’S THEOREM ON
POLYNOMIAL AUTOMORPHISMS OF C?

NGUYEN VAN CHAU

ABSTRACT. The Automorphism Theorem, discovered first by Jung in 1942,
asserts that if k is a field, then every polynomial automorphism of k? is a finite
product of linear automorphisms and automorphisms of the form (z,y) —
(z + p(y),y) for p € k[y]. We present here a simple proof for the case k = C
by using Newton-Puiseux expansions.

1. In this note we present a simple proof of the following theorem on the structure
of the group GA(C?) of polynomial automorphisms of C?

Automorphism Theorem. FEvery polynomial automorphism of C? is tame,
i.e. it is a finite product of linear automorphisms and automorphisms of the form
(z,y) — (x+ p(y),y) for one-variable polynomials p € Cly].

This theorem was first discovered by Jung [J] in 1942. In 1953, Van der Kulk
[Ku] extended it to a field of arbitrary characteristic. In an attempt to understand
the structure of GA(C") for large n, several proofs of Jung’s Theorem have
presented by Gurwith [G], Shafarevich [Sh], Rentchler [R], Nagata [N], Abhyankar
and Moh [AM], Dicks [D], Chadzy’nski and Krasi’nski [CK] and McKay and Wang
[MW]. They are related to the mysterious Jacobian conjecture, which asserts that
a polynomial map of C" with non-zero constant Jacobian is an automorphism.
This conjecture dated back to 1939 [K], but it is still open even for n = 2. We
refer to [BCW] and [E] for nice surveys on this conjecture.

2. The following essential observation due to van der Kulk [Ku] is the crucial
step in some proofs of Jung’ theorem.

Division Lemma. F = (P,Q) € GA(C?) = deg P|deg Q or deg Q| deg P.

Abhyankar and Moh in [AM] deduced it as a consequence of the theorem
on the embedding of a line to the complex plane. McKay and Wang [MW]
proved it by using formal Laurent series and the inversion formula. Chadzy nski
and Krasi'nski [CK] obtained the Division Lemma from a formula of geometric
degree of polynomial maps (f, g) that the curves f = 0 and g = 0 have only one
branch at infinity. Here, we will prove this lemma by examining the intersection
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of irreducible branches at infinity of the curves P = 0 and ¢ = 0 in term of
Newton-Puiseux expansions.

Our proof presented here is quite elementary and simpler than any proof men-
tioned above. It uses the following two elementary facts on Newton-Puiseux
expansions (see, for example, [BK]).

Let h(z,y) = y"+a1(x)y" 1+ - -+a,(z) be a reducible polynomial. Looking at
the compactification CP? of C?, the curve h = 0 has some irreducible branches
located at some points in the line at infinity, which are called the irreducible
branchs at infinity. For such a branch -, the Newton’ algorithm allows us to find
a meromorphic parameterization of +, an one-to-one meromorphic map ¢ —
(t™,u(t)) € v defined for ¢ large enough,

o0
u(t) ="y brat ™, ged{k: by #£0} =1,
k=0

The fractional power series u(:z:%) is called a Newton-Puiseux expansion at infinity
of v and the natural number mult(u) := m the multiplicity of u.

The first fact is a simple case of Newton’s theorem (see [A]).

Fact 1. Suppose the curve h = 0 has only one irreducible branch at infinity and
u 18 a Newton-Puiseur expansion at infinity of this branch. Then
degh )
hz,y) = [] (v — u(c'zasrn))
i=1

and mult(u) = deg h, where € is a primitive (degh)-th root of 1.

Let ¢(x,€) be a finite fractional power series of the form

ne—1
1—_Fk 1—1e
(1) p(r,8) = D ax me +Ex e,
k=0
where ¢ is a parameter and gcd({k = 0,...n, —1: ¢y # 0} U{ny,}) = 1. Let us
represent

@ 1

(2) Wz, p(z,£)) = $?ﬁ(h0(§) + lower terms in ¢ ), ho(§) # 0.
The second fact is deduced from the Implicit Function Theorem.

Fact 2. Let ¢ and hg be as in (1) and (2). If ¢ is a simple zero of ho(§), then
there is a Newton-Puiseux expansion at infinity

1 1

u(x™e ) = @(x,c+ lower terms in x"To)

1
for which h(xz,u(x ™)) = 0. Furthermore, mult(u) divides my, and mult(u) = m,

if ¢ # 0.
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3. Proof of the Division Lemma. Given F = (P,Q) € GA(C?). We may
assume that deg P > deg(@ and we will prove that deg@ divides deg P. By
choosing a suitable linear coordinate, we can express

P(z,y) = y*& ¥ + lower terms in y,
Q(z,y) = y°8? + lower terms in y.

Observe that F is a polynomial diffeomorphism of C? and
J(P,Q) := P,Qy — P,Q, = const. # 0.
Then, P and @ are reducible and each of the curves P = 0 and Q = 0 is

diffeomorphic to C which has only one irreducible branch at infinity. Let o and
0 be the unique irreducible branches at infinity of P = 0 and @ = 0, respectively.
1 1

Then, by Fact 1 we can find Newton-Puiseux expansions u(zde? ) and v(xdes@)
with mult(u) = deg P and mult(v) = deg @ such that

deg P A L
P($7y) = H (y - u(o’zgj@))’

i=1

deg @ ) 1
Q(xay) = H (y - U((S]x@))v

j=1

where o and § are primitive deg P-th and deg Q-th roots of 1, respectively.
Put

0= minord(u(ail‘ﬁ) - v(éjx@)),
ij

1 1
Without loss of generality, we may assume ord(u(xdee?) — v(zdeQ)) = §. We
define a fractional power series ¢(x, &) with parameter by deleting in u all terms
of order not larger than 6 and adding to it the term &z?,

ne—1

1—_k_ 1- e

p@,6) =Y ax ™ +éx T
k=0

with ged{k = 0,... K —1: ¢, # 0} U {n,} = 1, where 1 — Z—i = 6. Then, by
definition,

u(gjdeép) = @(x,&,(x)) with &,(z) = o, + lower terms in z,

v(x@) = ¢(x,&(x)) with &,(z) = [, + lower terms in z
and oy, — B, # 0. Let us represent

@ 1
P(x,p(x,§)) = Jimii(P(p(f) + lower terms in x™#)
b#P 1

Q(z,p(x,)) = 2™ (Qu(€) + lower terms in z™%)
where a, and b, are integers and 0 # P,, Q, € C[¢].
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Claim 1

() Pole) = 0 and Qp(5) = 0.
(b) The polynomials P,(§) and Q,(§) have no common zero.

Proof. (a) is implied from the equalities P(x, p(z,&,(2))) = 0 and Q(x, ¢(z, &y (x))) =
0. For (b), if P,(&£) and Q,(§) have a common zero ¢, then by Fact 2 there exist
series

£u(r) = ¢+ lower terms in ,

&v(z) = ¢+ lower terms in x

such that ¢(z,&,(z)) and ¢(z,&,(x)) are Newton-Puiseux expansions at infinity
of a and (3, respectively. For these expansions ord(p(z,&,(z)) — ¢(x, & (x)) < 6.
This contradicts to the definition of v and v. O

Claim 2. P, and Q, have only simple zeros.

Proof. First, observe that
(3) a, >0, by, >0.

Indeed, for instance, if a, < 0, then F(t7™, p(t™"¢,&,(17™¢)) tends to a point
(a,0) € C? as t + 0. This is impossible because F is a diffeomorphism.

Now, let

d d
Jo = %Psod_ngo - bsonod_€P<p'

Taking differentiation of DF (t~™¢, p(t~™¢,&), one get by (3) that
myJ (P, Q)" ~2met = — J t=% =1 4 higher terms in ¢.
Since J(P, Q) = const. # 0,

J = —-myJ(P,Q), if a,+ b, +n, = 2my,
Y70, if a, + by +ny > 2my,.

If J, = 0, it must be that P;b“” = CQ," for C € C*. This is impossible by
Claim 1(b). Thus, J, = —myJ(P, Q). In particular, P, and @, have only simple
ZEros.

Now, we can complete the proof of the lemma. By Claim 2 the numbers ay,
and (3, are simple zero of P, and @, respectively. Then, by Fact 2 there exist
Newton-Puiseux expansions at infinity

L 1
(xme) = p(x, 0 + lower terms in x™¢ ),
— 1
(xme) = p(x, B, + lower terms in x™¢ ),

N

<
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1 1
for which P(x,u(x™)) =0, Q(x,v(x™)) = 0 and mult(u) and mult(v) divide
my. Since mult(z) = deg P > deg Q@ = mult(v) and o, # By, we get o, # 0,
By = 0 and deg P = m,,. Hence, deg Q| deg P. O

4. Proof of Automorphism Theorem. The proof uses Division Lemma and
the following fact which is only an easy elementary exercise on homogeneous
polynomial:

Fact 3 (See, for example [E, Lemma 10.2.4, p.253]). Let f,g € C[z,y| be homo-
geneous. If frgy — fyge =0, then there is a homogeneous polynomial h € Clz,y]
with deg h = ged(deg f, deg g) such that

deg f degyg "
f =ahder and g = bhdessh, a,be C.

Given F = (P,Q) € GA(C?). Assume, for instance, deg P > deg@ and
deg P > 1. Then, by the Division Lemma deg P = mdeg @, and hence, by the
above fact deg(P — c¢Q™) < deg P for a suitable number ¢ € C. By induction
one can find a finite sequence of automorphisms ¢;(x,y), i = 1,..., k of the form
(z,y) — (v +cyl,y) and (z,9) — (z,y + cz™) such that the components of the
map of ¢ o pp_10---0¢1 o F are of degree 1. Note that (bl-_l has the form as
those of ¢;. Then, we get the Automorphism Theorem. O
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